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Abstract

The three-body static QQQ potential which binds a baryon composed of three heavy quarks is measured
in lattice QCD. The data is well described by a sum of two-body QQ wmeson potentials with no evidence for a
three-body term. A conjugate gradient algorithm for calculating eigenvalues and eigenfunctions of the three-body

Schrodinger equation is described.

One of the simplest physical quantities in QCD
which may be directly investigated by numerical lat-
tice gauge techniques is the static potential between
heavy quarks. For reasons of both simplicity and phe-
nomenological relevance, the most extensively investi-
gated case is that of the Q@ potentiall,2] V() which
determines the spectrum of a heavy quarkonium systemn.
On the lattice, V' (r} may be obtained from the falloff of
Wilson loops of width r and length t with t becoming
large. In principle, it is straightforward to generalize
this procedure to calculate the potérit_ial for any static
color-singlet configuration of heavy quz;i'xks. For exam-
ple, one may study the three-body QQQ potential[3]
which binds a heavy quark baryon by studying the ex-
ponential falloff of a three-body Wilson loop depicted
in Fig. 1. In this case, the exponent is proportional to
the static three-quark potential V(7,73,3).

There are several reasons why the QQQ potential
is an interesting function to calculate in Iattice gauge
theory. Although genuine nonrelativistic three-quark
baryons [e.g. bbb) are experimentally remote, the po-
tential which binds them is of theoretical interest in

=

that it reflects some basic structural properties of SU( 3)
gauge fields. One may inquire, for example, if the QQQ
potential is well-described by a sum of two-body poten-
tials or if there is a real three-body term. Moreover,
even for light-quark mesons and baryons, the nonrel-
ativistic quark model has met with considerable phe-
nomenological success(4]. Thus, the pattern of levels
implied by the potential model may remain approxi-

£
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FIGURE 1
Wilson loop for the three-quark potential. The ¢'s in-

dicate that the color indices of the three lines are tied

together with an €q.
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mately valid even for the case of ordinary light baryon
resonances. The wave functions obtained from such
potential model calculations may also provide interest-
ing qualitative information on the structure of baryons.
Note that it would be very difficult to directly mea-
sure excited baryon resonance masses on the lattice by
the usual propagator technique, since the long-distance
falloff of the three-quark propagator determines only the
lightest mass state in a given channel. By instead ex-
tracting the potential from a lattice calculation and then
solving the three-body Schrodinger equation, one may
calculate excited energy levels precisely, albeit in the
nonrelativistic approximation. (At the end of this talk,
I will describe a numerical method which we have devel-
oped for determining the eigenvalues and eigenfunctions
of the three-body Schrédinger operator.}

We have recently calculated the QQQ potential nu-
merically 23 part of a program to study heavy quarks
‘on the lattice [5]. The results I present here were ob-
.tained from a set of 550 SU(3) gauge configurations on
an 8% x 16 x 24 lattice at 8 = 5.7 (lattice spacing =2 0.2
fm). The configurations were generated in the quenched
"approximation and represent a total of 60, 000 Cabibbo-
Marinari{6] heat bath sweeps (analyzed configurations
are separated by 100 sweeps). In the calcuiation we in-
troduced a variable anisotropy in the long spatial (16-)
direction(7] and carried out Monte Carlo runs at five
values of anisotropy, £ = 0.7,0.8,0.9,1.0, and 1.1. The
introduction of anisotropy allows a more fine-grained
lock at the potential. (None of our results would have
been substantially altered if we had analyzed only the
isotropic £ = 1 case.)
First, let us consider the form of V(F},F;,f3) in the
limit where two of the quarks are on the same site, e.g.
fi = 72. It is easy to show directl)'r from the defini-
tion of the three-legged Wilson loop that in this limit

the three-body poténtial V reduces to the Q9 meson

potential. Qur results for this case are shown in Fig. 2.
Fitting this two-body potentizal to a form V(r} = Ar® we
find A = .508 and ¢ = .671. This is more linear than the
phenomenological potential extracted from the ¢y and T
spectra {for which ¢ =2 0.1). There are, of course, much

more extensive calculations of the meson potential in the

literature.{1,2] Agreement with phenomenology is con-
siderably improved by going to larger 8 values and by
including closed fermion loop effects. The errors shown
in Fig. 2 are calculated by the jackknife method([8| and
are purely statistical. The Wilson loops were fit to an
exponential for ¢ > 2. This introduces some systematic
error in the results of Fig. 2 at the largest separations
due to non-exponential behavior. (For smaller separa-
tions (r < 4), this error is found to be small by varying
the t,.. of the exponential fit.) A similar systematic
error will also be present in the three-body data.

The full Ehzee—body potential is a function of three
variables. We choose as our variables the separation
gl — g2 of the first two quarks and the transverse and
longitudinal positions of the third quark relative to that
axis. For purposees of visualization, Fig. 3 shows a para-
metrized fit to the data for a fixed value of g1 —¢2. Some
of the actual data points are shown in Figs. 4, 5, and 6.
The horizontal-axis in these plots gives the longitudinal
distance of the third quark from the midpoint of the
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FIGURE 2

The quark-diquark potential.



FIGURE 3

Three-quark potential V for fixed sépa.ration of quarks 1
and 2. The two horizontal axes of the 3D plot represent
the location of quark 3 in a plane containing quarks 1

and 2.
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FIGURE 4

Three-quark potential for quark separation g1 —g2 = 1.
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FIGURE 5

Same as Fig. 4 with q1—-12=2.
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FIGURE 6

Same as Fig. 4 with q1 - ¢2 = 3.




first two, On each graph are piotted several sets of data
points for different transverse separation. (To resolve
possible confusion of points, note that, for example, the
data sets in Fig. 4 contain 2, 3, 4, 5, and 6 points,
respectively, for transverse separations of 4, 3, 2, 1, and
0.) The solid lines in Figs. 4-6 represent a comparison
of the three-body data with a sum of two-body meson
potentials,

V= %[V(r") + V(ris) + V(ra)] (-1)

where r;; = |[f; — fj|. Note that there are no free pa-
rameters in this fit, once the two-body meson potential
is determined. Remarkably, this simple sum of two-
body meson potentials provides an excellent description
of the three-body potential over the entire range of our
data. (The data points at the largest separations we
measured, e.g. the points at spacing 3} and 41 in Fig.
&, do appear to deviate somewhat from the two-body
fit, but as mentioned before, this is the region where we
might expect some systematic error from our procedure
for extracting exponential falloffs.)

The significance of the fact that (1) describes our
data so well may be estimated by comparing with the
predictions of the weak and strong coupling approxi-
mations. The short distance perturbative three-body
potential reduces to a sum of two-body terms up to
fourth order in the coupling cc'flllétnnt,[g] and therefore,
no three-body term is expected in the short distance
part of the potential. On the other hand, a strong-
coupling Aux-tube picture, which predicts a linearly ris-
ing @QQ meson potential at large distances, gives 2 QQQ
potential which does not decompose into a sum of two-
body terms. In this model, the three-body potential is
given by choeing the point where the flux tubes come to-
gether' such that the sum of the distances S to the three
quarks is minimized. The potential is than given by
V = AS, where A is the slope of the linear meson poten-
tial. The deviation of this potential from a sum of two-
body terms is numerically rather éma.ll,[IO] but would
be easily observable in our data. I C_is the length of
the perimeter of a triangle connecting the three quarks,
then S is bounded by }C < § < ;}50. Since the sum
of meson potentials (1) is just 2AC, we see that the de-

viation of the strong-coupling QQQ potential from (1)
is everywhere < 15% (and always positive). To take
a specific case, consider the data point denoted by an
arrow in Fig. 6, which corresponds to an isosceles right
triangle with sides 3,3, and 3+/2 in lattice units. (Note
that 3a = 0.6 fm.) Here, the flux-tube model would pre-
dict a positive deviation of 13% from the two-body fit,
which is clearly ruled out by the data. We conclude that
at the quark separations we are exploring, the flux-tube

picture is not relevant.

The spectrum of energy levels of a nonrelativistic
QQQ baryon is'determined from the potential V{71, 73,73)
by solving th\e three-body Schrédinger eigenvalue prob-
lem, \

(—EV?+V)\IIEH\IJ——-E\I' (-2)

=1

We have devised a numerical procedure for computing
these eigenvalues and eigenfunctions by a conjugate gra-
dient technique. The method may be of more general
interest for treating linear eigenvalue problems, and I
will briefly describe it here. First we perform an angu-
lar momentum reduction of the three-body Schrddinger
operator.[11] The reduced operator is then put on a
three-dimensional lattice by replacing derivatives with
finite differences. (The three dimensions of the lattice
represent two radial variables and one polar angle vari-
able.) We use a conjugate gradient matrix inversion
algorithm to compute the resolvent (E — H)™! acting
on a source vector |b > with varying E. If the source
vector has a non-zero overlap with an eigenstate of H
of energy E,, then the magnitude of the output vec-
tor (E — H)"!|b > diverges as E approaches E,. As
one approaches E, the output vector gives the three-
body wave function for that state. In practice we have
found that one can approach very close to the eigen-
values and locate their positions quite precisely. For
example, Fig. 7 shows the magnitude of the output
vector for a three-body harmonic oscillator potential on
a 4% lattice. Larger lattices yield similar curves. Sam-
ple calculations on larger lattices for two-body systems
and for the solvable three-body Barmonic oscillator po-
tential suggest that this technique can be used to ac-
curately determine the spectrum of an arbitrary three-



body potential. A more detailed discussion of the spec-

troscopy of the lattice QQQ potential will be presented

elsewhere(12]

Logtpsi)

Magnitude of conjugate gradient output vector (E —
H)~1|b > for the three-body harmonic oscillator hamil-
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tonian on a 4% lattice.
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