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Abstract

For the siz gluon scattering process we give explicit and simple expressions for
the amplitude and its square. To achieve this we use an analogy with string theories
to identify a unique procedure for writing the multi-gluon scattering amplitudes in
terma of a sum of gauge invariant dual sub-amplitudes multiplied by an appropriate
color (Chan-Paton) factor. The sub-amplitudes defined in this way are invariant
under cyclic permutations, satisfy powerful identities which relate different non-
cyclic permuiationu and factorize in the soft gluon limit, the two gluon collinear
limit and on multi-gluon poles. Also, to leading order in the number of colors these
sub-amplitudes sum Incoherently in the square of the full matrix element. The
results contained here are important for Monte-Carlo studies of muiti-jet processes

at hadron colliders as well as for understanding the general structure of QCD.

1Permanent address; Dept. of Physics, Tsinghua University, Beijing, The People’s Republic of China.
*Fermilab is operated by the Universities Research Association Inc. under contract with the United
States Department of Ezergy.



1 Introduction

The calculation of multi-gluon scattering processes in QCD is extremely complicated
owing to the cancellations that occur because of the gauge invariance of the theory. In
this paper we present simple and explicit analytical results for the six gluon scattering
amplitude in the helicity representation and its square summed over the colors and
helicities of the gluons. This is achieved by using an analogue with string theories
to identify gauge invariant, dual sub-amplitudes for multi-gluon processes. The sub-
amplitudes are obtained by rewriting the color factors of the Feynman diagrams in
terms of traces of color matrices in the fundamental representation of the gauge group.
To evaluate the sub-amplitudes the polarization vectors for the gluons are written in
terms of Weyl spinors and the calculus of spinor products is employed. The dual
sub-amplitudes so defined and calculated have many remarkable properties that are
generally expected only of the full amplitude. The most important property being the

factorization of the sub-amplitudes in the soff gluon limit, in the two gluon collinear

limit and on the three gluon poles. The simple form of the sub-amplitudes and their
many surprising and beautiful properties suggests that there is a hidden simplicity in
QCD which is yet to be discovered. Also, the results obtained in this paper are the first
time the explicit matrix element squared has been derived for any six parton scattering

process in QCD,

These sub-amplitudes and their squares are also useful for Monte Carlo studies of
multi-jet physics. The present (Cern SppS and Fermilab Tevatron) and future hadron
colliders (SSC or LHC) have or will have many multi-jet events. These events hold
great promise for quantitative tests of Quantum Chromodynamics (QCD) as well as
being significant backgrounds to many other processes of interest in the standard model

and to the discovery of new physics (1]. Up to now only the two and three jet final



P1,P2.-.Pa and helicities €;,¢;...€,, can be written as

Ma = 3 tr(A%A%.0%) m(p1, €15 P2, €25 - 5 Pny €n), (2.1)

perm!

where the sum, perm', is over all (n — 1)! non.cyclic permutations of 1,2,...,n and
the A’s are the matrices of the symmetry group in the fundamental representation.
The proof of this statement is very simple using the identities (A%, A}] = {f,,A° and
tr(A®A}) = 16% . In any tree level Feynman diagram, replace the color structure
function at some vertex using fu, = —2i tr(A%A'A¢ — A°A%A9), Now each leg attached
to this vertex has a A\ matrix associated with it. At the other end of each of these legs
there is either another vertex or this is an external leg. If there is another vertex, use
the )\ associated with this internal leg to write the structure function of this vertex
fede A°® a8 —¢ [A9,0*]. Continue this processes until all vertices have been treated in
this manner. Then this Feynman diagram has been placed in the form of eqn(2.1).

Repeating this procedure for all Feynman diagrams for a given process completes the

proof.

The sub-amplitudes m(1,2,...,n) = m(p1,€1:02,€2;...Pns€a) of eqn(2.1) satisfy
a number of important properties and relationships.
(1) m(1,2,...,n) is gauge invariant.
(2) m(1,2,...,n) is invariant under cyclic permutations of 1,2,...,n
(3) min,n—1,...,1) =(-1)"m(L,2,...,n)
(4) The Ward Identity:

m(1,2,3,...,n) + m(2,1,3,...,n) + m(2,3,1,...,n) (2.2)

+ - + m{2,3,...,1,n) = 0



of these dual sub-amplitudes will assume a particularly simple form.

The gauge invariance and properties under cyclic and reverse permutations allows
the calculation of far fewer than the (n — 1)! sub-amplitudes that appear in the dual
expansion. In fact the number of sub-amplitudes that are needed is just the number of
different orderings of positive and negative helicities around a circle. Of course some
of the sub-amplitudes vanish because of the partial helicity conservation of tree level

Yang-Mills and others are simply related to one another through the properties (2)
through (4).
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Figure 1: The zero-slope limit of the four gluon string diagram in terms of Feynman

diagrams (tri-gluon couplings only).

3 Evaluation of the Sub-Amplitudes

We use the helicity baasis for the polarization vectors which was introduced by Xu,
Zhang and Chang(8] which is an important improvement over the CALKUL technique
[9]. This is achieved by introducing massless spinors, |p+), which have momentum p
and helicity +1. The adjoint of this spinor is (pF|. The spinor products are the scalar

quantitiea obtained by multiplying {p—| with |g+} or (p+| with (g—).



(1) k-ex(k,q) =0,
ex(k,q) - e;.(k,q) = 0 and ex(k,q) - e (k,q) = -1.
(2) e(k,q) = e(k,q) + B(k, ¢ q) K+,
(3) q-ex(k,q) =0.
(4) ex{k1,q) ex(ks, q) = O.
(8) ex(kiikg) - ex(ks,q) = Q.

The properties in (1) are the standard properties of polarization vectors. Whereas
(2) together with the gauge invariance of the sub-amplitudes,i.e. m(1,2,--,n)|i=p = 0,
implies that 3 is irrelevant and hence we can choose different reference momenta for
each of the gluons and different reference mormenta for a given gluon in different sub-
amplitudes. Property (3) eliminates many terms if the reference momenta are chosen to
be other light-like momentum vectors in the calculation. Whereas, (4) and (5) suggest
that for a given sub-amplitude calculation all gluons with the same helicity should have
the same reference momentum and that this reference momentum should be the mo-
mentum of s gluon with opposite helicity. Of course for a given sub-amplitude it is an
art to choosing the reference momenta of the gluons so as to minimize the complexity
of the resulting expression, but in general minimizing the number of nonzero € -€;'8 18

the most useful choice.

4 Four and Five Gluon Scattering

In the rest of this paper we will use the shorthand notation for the spinor products,
(57) = (pi—|ps+) and [5] = (pi+|p;—) ; then using the techniques of the last section

it is easy to derive the following results. For the four gluon process, expand the color



In squaring the four gluon amplitude and summing over colors the O (N~?) terms
in eqn(2.3) can be shown to vanish by using only the general properties, especially the
Ward Identity, of the sub-amplitudes. Therefore,

S o= XD 5 2,340, (42)

colors 16 perm!
and the square of each sub-amplitude is very simple because the spinor product is the
square root of twice the dot product. The final resuit is the standard four gluon matrix
element squared.
1
[M4[> = N}(N? - 1) g (Z .5',.‘.) Y — (4.3)
E eo%c i>y ! perm! 512323334341

Here we have not averaged over incoming helicities or colors.

For flve gluon scattering only those Feynman diagrams, or part there of, with color
structure the same as the diagrams of Fig. 2 contribute to the m(1,2,3,4,5) sub-

amplitude. This is easily seen by rewriting the color factors for the Feynman diagrams

as
de‘fX:!’fl’dc = 2 tr([A',A'][A‘,[A‘,A‘]}). '

Again, it is a straight forward, simple calculation [4] to show that the only nonzero
sub-amplitudes have either two or three negative helicity gluona and that the three
positive - two negative helicity sub-amplitude is given by

(IJ)4
(12){23)(34)(45)(51) "

mssa1-(1,2,3,4,5) = 4v2ig® (4.4)

Where I and J are again the momenta of the negative helicity gluons and the denomi-
nator ordering is determined by the order of the momenta in the sub-amplitude. The

two positive - three negative helicity amplitude is obtained from this last equation by

10



fuxfedY qufXYZ = 2 tr[[k“, Ab][A"‘, )\d][.\', Ag]) -2 tr([k‘,)’][k‘,;\‘][k',:\b]).

Then, by using the appropriate reference momenta for the polarization vectors it is
easy to see that the only non-zero sub-amplitudes are those with four positive - two
negative, two positive - four negative and three positive - three negative helicities.
After a lengthy calculation we have obtained the following expressions for the six giuon

sub-amplitudes.

3 4
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+ cyclic perms

Figure 3: The zero-slope limit of the six gluon string diagram in terms of Feynman

diagrams (tri-gluon couplings only).

The sub-amplitudes for the four positive - two negative helicity processes are a

straight forward generalization of the four and five-gluon sub-amplitudes;

()¢
(12)(23)(34) (45)(56)(61)

m4+3-(1! 27 3$ 4! 5!6) = 8'94 (5'1)

Again, I and J represent the momenta of the negative helicity gluons. Different permu-
tations can be obtained as before by keeping fixed the numerator and permuting the
momenta in the denominator. The two positive - four negative helicity sub-amplitude

is obtained from eqn(5.1) by complex conjugation.

The three positive - three negative helicity sub-amplitudes are not as simple, but

like the two positive - two negative helicity sub-amplitudes they can be written down

12



and hence the Altarelli-Parisi (13| behaviour of the squared amplitude when two gluons

become collinear, is

my. 3~ (11 2,3,4,5, 6) = t:zj:f:tus
a2y + a3 + aa
(12)(23)(45][56] = (23)(34)[56][61] ~ (34){45){61][12]
adyq ag Qs

+ (5.4)

T @S Ee[12zs] T GeenzaRe] | [e1z)s)es]|

where the coefficients a; through ag are given in Table II. In this representation the
two particle propagators always appear as a spinor product, i.e. as a square root of
the propagator, therefore the square of this sub-amplitude only diverges like a single
power of the propagator when two gluons become collinear. This is the Altarelii-

Parisi behaviour for the sub-amplitudes. Further properties of these amplitudes will

be discussed in the next section.

The six gluon sub-amplitudes satisfy the three distinct Ward Identities obtained

from the following equation

m(1,2,3,4,5,8) + m(2,1,3,4,5,6) + m(2,3,1,4,5,6)

+ m(2,3,4,1,5,6) + m(2,3,4,5,1,8) = O (5.5)

using the helicity ordering of the first term as either m(1+,2+,3+,4+,5—,6-),
m(1+,2+,34,4—,5-,8-) or m(1+,2~,3+,4~,5+,6—). These three Identities are

extremely powerful and relate sub-amplitudes with different orderings of the helicities.

14



the numerator as
(n=1)2){n1) = ((n=1) D{n2) + {(n~1) n){12).

The two terms thus generated are exactly the extra terms needed for the n-gluon Ward
Identity for this helicity structure. This provides further evidence that this is indeed the

sub-amplitude for the {(n — 2} positive - two negative helicity gluon scattering process.

6 Factorization Properties of the Sub-Amplitudes

The moat important and remarkable properties of the Yang-Mills dual sub-amplitudes
are their factorization properties, whose origin can be traced back to the string picture.
In this section we show that the sub-amplitudes discussed in this paper factorize in

(1) the soft gluon limit,
(2) when two gluons become collinear and
(3) when three gluons add to form an on mass-shell gluon

i.e. on the three gluon pole.

For arbitrary n-gluon scattering these factorization properties of the sub-amplitudes

will extend up to factorization on the [n/2]-gluon poles.

First, we consider the soft gluon limit. Consider the sub-amplitudes when gluon 1
has an energy which is small compared to all the other energies in the prdceua. Then

the five and six gluon sub-amplitudes calculated here, satisfy

m(1*,2...,n) 12 {%} m(2,3...,n) (6.1)

- 1~ soft g\/i[fl?] m n
m(1-,2...,n) 2 {-——-[““12]} (2,3...,n). (8.2)
(6.3)
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(. 1y .
m(1*,27,3,..) "3 {tg\/iz (12) '

m} g,-l—zm(P ,3,...) (6.6)

e
- Y- g Jev2al -0
m(1=,2,3,...) {m} i G (8.7)

Note that either (12) or [12] appears in the numerator of each term. Also, it is useful
to interpret the factor in braces as the “three gluon sub-amplitude” in the limit when
two gluons become collinear. This three gluon sub-amplitude has the square root
suppression of the pole as well as having the square root of the appropriate Altarelli-
Parisi gluon-fusion function. From this result and the incoherence of the sub-amplitudes
in the square of the matrix element the standard results of Altarelli and Parisi are

obtained in a simple mannez.

The sub-amplitudes also factorize in the three particle channel; here let P = 1+2+3,

then as P? — 0 it is easy to see that
m(1,2,3,4,5,8) — % m(1,2,3,-P) 23 m(P,4,5,6) (8.8)

for the helicity structure three positive and three negative. Since helicity is conserved
in the four gluon process, the helicity of the intermediate gluon is determined for this
helicity structure and the four positive - two negative helicity sub-amplitude has no

three particle poles.

Of course the full matrix element must also factorize. This is trivial in Feynman
diagram language but here it is not so obvious because of the way we have added

diagrams together. The color factors almost factorizes for an SU(N) gauge group,

tr(AAT..0% = 2 Ttr (AL ATAR)Er (ASA™, LA (6.9)
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Thus, the complete matrix element squared, symmed over helicities and colors, is given

by

Z z IMGP = -h:-(_{g;:-l_)'[z 2 mj(1=2’314;5s6)

hel. colors perm/ i>5

1
+ E {-H1(112s334,516) +H2(1!213:4:516)
all perm 8

+ %H’a(l, 2,3,4,5,6) } (7.3)

where the subscripts on the functions, H, determine the helicity structure of the squared
sub-amplitudes. HY is the four positive - two negative (gluons I and J) helicity struc-
ture, H; is the alternating helicity structure (1t2-3*4-5%6"), H; is the mixed helicity
structure (1*2+3~4+5°8") and H, is the adjacent structure {1*2+3%4-576"). These H
functiona can be calculated either numerically from the sub-amplitudes, eqns{5.1, 5.2),
or for the leading color terms from the analytic form of the square of the sub-amplitudes

given below.

To calculate the squares of the sub-amplitudes many properties of the spinor prod-
ucts developed by Xu et al[8] were used. In fact very compact expression in terms of the
Lorentz invariants, S;;, were obtained for two out of the four sub@pﬁtuda squared.
The other two sub-amplitude structures are not as compact but consist of less than two
hundred terms when expressed purely in terms of the elementary kinematical invariants

S;; and t;;4. Here, we give the two simpler squares (the others are in the Appendix).
First, the four positive - two negative helicity sub-amplitude squared is

64 gl SI‘ J
533513534545 Sse5e1

|m4+3-(1’2’ 3,4, 5’6”2 = (7'4)

where I and J are the negative helicity gluons. Of course the two positive - four negative

helicity sub-amplitudes are given by the same expression with I and J now being the

20



The smallness of the non-leading color terms and the fact that the leading color terms
are just the squares of the aimple sub-amplitudes implies that the square of this matrix

element is easy to obtain.

The double poles of S3, and Sg; in [m(1*,2%,3%,4~,57,687)|?, eqn(7.5), are only

apparent. This can be seen by using the identity
tr(123456) = tisataselaas — f123535m — 2345512 — tassSseSus,

herei = p;-~, and realizing that for adjacent momenta this trace goes to zero as the
square root of the Lorentz invariant, S;; , as this invariant goes to zero. The Altarelli

- Parisi relationship can be obtained from this squared subd-ampiitude by using
d¢ 2 -~ A A AN
2 U (123458} — 2 51292353454 5565m1

as any two momenta that are adjacent in the trace become parallel and the integral is

the standard azimuthal averaging for these two momenta.

8 Conclusion

Here we have presented an extremely powerful technique for evaluating multi-gluon
scattering processes by using an analogue with string theories to identify gauge invariant
sub-amplitudes. Not only are these sub-amplitudes straight forward to calculate but
they are simple and satisfy many important properties. The most remarkable properties
are their factorization in the soft gluon limit, the two gluon collinear limit and on
multi-particle poles. This suggests that there is a hidden simplicity in QCD yet to
be discovered. We have demonstrated the power of these techniques and simplicity of

the results by presenting the amplitude and its square for the four, five and six gluon
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for more than five external particles so the sub-amplitudes were evaluated using

Feynman perturbation theory.
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r, : (123456) — (654321).

7, is & symmetry of all of the three matrix elements squared, while r, are symmmetries
of jm{+ — + — +-){? only. Whenever either of the #’s appears as an entry in Table A,
this entry has to be filled in such a way as to enforce these symmetries. For example,
the term proportional to 75 ? in |m(+ — + — +-}|? is given by $%5%{1242Z}?, and in
|m(+ + + — —=)|? is given by ST, 5% {3X6X)}.

Finally, the symbol x.c. after a product of traces is the chiral conjugate and its

meaning is clear from the following example:

{356Y4Y }{124Y3Y)} + x.c. = {356Y4Y}{124Y3Y} + {356Y4Y s} {124Y 3Y s}

'To express the amplitude squared in terms of the elementary kinematical invariants
S;; and t;;3, it is necessary to expand the traces appearing in the Table. Below we
give the set of identities that we have used to carry out this expansion which generates
eqn(7.5) for |m(14,2+,3+,4—,5—,6—)|? and fewer than two hundred terms for the

other sub-amplitudes squared.

As an immediate consequence of (9.1) and (9.2)
tr? (Vyig---i3a) — t2¥ (S18a- < danT8) = 4 SiyiySisia "+ * Sigain: {9.3)
A straight forward generalization of this identity is
tr(S192 - SanYs) tr (1Ja: - am¥s) = tr(S1sac--fan)t2 (J1f2* Fam) (9.4)
~ 2[[ix6a){ia in) -+ (iamin) (r AN ] - [am 1] + cuc].
These two identities reduce all of the traces containing a 5 and thus one can show that

{462135+;}{842315+;} = {462135}{642315}
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