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Abstract : 

We investigate the large-scale anisotropy 0 .' the nizzrowave 

background radiation in cosmological modeis wi'ch decaying 

particles. The observed value of the quadrupoie noF!ent combined 

with other constraints gives an upper limit on the redshift of 

the decay zd < 3-5 . 
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I. INTRODUCTIOK 

The Inflationary Universe models predict the :. = 1 universe. 

Unfortunately this Useful and esthetic feature seems to be in 

contradiction with observations of the large-scale structure of 

.the Universe suggesting that 2 3 0.1-0.3 . One of the ways to 

resolve this problem is to assume that the universe is dominated 

today by the relativistic matter and the measured value of 2 is 

relevant only to nonrelativistic components. However, to ensure 

sufficient growth of density perturbations the universe had to be 

matter-dominated for some time. This leads to suggestion that the 

universe became radiation-dominated only recently. 

The Decaying Particle Cosmology (DPC) (Turner, Steigman and 

Krauss 1984, Turner 1985a) assumes that in the past the universe 

was dominated by the nonrelativistic particles X that at the 

redshift zd decayed into light, relativistic particles R that are 

today smoothly distributed on scales corresponiinq co the 

observations determining the value of G. 

An important constraint on this model comes from the observed 

age of globular clusters - the value of the Iiuhble constant today 

HO = he100 km/s.Mpc has to be h ,( 0.5. This is a severe 

constraint, however even lower values of h are stili suggested by 

some observations. 

Vittorio and Silk (1985) investigated the fine-scale 

microwave background radiation (MBR) anisotropies in DPC models 

with decaying neutrinos and found that they may be consistent 

with observations if 

10~lOgyr \( \’ 12*10gyr where to 
2 ,< Zd< 4 I 0.4 ,' h < 0.5 , 

t c is the age of the Universe. 

Analogously, Turner (1985bI found that if decaying particles were 

cold relics the value of the redshift of decay might be Zd<lO. 

Adopting the other normalization of the spectrum of perturbations 

Kolb, Olive and Vittorio (1986) obtained the limit 2 < Zd < 4 

being valid also for cold relics. 
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In this paper we investigate the large-scale MBR anisotropy 

in DPC models of decaying neutrinos and decaying coid matter. We 

find the values of quadrupole moment using the gauge-invariant 

formalism (Panek 1986). Comparing these values with the observed 

a, < 10 -4 we conlude that the redshift of decay must be L Zd<3-5 

where the uncertainity comes from the method of normalization of 

the perturbation spectrum. One of these methods leads even to the 

conclusion that the neutrinos should be exc!luded as decaying 

particle candidates. 

In Sec.11 we descibe the equations of the evolution of 

perturbations and the formalism to obtain the %R anisotropy. 

sec. III describes the methods - Of normalization of the 

perturbation spectrum. Sec.IV contains the results and, finally, 

Sc2C.V. - conclusions. 

II. THE EVOLUTION OF MCDEL AND THE MER AKISOTROPY 

A. The evolution of the background. 

We assume that after early, radiation-dominated stage the 

universe is filled with three forms of matter: stable, 
nonrelativistic particles NR (baryons + others); dominating for 

most of the matter-dominated era nonrelativistic, unstable 

particles X that decay into liqht, relativistic particles R that 

make the universe radiation-dominated again. Parameters that 

describe the model are h, TzNR and id . 

According to previously obtained constraints and observations 

the allowed range of h in the model is 0.3-0.5 . 

R 
1 

= 8aG,-j/3Hi is the ratio of density in form of the j 

particles and the closure density taken toda:. and ZNR = O.:-a.3 

(for the purpose of calculations we take the value 0.1). We 
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have CX + .CR + ZxR = 1 . 

The considered range of values of zd is Z-10. The X particles 

decay according to the exponential law and zd is defined as: 

q+l= 
J2 
* is-” J 

pz (pq 

L ; 

where the subscript i means that the ratio of densities is taken 
at some time ti at the beginning of the matter-dominated era. 

The Einstein equations give us the evolution cf the model. We 

define (Turner 19ESa): 

xii =n; 
f 

_ 1SbfR 
NE - BX: 

where r = xHHO[ZNRSi8-' (1+8d"2 is the X-s decay width and 

SR is the expansion parameter today (Si=l). :'Xi is the density of 
X particles at the initial moment and is expressed in the choosen 

model parameters as zXi = The evolution of the 
background is given by: 

Jr = c3 LX? 1-x) 
(3) 

X 

i R 
= yy 

I 

s (“‘j LX? (41 da’ 

0 
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5’ 
7’ i-F x4 fn+,r,J 

Ii? i’+ai-‘,‘2 -/; 
1 xtl 

where prime denotes the derivative with respect to the new time 

variable x. . 

We have integrated these equations from some sufficiently 

small value of x; until wher. f /'f R NR = (l-ZNR)/ZNR which is 

identified with the present moment. 

B. The evolution of perturbations. 

To obtain the eguations for the perturbations of matter we 

assumed that the NR particles follow the perturbations of X 

particles during the matter-dominated era: sNR = cb = sx (from 

now on we will use sb because the KBR fluctuations are expressed 

in baryonic quantities). The perturbations of the R particles on 

scales smaller than the horizon will be damped because of the 

free-streaming (these particles are most likely to be 
collisionless). However, the R perturbations on scales larger 

than horizon are nonzero and we cannot neglect them, especially 

because we know that the most power to quadrupole moment comes 

from the scales comparable to the size of the horizon today. 

The equations of evolution for perturbations of KR matter 

are : 
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z 
N’= - k2 9, (4) 

&, = $2’ [iL,*Jli;ji; + & iJ 
)L= c’ 

where k is the wave number and kST -1 u = "Sb where vSb is the 
gauge-invariant quantity for the baryonic velocity perturbations. 

The analogous equations for perturbations of R matter are 

much more complicated, however, as we can see these 

perturbations, cR , come to the equations (4) only as a simple 

source term.' This suggests a simple approximation. Let-s assume 

that R perturbations switch on in the moment t = ?'with the same 
amplitude as X perturbations that give them the birth. Then they 

evolve as the growing mode of perturbations of radiation in 
radiation-dominated universe and decay instantanuously when they 

enter the horizon. These means that for x < 1 cR = 0 , for x >/ 1 

(Bardeen 1980): 

Lr = E, [x= /I) . & 

34 &L’j 

where j, (y) is the spherical Bessel function of order 1, 
y=kTcS-, T = 1' (TS) 

-1 
dx, y, is the speed of 

sound, C‘ = l/3. F& a 

= y(x=l) and cs 

S 
given k again is sR = 0 for T >, 3n/2k 

(this value was choosen because then the radiation perturbations 

stop to grow and start to decay). 
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C. The MBR anisotropy. 

The anisotropy of .MBR on large scales comes from the 

perturbations of geometry that can be conveniently expressed as 

functions of baryonic perturbations and have to be integrated 

along null geodesics. We are interested in the value of the 

quadrupole moment that is given by: 

LA, 

(a2)2 = Yn \ kz j&b-f dk 
0 

where: 

cl,tk) = 

XE 

The subscripts E and R denote emission and reception 

w 

(we 

assumed that enunision occures at the redshift zE = 13001, kmax is 

the scale corresponding to the size of the horizon at emmision 

(in fact all the power comes to a, from scales k < 0.2 kmax) and 

the function I 2 is equal to: 

I&j= $ 
! 
'$ j,lyl y 5: j,i,) + $ j, iy)] (8) 

2 

The procedure was then as follows: first, to solve the 

equations for the background (3), second, use the solutions to 

integrate the equations of perturbations (3) and third, use the 

perturbations to obtain the value of quadrupole moment 

(6),(7),(E). 
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111. THE NORMALIZATION OF SPECTRL'!"! OF PERTURBATIONS. 

The inflation gives us not only the flat universe, but also a 

detailed form Of the spectrum of initial, adiabatic 

perturbations. This is the Harrison-Zeldovich 

spectrum: lcj(k)[ 2Nk. Assuming this initial spectrum and 

following the procedures described at the end of the previous 

section we obtain the value of quadrupole moment that is scaled 

by one, so far unknown parameter - the amplitude of 

perturbations. 

To find this amplitude we have to follow the evolution of 

perturbations until today and compare resulting distribution of 

matter with the observed distribution of luminuous matter in the 

Universe. 

For different contens of the universe the initial 

Harrison-Zeldovich spectrum evolves into different forms today, 

For the X particles being massive neutrinos the spectrum is 

(White, Frenk and Davis 1983): 

\ cb l4$, = Aa k exy (4.64 iL/t,?‘) (31 

where k = 0.49RR(l+zd)h2 v 1s the characteristic dmping scale. 

If the X particles were cold relics we have (Davis et al. 

1985) : 

I&)]: =AK k (ltqk + Ck'.'+cGZj-' (a 

where a = 1.7(RR(l+zd)h2)-', 

c = (~R(l+z~)h~)-~. 

2 -1.5 b = 9(nR(l+zd)h ) , 

The characteristic scales in (9) and (10) come from the size 

of the horizon at the moment when the universe became 

matter-dominated. 



-9- 

Because the details of the galax> formation and the 

reliability of the normalization procedures are not well known, 

usually the normalization is the weakest point of MBR fluctuation 

calculations. Depending whether the dark matter was hot or cold 

the galaxy formation proceeds in the different manner. Therefore 

the appriopriate normalization procedures for both scenarios can 

be different. 

The standard normalization of the spectrum is to require the 

rim fluctuations of mass in a randomly placed sphere to be equal 

1 at the scale of Bh-'Mpc (this value comes from the counts of 

galaxies on large scales, Davis and Peebles 1983): 

00 
I 
?I2 

Jo- /r) z 
f? ii 

k2 \i,(k)j; Wtkr-1 dl z ‘j , GZL,-~ Mpc (111 

il 

where W(x) is the window function, W(x) = 9x 
-6 (sin x - x co5 xl'. 

The other way is to find the value of J3 integral and compare 

it with the observed value on a given scale - we have choosen 

R = 15h-'Mpc. 

J3 /El = i” 5 ir) r2 JF : 550 h-3 r-;,; , K= 4TL:’ f”;?C 
CJ Pa 

where the correlation function is related to the power spectrum 

by: 

Do 

17 \r] = ] Gz Ir, IL)\‘, “;kr rJk 
0 

(13) 

Instead of that, for the neutrinos we can require the first 
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nonlinear structures to form at the redshift z nl = 3 (this is 

because we observe quasars at this redshift). We find the 

amplitude AR 
perturbations: 

(I c,(G 

Erom the value of rms dispersion of density 

d3 1/2 
2 

I > 

412 = (J kZ I&11; L dG =t’.G (W 
26.1 n 

0 

IV. THE RESULTS. 

The results are presented on Figures 1 and 2. Many parameters 

of the model influence the final values and the situation is more 

complex than in the standard, one-dominant-component models. 

The results obtained with the normalizations related to the 
counts of galaxies are very close for cold relics and for 
neutrinos because the parts of the spectra that we are sampling 

are almost identical for both. When we use "neutrinos" in the 

following discussion we mean neutrino model normalized for the 
appearance of the nonlinearity at znl = 3 . 

First of all the difference in behavior of a2 with zd for 

neutrinos and for cold relics is because both spectra are 
normalized in different manner. Some of the effect comes also 

from the fact that the lack of growth in DPC cosmology is 

concentrated in late times. The ratio of the growth factors since 

emmision till z nl = 3 and since emmision till today is for 
small-scale perturbations (as used in normalization) equal to 1:3 

for zd = 2 and 1:2 for zd = 10 but the first growth factor is 

almost unchanged (the ratio in matter-dominated universe is 1:4). 

For the cold relics the results are as expected - the larger 

value of zd means the lower growth factor and then the higher 
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initial amplitude required to obtain observed structures. This 

higher initial amplitude results in higher quadrupole moment. 

An interesting feature of the model is that we observe here 

something more than the Sachs-Wolfe effect. This is because only 

for pure matter-dominated universe the term -(~b+uS-~) in eq. (7) 
vanishes and uS-2dx - rd? so we can do the integral in (7) by 

parts and obtain the anisotropy as a function of perturbations at 

the emmision. In our model this is not the case because of the 

change of the equation of state after the emmision - the MBR 

pattern is also influenced by the history of the universe between 

emmision and today. 

Some intuition about the importance of this effect may be 

gained from the calculations with sR = 0 for all the time. The 
normalization in this case is the same because oilr noGel for the 

R perturbations influences only very large scales. Hence the 

difference in results that we can observe says us something about 

the effect of the late evolution of very large scales on the MBR. 

The results for a2 are for zd = 2 almost the same but for 

=d = 10 they are about 25 per cent smaller when ER = 0. That 

means that if the decay occurs early enough the radiation 

perturbations drive the barionic perturbations to grow on scales 

larger than the horizon. The increased geometry perturbations 
cause higher fluctuations of the MBR through the non-Sachs-Wolfe 

effect. 

If we change the value of RNR to 0.3 we obtain the results 

for neutrinos about 20 per cent for zd = 2 and 10 per cent for 

'd = 10 higher than in 0.1 case. For cold relics the situation is 

different - the change is about 15 per cent for zd = 2 and 35 per 

cent for z 
d = 10 but in the opposite direction. 
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V. CONCLUSIONS. 

The observed value of a2 is < 10 -4 (90 per cent confidence), 

as derived from the observations by Efstathiou and Bond (1386). 

From Fig.1. we can see that for cold relics (or for neutrinos 

if the &M/M or J3 normalization is adopted) for both 

normalizations for h in the range 0.3-0.5 there are values Of 

zd that do not cause excessive anisotropy. For h= 0.3the 

allowed range for the decay redshift is Zd < 3-4 (depending on 

the choosen normalization). For h = 0.5 this range is zd < 3-5. 

The more detailed treatment for cR probably would not produce 

substantial differences. 

For the neutrinos with znl = 3 normalization the situation is 

much worse - any values of zd are excluded. However, without the 

detailed model of the structure formation we cannot decide which 

normalization is correct and whether neutrinos can be saved as 

decaying particle candidates. 

The large-scale MBR anisotropy in DPC models is found to be 

as restrictive as the small-scale one. The range of allowed 

values of zd found from small scales was < 4 (Vittorio and Silk 

1985, Xolb, Olive and Vittorio 1986). 

If we combine the upper limits obtained above with the lower 

limit zd > 2 required to give us sufficiently high value of the 

ratio RR/RNR today we find the allowed ranges of parameters of 

the model to be quite narrow. Certainly the normalization 

techniques have some uncertainity and we should remember of it. 

Even then the values of a2 lie quite close to the observed upper 

limit. As so far all the measurements of MBR anisotropies 

maintain the tendency to shift down all the upper limits. The 

value a -4 
2 

< 10 that we used is quite conservative and we can 

find observa'ions c giving lower values. Recently the value 

a2 < 3.10 -5 (95 per cent confidence) was reported (Soviet RELIC 



experiment, as quoted by Kaiser and Silk 1986). if we adopt this 

measurement we conclude that all the variants of DPC models 
analysed here give too high values of the MBR quadrupole 

anisotropy and have to be excluded. 
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FIGURE CAPTIONS 

Figure 1. The values of quadrupole moment a2 as a fmction of 

the decay redshift zd for decaying cold relics/or neutrinos). The 

triangles are for normalization CM/M (8k~?Mpc) = 1 and the circles 

for J3 (15h4Mpc) = 550h-3Mpc3. Open symbols are for h = 0.5, 

filled - for h = 0.3. 

Figure 2. The same as Fig.1. for decaying neutrinos and the 
normalization </zb(k)/ z.,:$: 0.6 . Open squares are for h = 0.5, 

the filled ones - for h = 0.3. 



I 

Q4d 

a4a 

opaa 

(Ma 

ama 

LlJm I 1 II,,,,, I I 111111I I I 0 - 
z ;J ;5 Y 0 0 

. l.T s 
4 



I I”“” ’ ’ I”“” ’ ’ 

m q 

l 0 

n q 

m q 

I I 

0 
T-l 

co 

c-4 

z 
g 
2 

N 

0 


