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1 Introduction 

Recent investigations into the standard model have suggested the possibil- 

ity of significant violations of baryon number at temperatures near 1 TeV and 

above.‘-3 Baryon number violation is caused by the winding of the week gauge 

fields, the two being related by the anomaly! 

B(b) - B(tl) = & lt’ dt d3s trFk = $ /*’ dt d3s trE . B. (1) 1 t, 

Each time the fields wind, baryon number is changed by nf units where n, is 

the number of families of quarks and leptons. The difference of baryon number 

and lepton number, however, is exactly conserved. 

Creating these gauge fields costs energy, and the classical potential-energy 

barrier for winding the gauge fields’ is of order Eo - &,/a,. At zero tempera- 

ture, such processes can occur only by quantum tunneling and so are exponen- 

tially suppressed by the Euclidean action S/h. - AE At/h - l/nw. Such tun- 

neling may be analyzed using instantons and, in the classic analysis oft’ Hooft, 

baryon number violation at zero temperature was estimated to be so small that 

it is unlikely to have ever occurred in the lifetime of the observed universe. At 

finite temperature, however, one can pass over the barrier classica[[y with a 

Boltzmann factor exp(-P&). In a classically-allowed transition, there is no 

exponential suppression due to quantum tunneling. It is to this possibility 

that previous work has been addressed. The barrier has been identified with 

a classically unstable, static solution to the equations of motion known as the 

spha1eron.l Estimates of the rate at which this barrier is crossed suggest that 

baryon-number violation is significant enough to easily dissipate any baryon 

excess in a universe with B - L = 0. 

Though the idea sounds simple once proposed, the formalism is more con- 

fusing. When working in Euclidean space, the only configurations which at first 

sight seem to have something to do with winding are the instant0ns.s Shuryak,’ 

and Gross, Pisarski, and Yaffe,s have extended the analysis of instantons to fi- 

nite temperature, and the Euclidean action of any configuration which winds 

once in Euclidean time is still bounded below by Z~/(Y,. Thus, t’ Hooft’s con- 

clusion appears unchanged: the rate of baryon number violation is essentially 
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zero. Ellis, Flares, Rudaz, and SeckeP have recently put forward this argument 

in the case of baryon-number violation in electroweak theory. 

Our main goal will be to demonstrate that the leap to this conclusion is 

misplaced. In a previous work,3 we examined the formalism of how a dynamic 

process, the winding of the gauge fields, could be related to the expansion of 

the path-integral about a static configuration - the sphaleron. In the current 

paper, we shall examine the relation of these processes to instanton physics. We 

conclude that instanton estimates are not relevant to this phenomenon. 

Gross, Pisarski, and Yaffe were concerned with the calculation of equilibrium 

quantities, such as the dependence of the free energy on Booo. Equilibrium quan- 

tities requiring winding are indeed exponentially suppressed. Time-dependent 

correlations, however, are more subtle. We shall investigate in detail a simple 

toy model where, though winding is suppressed in Euclidean time, it is unsup- 

pressed when analytically continued to real time. We shall see that real-time 

winding is unsuppressed because it comes from the sector with zero Euclidean 

winding number. 

This demonstration will explain the appearance of real-time winding in cer- 

tain operators, such as time-dependent correlations of baryon number, which 

can be non-zero without Euclidean winding. But there is an alternative way to 

investigate baryon-number violation which requires Euclidean winding.” A pro- 

cess which winds the gauge fields once will emit a member of each weak fermion 

doublet. In a theory with one generation of quarks and leptons, for example, 

three quarks and a lepton will be emitted. If there is significant baryon-number 

violation, then there should be significant S-matrix elements involving the ap- 

pearance of three quarks and a lepton. But one can show that such an amplitude 

(qqql . . .) can only receive a contribution from configurations with non-trivial 

Euclidean winding, and so, it seems, should be exponentially suppressed. 

As we shall see, this argument is flawed because the process mediated by the 

sphaleron is a classical one and so involves a large number of quanta. To cross 

the barrier, the fields must at some time configure themselves into a physical 

sphaleron with energy - Mu/a,,. The size of a sphaleron is r - l/M,, and 

so the typical Fourier component is k - M,. When the sphaleron decays, the 

momenta of particles in the final state will be typically M,,,. The sphaleron will 
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therefore decay into - l/a, W’s and Z’s, producing the quarks and lepton as a 

side-effect due to the anomaly. 

The amplitudes of interest are then of the form (qqql A’/“) rather than 

simply (qqql). We shall argue that instanton estimates to amplitudes break 

down in the classical, many-quanta limit where the sphaleron estimates are 

made. By attempting to extrapolate instanton estimates to this limit, we shall 

see qualitatively how they can yield unsuppressed amplitudes. Conversely, by 

attempting to extrapolate the sphaleron estimates to the few-quanta limit, we 

shall see qualitatively how they yield the instanton suppression. We conclude 

that the inclusive rate for baryon-number violation is unsuppressed. 

In section 2, we examine the toy system of a quantum-mechanical pendulum 

at high temperature to establish our first claim that Euclidean winding is not 

directly related to real-time winding. In an exactly soluble version of this model, 

we shall see how winding that is suppressed in Euclidean time becomes unsup- 

pressed when analytically continued to real time. We also discuss the physics of 

unsuppressed winding in a model with more than just a single degree of freedom: 

the sine-Gordon model on a finite ring in l+l dimensions. 

In section 3, we turn to the argument that S-matrix elements that violate 

baryon number should be suppressed. A simple problem in integration highlights 

the breakdown of instanton estimates in the many-quanta limit. Using coherent 

states, we then study the few-quanta limit of sphaleron estimates. 

In section 4, we address two other issues concerning the sphaleron estimate: 

electric damping and thermal collisions. 

In section 5, we investigate the classical evolution of the decay of the sphaleron. 

This yields a specific example of a solution to the Minkowski equations of motion 

which winds. Our arena for this investigation will be the Abelian Higgs model in 

I+1 dimensions, which is numerically more tractable than the Weinberg-Salam 

model in 3fl dimensions. Our interest is to check if there is anything singular 

or sick about this evolution. We find that the transition does wind the fields 

once but has some interesting structure peculiar to l+l dimensions. 

In section 6 we offer our conclusions. 

We end this introduction with a brief review of the sphaleron solution and the 
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corresponding estimates of baryon-number violation. The particular sphaleron 

solution found by Klinkhamer and Manton’ is identified as the barrier between 

neighboring vacua for the following reasons: (1) it is a static, unstable solution 

to the equations of motion, (2) there exists a path through configuration space 

from one vacua to the next for which the sphaleron is the point of maximum 

potential energy, and (3) moving from one vacuum to the sphaleron changes 

baryon number by exactly one half the amount of moving from one vacuum to 

the next. The last is determined by computing the Chern-Simons charge of the 

sphaleron: 
2 

Q=v& I d3zK0 

where the Chern-Simons current is 

K’ = @‘“‘“(F&w~ - $~,~.w,y;w~). 

This charge is related to baryon-numberviolation by AB = AQ, 

The sphaleron is studied in pure SU(2) theory with the Weinberg angle 

treated as a perturbation. The size of the sphaleron is w l/& and its energy 

is 

(4) 

where A - 2. This puts E between 8 and 14 TeV at zero temperature depending 

on the Higgs self-coupling X. Using a Boltsmann factor, the rate per unit volume 

for crossing the barrier might therefore be of the order 

R - pexp(-E,,(T)/T) (5) 

where we replace A& by the effective temperature-dependent mass M,(T) of 

finite-temperature field theory. As one approaches the critical temperature T, 

of Weinberg-Salam, M,(T) * 0, the size of the sphaleron becomes infinite, the 

classical energy barrier becomes zero, and the estimate (5) becomes order 1. 

A direct computation3 of this rate is possible by weak coupling methods 

in the temperature range M,(T) < T < M,(T)/cr, for the case X w 9. In 

this range, the simple formula (5) is reduced by several orders of magnitude, 

but the rate is nonetheless sufficiently large to be relevant for cosmology. At 

higher temperatures, it is difficult to conclude anything by direct computation 

since infrared divergences of the finite temperature theory render weak coupling 
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methods almost useless. In fact, in the symmetric phase above the critical tem- 

perature, there is no sphaleron solution. Nevertheless, we put forward arguments 

in Ref. 3 that, at very high temperatures, the rate may go as 

R - aPT’ VJ (6) 

where p is a number, p - 3 - 4. This is in contradistinction to instanton esti- 

mates, which at first sight would seem most valid and familiar in the symmetric 

phase. 

2 Real-Time vs. Euclidean Winding 

2.1 The Pendulum 

We now turn to our first investigation of the relation between winding in Eu- 

clidean time and winding in real-time. Our model for this study will be the 

quantum mechanics of a rigid pendulum, where the pendulum may swing all 

the way around in a circle. This model has many of the paradoxical features 

of the electroweak theory. At zero temperature, in the presence of the gravita- 

tional potential shown in Fig. 1, the pendulum can only wind about by quantum 

tunnelling; the rate may be calculated by instanton analysis. At finite temper- 

ature, the pendulum is given an ensemble of energies weighted by exp(-PE). 

At high temperatures, large compared to the potential difference between the 

top and bottom of the orbit, we expect that the pendulum will wind around 

with probability close to one. On the other hand, in Euclidian space, a solution 

which winds must have a singular high-temperature limit since it is required to 

do so in Euclidean time p + 0. We shall show that the Euclidian action for such 

a winding solution grows as 2s*T/tL in the high-temperature limit, and there- 

fore the instanton is exponentially suppressed. Our purpose is to show how the 

formalism nonetheless reproduces one’s physical intuition of a rapidly-rotating 

pendulum. 

A pendulum is described by a spatial coordinate z constrained to a circle, 

so that points are identified module 2s. We shall allow the range of z to be 

-co < z < 03 so that we can follow the pendulum as it wraps around several 
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times, but we must remember that the physical coordinate is identified module 

2s. We shall keep track of ti in this section to help identify the classical limit. 

Note that the sphaleron for the pendulum is given by 

z.p(t) = ST. (7) 

This static, unstable solution is the top of the swing of the pendulum. The 

Boltzmann factor for crossing the barrier is just exp(-bE,r). 

Let us now suppose that there are no external forces such as gravity acting 

on the pendulum (or that the temperature is high enough that these can be 

ignored) so that the action is simple and quadratic: 

where we have chosen units in which the moment of inertia is 1. So, taking the 

winding number n of a path to be 

we can write the partition function as 

2 = ~j[Dzl.exp(-SE/~) 
n 

where in each term we integrate only over paths with winding number n. The 

instanton solutions and actions are 

Z”(7) = 2xnTpLp S, = 27rznz/hi5J. 01) 

Let us now modify the system by adding a 6 term which couples to the 

winding number: 

s, = 
/ 

obB d+ + +]. 

The advantage of this simple system is that the action is quadratic, so we can 

obtain exact results for quantities of interest. 

Now let us consider a measure of the real-time rate at which the pendulum 

wraps around the circle: 

A(t) = (T 
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where the T denotes time-ordering. When the temperature is large, we expect 

this last quantity to be given by its classical value. Classically, the ordering 

prescription is irrelevant and the equipartition theorem gives i;s = ;T so that 

A(t) = E + o(h). (14) 

The dependence of the free energy on 0, however, is measured by 

SF 
a82 = (n”) = A(--it@). (15) 

This quantity is exponentially small as can be seen explicitly by replacing, in 

each winding-number sector, z(r) by zs(r) + 6x(r) where 6x is periodic. The 

partition function then factorizes exactly into 

2 = 
( 

~exp(-2?rZnZ/tLZP) exp(in0) . (16) 
* 

The expectation of n* is then just 

~n’exp(-2s2n2/tL2~) exp(in0) 

Cexp(-2n2n2/tLZP) exp(in6) 
= 2exp(-29/h*fl) cos 0 + 0 (s-‘a”hz8), (17) 

and so A(-ihp) is exponentially suppressed. 

Let us now, by calculating A(t) f or arbitrary t, see how the unsuppressed 

classical result is consistent with the suppressed value of A(-if@). We have 

seen that the contributions from n # 0 will be exponentially suppressed, so let 

us concentrate on the n = 0 sector: 

A(t) = (7 [ ( 6x(t);;x(0))2] ) + o (e-2r’/h*9 . 

We need the propagator (76~6~) in a free theory at finite temperature. This is 

well known to be 

1 
k2 - (n~;ti]~ + ic + exp(h,flksl) - 1 

6 (k’ - (~/FL)‘) (19) 

where we have temporarily included a mass as an infrared cut-off. In configura- 

tion space, this gives 

(6x(t,)6x(t2)) = A.. exP(Wl - Wfi) _ ew-Wl - t21/tL) 
2m 1 exp(Pm) - 1 exp(-pm) - 1 1 (20) 
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SO 

A(t) = & 
I 

exp(-im(tl/fi) - 1 exp(imltl/tL) - 1 

exp(-pm) - 1 - exp(@) - 1 1 + 0 (e-2r2q (21) 

We can now safely take the cut-off n to zero: 

A(t) = (22) 

The classical and high-temperature limits are the same and reproduce the pre- 

vious result A(t) YN t2T/4n. Moreover, A(-&@ = o (e-2*‘/h18) as it should. 

The moral is that large real-time winding comes from the sector with Eu- 

clidean winding-number zero. The fluctuations in Euclidean time must be small 

since otherwise we would find suppression due to a large Euclidean action; in the 

case at hand, IA(-ir)I 5 FL*~/~x’ for 0 5 r < A,L?. When analytically continued 

to real-time, however, the fluctuations become large. 

2.2 Interpreting the Instanton 

The instanton is certainly related to the communication of the region z - 0 

to the region z - 2~. We have seen that the instanton is suppressed but the 

communication is not. Why should this be so? 

We can address this question by considering the Euclidian path integral 

which takes us from I = z, to z = z. + 21r, integrating over z,. This quantity 

is precisely the contribution to the partition function from the winding-number 

1 sector of the theory. 

21 = I dx. < x0 + 2~ I exp(-PH) ] 2. >= t,gj=,Coj+z~exp(-Sz) / (23) 

We know 21 to be small - exp(-2n2/P) at high temperature. (We have returned 

to the convention fi = 1 for the remainder of this paper.) 

If we analyze 2, in terms of energy eigenstates, this result is perhaps a bit 

surprising. Expressed in terms of energy eigenstates, 2, becomes 

“=Ig dz, C!E(z, + 2a)@~(z,) exp(-PE). (24) 

We expect that in general there will be a large overlap between high energy 

states which have coordinates differing by 2n. The reason the sum in Eq. 24 
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nonetheless gives a small result is because the phases interfere destructively. For 

instance, in the absence of external forces, 

U,(x) = $exp(iliz) (25) 

where k is the spatial momentum, E = k*/2, and we have temporarily restricted 

x to -L/2 i z i L/2, L * co. Notice that the overlap probability 

P =I /dz U;(x + Zn)*~(z) 1’ 

is one. But now consider Eq. 24. The sum over E becomes an integral over k 

which may be evaluated explicitly: 

Z, = L 
I 

dk exp(i2nk) exp(-pkz/2). (27) 

If we normalize by the zero-winding contribution, we get 

The action integral has been suppressed by cancel&ion of the varying phases of 

the overlap amplitude. The width of the interval in k over which this cancelation 

occurs is k - ~9. 

2.3 The Sine-Gordon Model 

In the analysis of the previous sections, we have concerned ourselves with a 

theory having only one degree of freedom. In the case of a quantum field theory 

we expect that the other degrees of freedom will play a role. In this section, we 

examine such a system by considering the sine-Gordon model in l+l dimensions 

on a finite-length ring. We shall see that this system also has instantons which 

are suppressed in the high-temperature limit, but real-time winding is controlled 

by a Boltzmann factor which is unsuppressed. Though we cannot solve this 

system exactly as we did for the pendulum, we shall give physical arguments for 

the lack of exponential suppression. 

The sine-Gordon model has the action 

S = ; / 8s (+#+))’ + d(l - cos(cj(x))) (29) 
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In this equation the coupling constant is X, which we shall take as small. The size 

of the system will be taken as L in the spatial direction and p in the Euclidian 

time direction, corresponding to a finite temperature. 

The sine-Gordon theory is labelled by topologically distinct vacua for which 

(d+)) = 2~~7 (30) 

where N is an integer. In infinite volume, these different vacua cannot be con- 

nected with instanton solutions. 

We can estimate the instanton contribution to the action in finite volume. 

First consider the limit where the temperature is small, 2’ << m. In this case 

we expect that the time extent of the instanton is 6t - l/m. The spatial extent 

is 6s - L since c% must change by 27r6n over all of space. So 

sin., - 75 T<<m.. 
A 

In the high temperature limit T >> m, the instanton must change in Euclidean 

time 6t - p, so that here we have 

c&r* - ;, T>>m. 

In any range of temperature, the instanton contribution to the topologically 

non-trivial sector of the path integral is suppressed by exp(-Si,,*) which is 

exponentially small in the limit of small X but finite L. 

Once again, though instantons are exponentially suppressed, we expect the 

transition rate to be unsuppressed at high temperature. The theory has kink/anti- 

kink solitons where the kink and anti-kink interpolate between the different 

ground-states. The energy of a kink is of order E - m/x so that the kink/anti- 

kink contribution to the partition function goes as 

P - exp(-2pm/X). (33) 

At high temperature, we expect many kink/anti-kink pairs. These can change 

the average value of 4 by moving around the ring as in Figs. 2 and 3, and the 

cost of producing them is just the Boltsmann factor of Eq. 33. 

On average, of course, as many pairs will move around the ring one way as the 

other, and the average winding will be zero. This is because we have included no 
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preference for the direction of winding. To do so, we need a chemical potential 

term 

“N”$ I dz d(x). (34) 

In electroweak theory, p would be the chemical potential of the baryons and 

leptons, and this term reflects the fact that every winding creates baryons and 

leptons and so costs energy p. In the case at hand, the chemical potential 

creates a force which pushes the kinks in one direction around the ring and the 

anti-kinks in the other. 

3 Euclidean Winding Revisited 

3.1 The Instanton and Many Quanta 

Rather than examining correlations of winding number, as in the previous sec- 

tion, we now examine S-matrix elements which explicitly show the destruction 

or creation of baryons. Such matrix elements can only get contributions from 

non-trivial Euclidean winding, and so the Euclidean action is always bounded 

below by 2az/a. It therefore seems that all such S-matrix elements must be 

suppressed, regardless of the temperature. 

As mentioned in the introduction, the flaw in this argument is that the decay 

of the sphaleron involves a large number (- l/o) of quanta; the relevant matrix 

elements are schematically of the form (qqql A’/“). Formally, the estimate of an 

amplitude as exp( -&,f) requires the assumptions that the current term J * A 

used for calculating Green’s functions yield only a small perturbation on the 

action of the instanton. That assumption breaks down if J is “big.” As we shall 

see, this occurs for amplitudes involving a large number of quanta. 

Consider a simple example of saddle-point approximations from calculus 

(that is, 0+0 dimensional space-time): 

Ins +- I 
& e-S(z)x2” where 

-cc 
S(5) = g-2 [l + (x - g-y]. (35) 

The minimum of S is S,,, = l/g2 and occurs at I,, = l/g. This is intended to 

be analogous to the instanton case. 
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The integrand of Zo is bounded above by exp(-S,,,i,), which disappears in 

the small g limit, and Zc is correctly estimated as having this exponential de- 

pendence. But let us now consider Z,, for large n. Specifically, take n = l/g’. 

We now need 

Z l/g2 = 
I 

-‘,” dz e- [S(z)-g-1 In.], 
(36) 

The second term in the exponent is order l/g2 and cannot be treated pertur- 

batively. Plugging in z = z,, we know the integrand can be at least as big 

as 

e-l/o~ (~)““‘~ (L)!, (37) 

and so the exponential dependence of Z,/g~ is 2 (l/g*)!. So 1,/s% does not vanish 

in the small g limit - quite the opposite. 

One can continue to play with the dependence on g if one interprets Z,, as 

analogous to the amplitude for scattering of n quanta into n quanta. To get a 

rate, we should square Z, and divide by n! for the final particles. For n = l/g2, 

this gives 2 (l/g*)!. 

One may follow through the same sort of argument for the g dependence of 

instanton amplitudes in electroweak theory. The usefulness of the instanton esti- 

mate is even more obscured by the complications of the momentum dependence 

of the amplitude, the necessity of analytically continuing the result to real-time, 

and the phase-space and initial-particle distribution integrals to be done. All of 

these issues are potentially fraught with subtleties. 

The moral is that instanton methods are not effective for amplitudes involv- 

ing many quanta, and we expect, based on the classical picture of the sphaleron, 

that these are precisely the amplitudes of interest. 

3.2 The Sphaleron and Few Quanta 

Having seen that instanton estimates can become unsuppressed in the limit of 

many quanta, we shall now complete our study of the relationship between in- 

stantons and sphalerons by showing that sphaleron estimates become suppressed 

in the limit of few quanta. The basic argument is that the number of quanta in a 

classical coherent state is Poisson distributed. The strength of events involving 
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different numbers of particles should be roughly 

For n small, this is suppressed by exp(-(n)). Since (n) - l/a,, we find a 

suppression similar to the instanton one. 

To understand the branching ratio P,, more formally, we shall briefly consider 

the description of the sphaleron as a coherent state.” The sphaleron is, to good 

approximation, a classical object. As such, it decays classically and its decay 

rate may be computed by following its classical evolution. The value of this 

rate depends on whether or not there is significant damping at the temperature 

of interest. Without damping, we expect that the rate is order l/M,,,. With 

damping, this rate may be reduced by 2 to 3 orders of magnitude. Once the 

sphaleron has decayed, we have classical waves radiating away from the original 

position of the sphaleron. What is the probability that the total number of 

quanta in these waves will be measured as small (say 3 rather than l/a)? 

To address this question, let us write the classical final state in the language 

of quantum field theory using the coherent state representation:” 

1 out) = e-(n)i2exp (2T& Q,!(k) at(k)) IO). (39) 

In this formula, E is the energy of the quanta created by a:(k). G(k) generically 

represents the Fourier transform of the final-state classical field; we have ignored 

all indices and problems associated with gauge freedom (see Ref. 11 for details). 

The factor exp(-(n)/2) normalizes the state, where the average number of 

quanta (n) is given by 

(4 = / (2~;:2El@W2. 
The classical coherent state which we have written down is not an energy 

and momentum eigenstate. In the classical limit when (n) + 00, the state has 

well defined energy and momentum. We work in a frame where 

I d3k 
(2~)~2E 

El@(k) 1’ = &,,,.I 

and where the average value of the spatial momentum vanishes. 

(41) 
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The overlap of 1 out) with an n-particle state may now be computed as 

Ibut I h,kz,... kn)12= l(out / a+(k,)...a+(k,) / 0)12 

= ,-(n) I @(kl) I2 . . . WW 
(2s)32E1 (2~)32E,’ 

(42) 

Notice that since j@ls - l/aw, this branching fraction is not analytic in the weak 

coupling limit. Upon integrating over final three momenta, and remembering a 

l/n! for identical particles in the final state, we see that the integrated branching 

probabilities are Poisson distributed as in Eq., (38). 

The Poisson distribution for the final state is typical of a classical distribution 

of particles. The surprising issue here is how large (n) is, and the fact that this 

leads to a tremendous suppression of sphaleron decays into a small number of 

particles. 

4 Other Issues 

In this section, we cover a few other areas of possible confusion in the physics 

and formalism of the sphaleron approximation. We shall discuss the role of 

electric screening and thermal collisions on the transition. 

4.1 Electric Screening 

The iirst issue is electric screening, which has been suggested by Ellis, et. al. 

as a possible source of tremendous suppression for sphaleron processes. Electric 

screening plays an important role in instanton physics because, in order for 

the Euclidean winding Jt dr E. B to be order 1 for very small /I, one needs 

large electric and magnetic fields. These large electric fields are screened, and 

so the contribution of such a configuration is suppressed. This effect gives a 

contribution to the effective free energy of - (RT)* for instantons of size R.s If 

one were to plug in the sphaleron size R - l/M,, one would find a suppression 

of the form exp ( -T2/Mi). 

However, as we have previously discussed, the winding does not happen 

in Euclidean time but in real time, and so the winding is not constrained to 
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happen within time p. Winding can occur with small electric fields present 

for a long time rather than large electric fields present for a short time. How 

do damping effects in the plasma determine this? The sphaleron is a purely 

magnetic configuration and so is not itself electrically screened. The process 

which changes baryon number, however, is a dynamic one that evolves through 

the sphaleron. In the creation and decay of the magnetic fields of the sphaleron, 

electric fields must be produced, and these electric fields will be screened. 

Indeed, we found in Ref. 3 that, for the temperatures we studied, such damp- 

ing effects slow the sphaleron decay rate by a few orders of magnitude. (Specif- 

ically, we found that Landau damping was the most important effect. Landau 

damping has a similar origin to electric screening and is proportional to the size 

of the electric fields.) Since the decay of the magnetic configuration is damped, 

the electric fields produced are smaller and the time for the decay is longer. 

These effects cancel in the winding number J dt E. B. The suppression of the 

rate due to the longer decay time is algebraic, not exponential. 

At very high temperatures, T 2~ M,(T)/a,, the sphaleron is magnetically 

screened by the plasma. At these temperatures, however, the approximations 

which dictate that the system must create an approximate sphaleron in order 

to pass over the barrier break down. The system may be able to pass through 

small configurations which are unscreened (see Ref. 3 for details). In any case, 

the process proceeds quickly enough for T < M,(T)/a, to be cosmologically 

significant. 

4.2 Thermal Collisions 

We shall now examine the issue of thermal collisions. Suppose that, before 

a sphaleron decays, a collision with the thermal bath knocks it back over the 

barrier so that there is no net transition. (See Fig. 4.) It seems that counting 

the number of sphalerons might then overcount the number of net transitions. 

To explore this possibility, we delineate four important length-scales of the 

problem: M;‘, (gT)-‘, (a,,,T)-‘, and [o~Tln(T/!&)]-t. iVf;* is the size of the 

sphaleron; (gT)-’ is the electric screening length and the scale for Landau damp- 

ing; (o,,,T)-i is the magnetic screening length and a,T < M, is required for 

15 



the validity of perturbation theory about the sphaleror?; and [a:T ln(T?M,)j-’ 

is the mean free path of Ws and Zs in the thermal bath. In Ref. 3, we found 

that we could analyze the sphaleron for M, < T < Mu/a,. In this range, 

the mean free path is the longest scale of the four discussed. At the lower end 

of the range, the decay time of the sphaleron is order M;’ and is shorter than 

the mean free path. At the higher end, damping is important and increases the 

decay time by a factor of order (gT/Mw)Z. In the limit T < Mw/awr the decay 

time is still small compared to the mean free path. So, for the temperatures 

studied, thermal collisions during the decay of the sphaleron should not yield a 

significant change in the estimate of the transition rate. (We should emphasize 

that, in the range M, << T < Mu/a,, the estimated rate for baryon-number 

violation is as large as 10” times the expansion rate of the universe.3 One would 

need a very significant effect to shut this process down.) 

5 Classical Evolution of the Sphaleron 

In this section, we turn awayfrom instanton-relatedissues and investigate the 

classical evolution of the decaying sphaleron. We are interested to see if there 

is anything singular or otherwise bizarre about this evolution. The classical 

decay of the sphaleron is difficult to study in the Weinberg-Salam model beyond 

the analysis of small fluctuations. This is because it is difficult to solve the 

classical equations of motion for the sphaleron as it decays. At some time it 

may be necessary to embark on a computation of this problem in classical time 

evolution, but at present such an effort seems unwarranted. We have therefore 

chosen to study a problem which is more numerically tractable: the Abelian 

Higgs model in l+l dimensions. 

The Abelian Higgs model in 1+1 dimensions is a theory with instantons.13 It 

has been used as a model for sphaleron processes, and the one-loop computation 

of sphaleron-induced decay has been performed analytically.14 We are interested 

in tracing the decay of the sphaleron after it has left the neighborhood of the 

sphaleron configuration. We shall do so classically. Classical physics can be 

misleading in l+l dimensions where quantum fluctuations dominate in the infra- 

red. Our hope is that the classical decay in 1+1 will be analogous to the classical 
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decay in 3+1, where the classical approximation is a good one. 

We take as the action 

S = /d’.z (-;Fiv+ (Or@)‘-V(Q) +~y,,(W+gyaA’)P) (43) 

where 

(44) 

For computational reasons, we shall assume the system is finite and periodic in 

the spatial direction with length L. Note that the gauge field has been coupled 

axially to the fermions so that the fermion number current is anomalous: 

$F’ = Ll,(;r;rW) = -~c,,F”‘. (45) 

where cpy is the two-dimensional antisymmetric symbol. The topological charge 

corresponding to the anomaly is 

Qtop = --&jdz-+) (4‘3) 

where Al is the spatial vector potential. The combination of baryon number 

minus topological charge is conserved so that 

&(QF - Qt.,) = 0. 

A sphaleron solution for this theory has been constructed in Ref 14. It is 

@ = ;,-i*dLe tanh !!$? 
xh 

(48) 

and 

Al=s. 

We here work in the gauge Ao = 0, and the parameter MH is given as 

(49) 

The topological charge of this sphaleron solution is l/2. It is also possible to 

show that the sphaleron corresponds to an energy saddle point along a non- 

contractible loop which connects topologically distinct vacua of the theory. 

We shall investigate the decay in the absence of fermions. It is then straight- 

forward to solve the equations of motion numerically from initial conditions. We 
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assume that the sphaleron describes the fields at t = 0 and then assume some 

small initial value for the time derivatives of the fields. We work in the sector of 

the theory where there is no external electric field. To check our results, we ver- 

ify that the electric charge and energy are conserved to the accuracy permitted 

by the numerical evaluation. 

We consider one such numerical simulation here. We work in units where 

g = 1 and have chosen the parameters X = 1 and c = 2. The spatial extent 

of our box is L = 24. Fig. 5 shows our choice of the intial time derivative of 

ip. Fig. 6 shows the energy density at t=O, ,7, and 35. As one can see, the 

sphaleron indeed decays and spreads out through the box. Notice, however, the 

small bump that remains in the t=35 curve; this bump is persistent. It turns 

out to be the quasi-stable breather of real $4 theory.i5 It is interesting that the 

breather, originally discovered for a real scalar field, apparently remains quasi- 

stable when embedded in the Abelian Higgs model, a theory with a complex 

scalar filed. 

The topological charge Q should change by one unit in the transition. Fig. 7 

shows the topological charge evolved both forward and backward in time. The 

average value has indeed changed by one unit, but there are undamped oscilla- 

tions of order one! 

These oscillations are an interesting feature special to l+l dimensions. The 

reason for their appearance is that plane wavescan carry topological density. Let 

us ignore, for the moment, the nonlinear debris such as the breather and consider 

a sphaleron that has decayed into asymptotic plane waves. In the classical l+l 

Abelian Higgs model, the gauge symmetry is broken and the A field has a 

massive, longitudinal mode. (This is not true of the quantum system.) Let us 

write the A field of the decayed sphaleron as a superposition of plane waves: 

A,(z) = / El,(k) cos (k .z + 4(k)) . (51) 

Writing f,,(k) = f(k)&(k), where X, is the longitudinal polarization vector, the 

oscillation of the topological charge Q is 

(! - g / dz & - gMJ(0) cos(M,t + 4.). (52) 

The size of the oscillations is then 

AQ - sl(O). (53) 
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This is the source of the oscillations in Fig. 7. Note that the period of oscillations 

in this case is 27/M,,, = s as predicted. We believe that the variations in the 

amplitude are due to t.he interaction with the non-linear breather. 

Let us consider the same analysis in 3+1 dimensions. We find 

f.$ - g2 / d3x tr FF 

- 8 
/ 

d3k ?‘“k,j,o(~)i&‘(-c) cos (2W + 4(c) + 6(-i)) 
(54) 

where k = (wk, -i) is the parity reflection of k. At large times t, the cosine will 

be highly oscillatory, and so fj + 0 at large times as long as f is smooth. Thus, 

unlike in l+l dimensions, any oscillations in 3+1 dimensions will damp away. 

6 Conclusions 

In this paper, we have argued that there is no contradiction between in- 

Stanton and sphaleron estimates of baryon-number changing processes in the 

electroweak theory. These estimates are in fact complementary, being valid 

in different temperature regions. For the particular quantities of interest here, 

instantons provide useful estimates only at low temperatures. We have also con- 

sidered a variety of model problems and have shown that the sphaleron analysis 

yields qualitatively and semi-quantitatively correct results. 

To summarize, the sphaleron appears to provide a viable baryon-number 

changingmechanism,and in a range of temperatures, M,(T) < T << M,(T)/cr,, 

the rate of baryon-number change may be reliably computed in a weak coupling 

limit. 
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Figure Captions 

Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6: 

Fig. 7: 

The gravitational potential felt by a simple circular pendulum. 

A single kink/anti-kink pair circles the ring, changing &,,. 

Multiple kink/anti-kink pairs move partway around the ring, changing 

A”,. 

The system passes over the barrier, collides with the thermal bath, 

and is knocked back, producing no net transition. 

The initial values of Re& (solid) and Im& (dashed) used in our simu- 

lation. 

The energy densities at t=O, 7, and 35. 

The topological charge as a function of time. 
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