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Abstract 

The three-body static QQQ potential which bids a baryon composed of three heavy quark8 ia meamred 

in lattice QCD. The data is we11 described by a sum of two-body Qf$ mesdh pokntiab with no evidence for IX 

*body term. A conjugate gdient algorithm for calculating eigmvalu& &d eigmfunctions of the three-body 

S&r&%nger equation ia described. 

One of the simplest physical quantities in QCD 

which may be directly investigated by numerical lat- 

tice gauge techniques is the static potential between 

heavy quarks. For reasons of both simplicity and phe- 

nomenological relevance, the most extensively investi~ 

gated case ia that of the QQ potential[l,2] V(r) which 

determines the spectrum of a heavy quarkoniumsystem. 

On the lattice, V(r) may be obtained from the falloff of 

Wilson loops of width r and length t with t becoming 

large. In principle, it is straightfopvard to generalize 

this procedure to calculate the potelitjal for any static 

color-singlet configuration of heavy qu&ks. For exam- 

ple, one may study the three-body QQQ potential[3] 

which bids a heavy quark baryon !y studying the ex- 

ponential falloff of a three-body Wilson loop depicted 

in Fig. 1. In this case, the exponent ia proportional to 

the static three-quark potential V (Fir ?a, ?J. 

that it reflecta some b=ic structural propertiea of SU(3) 

gauge 5elds. One may inquire, for example, if the QQQ 

potential is well-described by a sum of two-body poten- 

tials or if there is a real threbody term. Moreover, 

even for light-quark mesons and .baryons, the nonrel- 

ativistic quark model has met with considerable phe- 

nomenological succers!4]. Thus, the pattern of levels 

impbed by the potential model may remain approxi- 

There are several rebscm why the QQQ potential 

is an interesting function to calculate in lattice gauge 

theory. Although genuine nonrelativistic threcquark 

baryorw (e.g. bbb) are experimentally remote, the PC+ 

tential which binds them is of theoretical interest in 

E 
FIGURE 1 

Wilson loop for the three-quark potential. The L’S in- 

dicate that the color indices of the three lies are tied 

together with an cti. 
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mately valid even for the case of ordinary light baryon 

resonances. The wave functiona obtained from such 

potential model calculations may also provide interest 

ing qualitative information on the structure of baryona. 

Note that it would be very difficult to directly mea- 

sure excited baryon resonance massea on the lattice by 

the usual propagator technique, since the long-distance 

falloff of the three-quark propagator determines only the 

lightest mass state in a given channel. By instead ex- 

tracting the potentialfroma lattice c,alculation and then 

solving the three-body Schrddiiger e&ation, one may 

calculate excited energy levels precisely, albeit in the 

nonrelativistic approximation. (At the end of thii talk, 

I will describe a numerical method &ch we have devel- 

oped for determining the eigenvalues and eigenfunctiona 

of the three-body Schridinger operator.) 

We have recently calculated the QQQ potential nu- 

merically aa part of a program to study heavy quarka 

’ on the lattice [s]. The results I present here were ob- 

. tained from a set of 550 SU(3) gauge configurations on 

an 8’ x 16 x 24 lattice at 0 = 5.7 (lattice spacing = 0.2 

fm). The configurations were generated in the quenched 

approximation and represent a total of 60,000 Cabibbw 

Marinari[G] heat bath sweeps (analyzed configurations 

are separated by 100 sweeps). In the calculation we in- 

troduced a variable anisotropy in the long spatial (16-) 

direction(7] and carried out Monte Carlo NM at five 

values of aniaotropy, < = 0.7,0.8,0.9,1.0, and 1.1. The 

introduction of anisotropy allowa a more fine-grained 

look at the potential. (None of our results would have 

been substantially altered if we had analyzed only the 

isotropic c = 1 c-e.) 

Fit, let us consider the form of V (FL, Fz, Fa) in the 

limit where two of the quarks are on the same site, e.g. 

71 = ?z. It ia easy to show directly from the de&- 

tion of the three-legged Wilson loop that in thii limit 

the three-body potential V reduces to the QQ me&~ 

potential. Our results for thii cask are shown in Fig. 2. 

Fitting thii two-body potential to a form V(r) = Ar’ we 
find A = SO8 and c = ,671. This is more linear than the 

phenomenological potential extracted from the $ and T 

spectra (for which t c 0.1). There are, of course, much 

more extensive calculations of the meson potential in the 

literature.[l,2] Agreement with phenomenolw is COIL- 

aiderably improved by going to larger p values and by 

including closed fermion loop effecec*l. The errors shown 

in Fig. 2 are calculated by the jackknife method(S] and 

are purely statistical. The Wilson loops were fit to an 

exponential for t 1 2. Thii introduces some systematic 

error in the resulb of Fig. 2 at the largest separations 

due to non-exponential behavior. (For smaller separa- 

tiona (r _< 4), thii error ia found to be small by varying 

the t,, of the exponential at.) A similar systematic 

error will also be present in the three-body dab. 

The full ihree-body potential is a function of three 

variables. We chose aa our variables the separation 

ql - q2 of the first two quarks and the transverse and 

longitudiialp~itions of the third quark relative to that 

axis. For purpbsea ofvisualization, Fig. 3 ahown a para- 

metrized fit to the data for a fixed value of ql-q2. Some 

of the actual data points are shown in Figs. 4.5, and 6. 

The horizon&l& in these plots gives the longitudinal 

distance of the third quark from the midpoint of the 
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FIGURE 2 

The qw.rk-diquark potential. 



FIGURE 3 

Three-quark potential V for flxed separation of quarks 1 

and 2. The two horizontal axa of the 3D plot represent 

the location of quark 3 in a plane containing quarks 1 

and 2. 
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FIGURE 4 

Three-quark potential for quark separation ql - q2 = 1. 
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FIGURE 5 

Same an Fig. 4 with ql - 12 = 2. 
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FIGURE 6 

s-e BS Fig. 4 with ql - q2 = 3. 



5rst two. On each graph are plotted several sets of data 

points for different transverse separation. (To r-&e 

possible confusion of pointa, note that, for aample, the 

data nets in Fig. 4 contain 2, 3, 4, 5, and 6 points, 

respectively, for transverse separation8 of 4, 3, 2, 1, and 

0.) The solid lmea in Figs. 4-6 represent a comparison 

of the three-body data with a sum of twwbody meson 

potentials, 

v = ;IvM + V(r,s) + V(Q,)] (4 
where rij E 15 - 61. Note that there are no free pa- 

rameters in thii fit, once the two-body meson potential 

in deter&n ed. Remarkably, this simple sum of tww 

body meson potentials provides an excellent description 

of the three-body potential over the entire range of our 

data. (The data points at the largest separation.8 we 

measured, e.g. the pointa at spacing 3; and 4; in Fig. 

6, do appear to deviate somewhat from the two-body 

fit, but M mentioned before, this is the region where we 

might expect some systematic error from our procedure 

for extracting exponential falloffs.) 

The significance of the fact that (1) describes our 

data so well may be estimated by comparing with the 

predictions of the weak and ~strong coupling approxi- 

mations. The short distance perturbative three-body 

potential reduces to a sum of two-body terms up to 

fourth order in the coupling c&&nt,[Q] and therefore, 

no three-body term is expected in the short distance 

part of the potential. On the other hand, e. strong- 

coupling flux-tube picture, which predicts a linearly ris- 

ing QQ meson potential at large distances, gives a QQQ 

potential which doea not decompcee into a sum of tww 

body terms. In thii model, the threcbody potential is 

given by chceing the point where the flux tubes come to- 

gether such that the sum of the distances S to the three 

quarks is miniied. The potential in than given by 

V = AS, where X in the slope of the linear meson poten- 

tial. The deviation of thii potential from a turn of twc- 

body terms is numerically rather small,(lO] but would 

be easily observable in our data. If C> the length of 

the perimeter of II triangle connecting thethree quarks, 

then S is bounded by fC 5 S 5 &C. Since the ~JJ.I 

of meson potentials (1) is just +XC, we see that the d* 

vi&on of the strong-coupling QQQ potential from (1) 

ie. everywhere .Z 15% (and always positive). To take 

a apeci5c cane, consider the data point denoted by an 

arrow in Fig. 6, which correspond8 to an iaosceles right 

triangle with sides 3,3, and 3fi in lattice units. (Note 

that 34 sa 0.6 fm.) Here, the flux-tube model would pm 

diet a positive deviation of 13% from the twc+body Bt, 

which is clearly r&d out by the data. We conclude that 

at the quark separations we are exploring, the flux-tube 

picture is not relevant. 

The sp&rum of energy levels of a nonrelativistic 

QQQ baryoqts’det ermined from the potential V(G,G, Tf3) 

by solving the t&body Schr6diger eigenvalue prob- 

1-3 
(-~v~+V)*df~=E* (4 

iA 
We have devised a numerical procedure for computing 

these eigenvalues and eigenfunctions by a conjugate gr*- 

dient technique. The method may be of more getleral 

interest for treating linear eigenvalue problema, and I 

will briefiy describe it here. First we perform an mgu- 

lar momentum reduction of the three-body Schridinge 

operator.[ll] The red&d operator is then put on a 

thr~diiensional lattice by replacing derivatives with 

finite differences. (The three diienaionn of the lattice 

represent two radial variables and one polar angle vari- 

able.) We we a conjugate gradient matrix inversion 

algorithm to compnte the resolvent (E - a)-’ acting 
on a source vector (b > with varying E. If the ~)ul+e 

vector has a non-z- overlap with an eigenatate of E 

of energy E,,, then the magnitude of the output vet- 

tar (E - H)-‘lb > diverges aa E approaches E,,. Aa 
one approachen E. the output vector gives the thrre- 

body wave function for that state. In practice we have 

found that one can approach very close to the eigen- 

valuea and locate their positions quite precisely. ~For 

example, Fii. 7 shown the magnitude of the output 

vector for a three-body harmonic oscillator potential cm 

& 4’ lattice. Larger lattices yield similar curves. Sam- 

ple calculations on larger lattices for tw*body systems 

and for the solvable three-bodyXarmonic cmcillator pw 

tential suggest that thii technique can be used to ac- 

curately determine the spectrum of an arbitrary three- 



body potential. A more detailed discussion of the spee- 

troscopy of the lattice QQQ potential will be p-ted 

elsewhere(l2] 
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FIGURE 7 

Magnitude of coqjugate gradient output vector (E - 

H)-~\!J > for the three-body harmon& aeciIlator hamil- 

tonian on a rls lattice. 
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