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Functional Representation for the 
lsometries of de Sitter Space* 

R. FL.OREANIN~. C. T. HILL,+ AND R. JACKIW 

We examine the Schrodinger picture for a spinless lield theory in two-dimensional de Sitter 
space and construct an ultraviolet finite functronal representation [or the de Sitter Lie algebra. 
The one-parameter Family of de Sitter vacua is found to be only phase-invariant. except for 
one value of the parameter where the state is truly invariant. 1 19X7 Acddemlc Pres,. Inc 

I. TNTR~DUCTI~N 

Quantum field theory is a quantum mechanical system with an infinite number of 
degrees of freedom. Bosonic models can therefore be formulated, analogously to 
ordinary quantum mechanics, in a Schrodinger picture where the fixed-time (t = 0) 
field operator @(.u) and its conjugate momentum n(s) are realized through mul- 
tiplication by cp(.u) and functional differentiation with respect to q(s), respectively, 
both operations acting on “wave functionals” of cp. Y(q) = (cpl Y’). 

While this approach allows using insight gained from quantum mechanics in 
quantum field theory, it has the shortcoming that the renormalization procedure 
required for dynamical calculations is difficult to implement, even though it has 
been recently established [ 11. Kinematical calculations, on the other hand, are 
more tractable, and many structural features of various quantum field theories have 
been exposed in this way, e.g., vacuum angle in gauge theories,’ topological 
obstructions to Gauss’s law, ’ confinement [3], etc. Also, the Schrodinger for- 
mulation lends itself to variational approximations,’ both static and time-depen- 
dent [S], with which one can study symmetry breaking,’ soliton effects,’ phase 
transitions,’ inflationary cosmic evolution [6], etc., typically with a Gaussian trial 
wave functional. 
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Recently, another application of this formalism was given: a functional represen- 
tation for the infinite parameter conformal group in two dimensions was construc- 
ted. As a by-product, well-defined conformal generators were obtained, and this in 
turn allowed computing their commutator, determining unambiguously the center 
[Schwinger term] in the algebra, without normal ordering with respect to any pre- 
selected Fock vacuum [7]. 

We view this as an improvement over conventional procedures for several 
reasons. First, the determination of algebraic relations between symmetry 
generators should be carried out intrinsically, not making reference to extraneous 
constructs like a Fock vacuum; indeed, if operators are defined by normal ordering, 
the center in the conformal algebra depends on the Fock state which determines the 
normal ordering conventions; see below [S]. Second, for theories in an external, 
time-dependent background field it is not possible to define the Fock vacuum 
unambiguously. 

For example, in the presence of a background classical gravitational field the 
Hamiltonian for matter fields is time-dependent and the concept of an energy 
ground state is not applicable. If the spacetime were asymptotically flat, one might 
prescribe conventional boundary conditions by requiring that the asymptotic 
isometries of Poincart: invariance be implemented in the vacuum state; i.e.. 
asymptotically it should be annihilated by the generators of the Poincark group. 
However, for a wide class of interesting situations the asymptotic metric is non- 
trivial and the choice of boundary conditions becomes arbitrary. 

This happens in de Sitter space, which may be relevant to the extreme conditions 
of the very early universe for which the initial conditions are certainly 
unknown [9]. Nevertheless, non-trivial isometries are present and vacuum states 
may be required to be invariant under the corresponding transformations. 
However, to implement such a constraint, it is necessary to well-define the 
generators of the isometries independently of any vacuum states. This is what we 
achieve here, by formulating the problem in the Schradinger picture. This also lets 
us clarify the nature of de Sitter invariant states. 

There appear in the literature assertions that de Sitter invariance leaves a one- 
parameter freedom [lo]. These statements are variously made about states, or 
about expectation values in these states-for example, propagators.’ In fact, one 
can describe the situation more precisely. We find that with respect to our intrin- 
sically defined generators, only one value of the parameter gives an invariant state 
[i.e., it is annihilated by the generators]. For other values of the parameter, states 
are only invariant up to an infinite phase [i.e., they are eigenvectors of the 
generators with inlinite eigenvalues]. Consequently, expectation values are 
invariant for all values of the parameter, but there is only one invariant state-the 
“Euclidean” vacuum [9]. Other states acquire an [infinite] I-cocycle when they are 
transformed;” they may be called “phase-invariant.” 

’ A monograph on the subject is by Birrell and Davies [ 111. Two research articles relevant to our 
invesrlgation are by Ratrd 1121 and Allen [ 131. 

‘The role of cocycles in quantum theory ia described by Jackiw in Ref. LZ]. 
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In Section II we explain our method for implementing in quantum field theory an 
invariance group of transformations, without making a commitment to a specific 
Fock basis. Also, we review our earlier work on conformal transformations [7], as 
an example of our procedure and because some of our results are used in the 
present investigation. Section III is devoted to a two-dimensional field theory in de 
Sitter space, and well-defined generators of de Sitter transformations are construc- 
ted. In Section IV, we examine the transformation properties of the vacua in de Sit- 
ter space and exhibit the behavior described above. Finally, additional remarks 
about various properties of field theory in de Sitter space comprise the concluding 
Section V. There we study conformal symmetries of a massless field in de Sitter 
space. Only the Euclidean vacuum is invariant, the others are not even phase- 
invariant. Also, we show how the family of de Sitter vacua passes in the limit of flat 
space to the corresponding states in Minkowski space. 

II. INTRINSIC RENORMALIZATION OF SYMMETRY GENERATORS 

When a dynamical system, governed by a local Lagrangian, is invariant against a 
continuous group of transformations, Noether’s theorem allows for the construction 
of conserved quantities, Q. which generate these transformations. In a canonical 
description, the generators are polynomials of the canonical coordinates @ and 
momenta fYl. In a field theory, such polynomials Q(@, n) are not well-defined 
owing to ultraviolet singularities when field operators at the same point are mul- 
tiplied. As a first step toward arriving at a well-defined expression, the generator is 
regulated, Q + Q”, for example, by splitting points in products. Before the 
regulators are removed, the generators must be renormalized. For linear field 
theories, which may still be non-trivial owing to interaction with an external 
background, a subtraction suffices; however, the form of the subtraction must be 
specified. This is conventionally achieved by studying matrix elements of the 
regulated generator in a Fock vacuum. We propose that alternatively, field states 
Iv), @l(p) = cplcp). be used for this purpose. 

The matrix element of Q”(@. n) between field states is given by 

(2.1) 

where the functional delta-function is represented by a functional integral. 

6((p,-(p,)= [‘/rexpij Ll’.\~(.~)((cpl(s)--02(.~)). (2.2) 

Because (2.1 ) is a functional distribution, it is not apparent that operator products 
at coincident points are ill-defined. Hence, (2.1 ) is not useful for extracting 
singularities in Q. However, we may also consider the functional representation of 
the finite transformation. 
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This is a functional of ‘pl and cpZ, not a distribution, and its behavior as the 
regulators are removed can be determined. U satisfies a functional Schrbdinger-like 
equation, 

with boundary condition 

C’R((p,> cPr) IT=o=cP, -cp,). (2.4b) 

For simple systems, when Q” is quadratic in the field operators, (2.4) may be 
solved explicitly, and the limit when the regulators are removed is easily deter- 
mined. Typically, one finds that infinities appear, but they are confined to a phase 
7qR; i.e., f?‘UR(~, , CJIJ = (‘p, / t’ ~-“‘@ myHI 1 (p2) possesses a well-defined limit, and 
the regulators may be removed. This allows defining the renormalized generator as 

:Q:=liF (QR-qR), (2.5) 

while the renormalized representation functional is 

:u:(cp,, ‘pz)- (cp,lr ‘ia,l q2) =liF pfTyRUR(vl, v2). (2.6) 

Note that no reference to a Fock vacuum is made and the colons do not signify 
normal ordering. 

A by-product of this procedure is that one can determine 
modificationsPanomalies or cocyclesPin the realization of the transformation 
group’s Lie algebra in our quantum field theory. The formal charges Q generally 
satisfy commutation relations which follow the abstract Lie algebra of the group. 

[Q,, QJ =iQ,,.,,. (2.7) 

A composition law for the regulated charges is defined analogously to (2.7). 

CQP> Qz”1 = iQ;. 2,. (2.8) 

[This leads to an infinite Lie algebra. The regulated charges no longer generate 
symmetry transformations, but they do generate canonical transformations.] 
Evidently the renormalized charges satisfy 

[:Q,:, :Qz:] =i:Q,,,,,:+ilimqG,,,. 
R 

(2.9) 

When the hmtt of q:, 21 is non-vanishing, a quantum mechanical anomaly-a center 
in the algebra-merges. Note that before the limit is taken, the center is “trivial”: it 
can be removed by redefining the charges, or equivalently by redefining the phases 
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of the representation functionals; indeed, that is how qK arose in the first place and 
thus may be similarly eliminated. However, after the regulators are removed, the 
extension can be “non-trivial”; it cannot be removed. 

Let us review how this works for the infinite two-dimensional conformal group 
which transforms x f t into arbitrary functions of .Y + r. We concentrate on the sub- 
group that acts only on .Y + t, the infinitesimal transformation being 
6A.u + t) =,/(.u + t). The corresponding field transformation law is 

6,x = c.ri )’ (2.10) 

j(=&7+@‘). 
4 

(2.11) 

The field x satisfies the canonical commutation relation 

[x(x). x(y)] = iS’(s - y) = k(.K, y). (2.12) 

[The dash denotes differentiation with respect to argument.] The generator is for- 
mally given by 

Q, = 4 j dK,f‘(.K) x2(x). (2.13) 

The formal commutator algebra of the generators, which is established with the 
help of (2.12). follows the Lie algebra of the abstract group. 

CPP P,l = Q,,. .Y) (2.14) 

(.f, g I= .k’ - sf’. (2.15) 

However, closure of the conformal generator a!gebra in a two-dimensional local 
quantum field theory violates positivity and Lorentz invariance, which puts into 
evidence the need to regulate the formal expression (2.13 ). We define the regulated 
generators by 

where the symmetric bifocal function F(s, ~1) tends to the local limit .f(s) ii(s - 1‘) 
as the regulators are removed. 

The functional representation for QF is 

(2.17) 
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and the representation functional may be found. 

Here 

N,=&t”‘F I 

(2.18) 

(2.19a) 

(2.19b) 

(2.19~) 

[A matrix notation is being used for the kernels li and F.] 
In the local limit, K,.. attains a well-defined expression. 

The normalization constant N,, however, diverges. The divergence resides in an 
unimportant constant factor 2 [which may be removed by redefining the functional 
measure of integration] and in a phase. 

q“= a tr Fto (2.21 ) 

[P means principal value.] Thus, 

possess a well-defined local limit, and we are led to define the following renor- 
malized generator, 

:Q,: = lim (Q,; - $ tr Fco) 
F-1 

(2.24) 

and an extended Lie algebra replaces (2.14). 

[:Q,:,:Q,p:] =i:Q,,.,,:--&-~&(.f$“- sf““). (2.25) 

[Of course, the subtraction is ambiguous up to terms that are finite in the local 
limit; these are obviously “trivial” and may be adjusted at will.] 
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The above approach is to be contrasted with the conventional one, wherein the 
subtraction is given by the expectation of QP in a Fock vacuum. In the functional 
Schtodinger picture, a Fock vacuum is a Gaussian functional, Y,(cp), with 
covariance a. [For simplicity, here we take CJ to be real.] 

This is annihilated by A(s). 

(2.27) 

[The usual annihilation operator is the Fourier transform of (2.27).] The problem 
is that without specifying a dynamical Hamiltonian, which determines a unique 
ground state, the covariance is undetermined: for any 9, A’ and A are creation and 
annihilation operators. 

[A(r). ‘4+(J)] =cs(s- y). 

The conventional subtraction depends on Sz, 

(2.28) 

q’;‘-(RlQ~/52)=$trF(SZ-((R--k) I’(L2++)) 

cqs, .I’)= (.RJcp(s) q(y)1 Q) =;a- ‘(A J’) 

qF=$trF(Q+kQ ‘A), 

(2.29) 

as do the conventionally renormalized generators. 

:Qy:= lim (Q,..-qy). 
I,‘ - I 

(2.30) 

The CJ dependence survives in the center of the algebra (2.25) [S]. For example, for 
translation invariant states, 

SZ(.r. )&-“I‘ “n(p), (2.31) 

the last term in (2.25) is replaced by 

(2.32) 

[Note that linear growth with p is the least divergent behavior possible for C(p).] 



352 FLOREANINI, HILL, AND JACKIW 

With our approach, a unique [up to finite terms] covariance is selected in (2.22): 
R = CD, C(p) = 1 pi. This corresponds to the ground state of the massless theory. 
Evidently, a generator renormalized with an arbitrary 0 cannot be exponentiated in 
the full functional space, though it does exist in the Fock space built on the Fock 
vacuum IL?). 

It should be clear that different Fock vacua, which are related by a Bogoliubov 
transformation, are in general inequivalent, in the sense that 

(Q,lQ,) =det’j4R, det’#“R, dett”’ 
Y-3 

vanishes. 
Below we shall make use of the results in Eqs. (2.10))(2.25); hence, let us 

elaborate on them. Observe that alternatively to regulating as in (2.16) the follow- 
ing procedure may be adopted, which is in fact equivalent. Instead of the 
definition (2.11) for 1, use a regulated formula, 

where the regularization consists of replacing k by li,, 

k, = AkA, (2.34) 

with A being some symmetric well-behaved kernel, thus leaving k, antisymmetric. 
As the regulators are removed A approaches the 6 function. The regulated 
generator is defined by 

Q:=i jx",fx$ (2.35) 

[In a self-evident notation, we view f as the kernel f(.~) S(X - J,).] That this is 
equivalent to (2.16) is seen by making a canonical transformation. 

n(x)= j dy A-‘(x, I,) n(y), +(.K) = j dy A(.K, y) Q(y), &(R+&). 
$ 

(2.36 

In terms of the new variables, Qf takes the form 

Q?=i jti‘d? (2.37 

f., = AfA. (2.38) 

This is the same as (2.16) withf, replacing F. It immediately follows that 

(‘P,I~~~~~I (p2) = (detd) W@,, &;fA) (2.39) 
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so that the subtraction in (2.24), with F=fi, renormalizes the regulated 
generator (2.35 ). 

The above development concerns transformations that the act on I + t, but leave 
s-t unchanged. We may, of course, treat the latter in an identical fashion simply 

by replacing X+ = (l/$)(n+ a’) with x = (l/JZ)(ZG @‘) or after 
regularization using instead of xc, the regulated version of x . 

xA 2 (n+ ikJ@). 
& 

(2.40) 

The representation functional is as in (2.18), with -k replacing k; therefore, the 
renormahzing subtraction is again as in (2.21) and (2.24). 

Since x-i commutes with x.“, so do the generators effecting the x + t transfor- 
mations with those that generate changes in .Y - t. Therefore, when both .K + t and 
.Y - t are transformed, the genrator is the sum of the two separate generators and 
the renormalizing subtraction is the sum of the separate subtractions. The transfor- 
mation functional is obtained by composing, through functional integration over cp. 
the two separate functionals 0: each one taking the form (2.18) and (2.19), but with 
opposite signs for k and with different transformation functions F. 

Note finally that our entire regularization and renormalization procedure 
addresses ultraviolet infinities. Owing to the infinite range of .Y, there may be 
additional infrared divergences for particular forms off: We ignore these. 

III. ISOMETRY GENERATORS IN DE SITTER SPACE 

Consider 1 + 1 de Sitter space described by the metric, 

which is a particular open slicing of the general space, defined by the surface of a 
hyperboloid of revolution in 1 + 2 dimensions. The spacetime possesses constant 
curvature 2/r’. Tt is convenient to pass to conformal coordinates, by defining a “con- 
formal time.” 

i = e "'//I (3.2) 

(3.3) 

Except at the end of Section V, we shall work with (3.3) and hence we suppress the 
tilde. 

The Killing equation 
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for the infinitesimal isometriesJ’P admits three linearly independent solutions. The 
simplest corresponds to spatial translations. 

.f:’ = (0, 1). (3.5) 

The other two, a dilatation and a restricted spatial conformal transformation, 

,f’$ = (t, s) (3.6) 

f’; = (tx, $( t2 + 2)) (3.7) 

together with (3.5) close on the SO(2, 1) de Sitter Lie algebra. 

Lf‘l , .I-2 1 I’ = f:’ If, 3 Ji 1” = .f”z’ C.lr > .f3 1” = .f’l; 
[fj, .f;]‘t =,f’; s,f’y -.f’; ?,,f’y. 

(3.8) 

A scalar field, with mass nz, without self-interaction but in de Sitter space, is 
governed by the Lagrange density 

9 = J-s &[ g”‘dI,c$,,cp - nz’cp’] (3.9) 

and the covariantly conserved energy-momentum tensor is 

T,,,.=c7,,(p(?,,q -;gJg”“Qpc:,jcp -m’q2). (3.10) 

Time-independent generators of symmetry transformations are constructed from the 
Killing vectors. 

Q, = j (l.u fi To ,,,f”. (3.11) 

In this way, we are lead to three generators, which formally are given by 

Q,=StrY(!(n’+~“+oL~L)f”+n~‘,l’), (3.12) 

where the canonical momentum Il is defined by n = 6Y/6&~ = 6 and u = rn/(ht). 
Observe that Q, is just the total momentum. 

To regulate (3.12) we rewrite it as 

p, = f j d.Y{ (.I” + .f” ) xl + (y-f’) x’ +uWf(‘J. (3.13) 

Hence, we define the regulated formula by [see (2.35)] 

= 4 ( (npI7 + @kdf”kJ @ + a’@,fo@ - iI7f’k, @ + i@k,f ‘I7). (3.14) 
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Since x-1 and ~5 commute with each other, (fp,J~‘@) (p2) may be readily 
evaluated in the massless case m = 0, following the development described at the 
end of Section II: the representation functional is the composition, by functional 
integration over cp, of two functionals, one as in (2.18 ) and (2.19) with F = ,f: + .f:, 
and a similar one with F=,fy, -f!, and -h- replacing k.’ It is also clear that the 
subtraction which renormalizes the generator is $ trf.; w. 

We have not succeeded in finding the explicit form for (cp,le ‘“:I cpZ) when the 
mass is non-vanishing, owing to the non-commutativity of x’, and x-y. with Q’@‘.~ 
However, in the Appendix we present a heuristic but plausible argument that the 
renormalizing subtraction should be 

where 

(3.15) 

(3.16) 

Accepting this, we define the intermediately renormalized generators by 

(3, = lim( Q;’ - 4:) = lim( Q;l - 4 trJ’P, &), (3.17) 

which also holds for a= 0. As we shall demonstrate presently, conservation 
requirements fix the finite part of the subtraction, so the final, renormalized 
generators differ from 0, by finite terms, given below. Of course, the discussion at 
this stage makes no reference to dynamics, so considerations of conservation cannot 
be addressed. 

Note that the momentum, Q,, whose regularized form is 

(3.18) 

‘The Gaussian functional integral gives 

except when ,1”=0. m which case CJ(cp,. cp; F’ ) and L/(q, qr; F ), and consequently also their com- 
position L’(cp,, QY:), become functional delta-functions, 

’ It is also necessary to regulate the mass term. A convenient method is to replace J @,/“@ by an 
expression which does not introduce new kernels beyond k,. We omit details, since we make no use of 
them. 
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requires no subtraction, as is familiar. Also, for the conformal generator, with 
ficcx, a subtraction is not needed because unwanted terms vanish by parity, since 
d may be chosen to have definite parity. [Recall that a restricted conformal trans- 
formation is a translation in the inverted coordinate system.] 

IV. DE SITTER VACUA 

The Hamiltonian for our theory is formally given by 

H=i^d.~(I7&.y’)=j’d.~fi T; 

=-i ! 
s 

ds( I7’ + @‘? + a’@‘). (4.1) 

Owing to the mass term, H is time-dependent and it makes no sense to define the 
vacuum as the lowest energy eigenvalue: the eigenvalues are time-dependent; 
equivalently, the time-dependent [functional] Schrodinger equation 

does not separate in time. 
A reasonable definition for a Fock vacuum is that its functional Y(cp; t) be a 

Gaussian solution to (4.2) with covariance Q. Moreover, the Gaussian is further 
limited by requiring as much invariance as possible against transformations 
corresponding to the isometries of the background metric. 

When the above definition is invoked in flat Minkowski space, the conventional 
Fock vacuum is regained as the unique translation and Lorentz invariant Gaussian 
solution to the time-dependent Schrodinger equation. 

To implement this program in de Sitter space, we first need to regulate the 
Hamiltonian. In keeping with the regularization of the isometry generators, we 
replace in (4.1) and (4.2) j d.u@" = 1 @k'@ by l @ky, @.’ 

and the regularized version of (4.2) is 

(4.4) 

’ One should also regulate 1 d.u@‘: see footnote 6. However, this additional procedure has no effecl on 
our final results; so we omit it. 
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Making the Gaussian Ansat? 

‘J7((p; t) = Ne (‘!L)j@q, 

we find that the covariance Q(s, ~1; t) solves 

3.51 

(4.5) 

(4.6) 

and the normalization factor N(t) satisfies 

d 
i-ln N=ftrQ. 
i;t 

(4.7) 

To obtain solutions to (4.6) and (4.7), we impose the requirement that Y be 
“translation” invariant, even in the presence of the regulator. 

P-‘Y=O (4.8a 

This is possible, because [HJ, P”] = 0. With (3. IS), (4.8a) is equivalent to 

[k., , Q] = 0. (4.8b 

When k, commutes with $2, the latter may be diagonalized with the former, and 52 
is a function of the kernel k,. Moreover, since Q(.Y, ~3; t) is symmetric in (.u, ~3) and 
k,(x, J) is anti-symmetric, the former must be an even function of the latter, or 
equivalently, Q depends on lk,l. 

The solution to (4.6) and (4.7) is now determined as 

I?= -illnD (4.9) 

Here, 0,. is the real phase of t’i(“xT:2’ times the Hankel function of order 
\GJ~.S 

(4.12) 

8 The reason that we introduce the factor c”‘~ ‘I, which is additional to the conventional formulas for 
phase and modulus of Hankel functions, is that our 0, remains real as v becomes imaginary. 
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The single integration constant c( is complex, and may depend on Ik,,l. Its 
imaginary part determines r z tanh(Im c(). Also, C2 is complex, and may be 
separated into real and imaginary parts. 

Q=QR+iQ,. (4.13) 

Various multiplicative constants are adjusted so that i LF’(pY*Y = 1. 
More explicitly, the formulas read 

xdet ‘L’ 
r “‘cos(O,(r(k,,()-U)+irl ‘sin(O,.(tlk,l)-0) 

cos(O,.(tlk,()-8)+isin(O,,(rlk,l)-0) 
(4.14) 

A r-independent phase has been dropped, and 0 = Re 3. 

(4.15a) 
r@:,(rlk,l) 

“=lk”l cos’(O,,(tlk,l)-8)+r’sin’(O,(tlk,j)-8) 

(I-r’)tan(O,,(tlk,l)-8) 
1 +r’tan’(O,.(tlk,l)-8) 

(4.15b) 

In the massless case, \J = 4, everything is expressed in terms of elementary functions. 

Nzr -fI(‘r?)lrlk,ldet 1.4 2 

( > lk,,l 

x det ~ ’ ;? r’;‘cos(tlk,j - 0) + ir I,” sin(tlk,l - 0) 

cos(tlk,l - 6) + i sin(rlk,l - 0) 
(4.17) 

QR = W,ll 
r 

9 COS’(tlk,j - 8) + sin’(tlk,l - 0) 
(4.18a) 

sL 
I 

= _ ,k I (1 -r’) W4~,l -0) 
A 1 + r’ctn’(tlk,l - 8) ’ 

(4.18b) 

To restrict 52 further, we consider the remaining two isometries (3.6) and (3.7). 
The generator acting on the Gaussian gives 

(Qf-qf) (u=+tr(fUR-ffl,to”) Y 

(4.19) 
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where 

6,!2=$~( -~,f’~+k,,f0k,,+a’fo+SZf”k.,-k,j”~). (4.20) 

In order to control singularities when the regulators are removed, we prefer to 
consider matrix elements of Qf - qf in the Fock space built on Y? Since the wave 
functional for an arbitrary Fock state is a polynomial in cp multiplying Y, the 
general case is achieved by considering the overlap of (4.19) with Y~‘~~Y’, where J(.u) 
is a source. 

(4.21) 

The first tserm in brackets, involving the trace, is the diagonal matrix element 
(ale;’ - q,,‘I Sz). The remaining term, bilinear in J, generates the connected off- 
diagonal matrix elements. 

The off-diagonal matrix elements must vanish whether one wants the vacuum 
state to be invariant [the generator annihilates it] or merely phase-invariant [the 
state is an eigenstate of the generators]. However, we cannot set this requirement 
on the regulated expresssion because the regulated generators are not constants of 
motion rela.tive to the regulated Hamiltonian, i.e, 

; Q; # i[Q;, H-l]. 

Therefore, we only demand that 6,CJ vanish when the regulators are removed, 
A + 6. In this limit, with 

the two isometries imply that 

n Q(lpl; f) 
‘26 

=p~Q(lPl; 1) 
P dP P ’ 

(4.22) 

which is satisfied provided that CI is constant, as we henceforth require. This leaves 
the state depending on one complex constant, a. It is this parameter dependence 
that has been identified as characterizing de Sitter invariant vacua [lo], but as will 
be seen here, these states are at best phase-invariant. 
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We now examine the diagonal part of (4.21), which may also be written as 

(~lQ/3--q:ln)=~tr(~0.-,f’“,o”+tii,~n.a,’) (4.23) 

because tr(f’n,+ $?,SZ,SZ, ‘) = 0, as follows from (4.20), when the cyclicity of the 
trace is used together with the fact that k,, R,, and !II, all commute. When the 
regulator is removed, 6,LI, vanishes, while the remainder becomes 

(4.24) 

In general, the p integral diverges; however, for precisely one value of the 
parameter, i.e., r = 1, the p integration is finite. This is obvious in the massless 
case (4.18), where for r = 1, a,( Ip(; t) = (pi, and the integrand vanishes because the 
subtraction compensates precisely. In the massive case, the compensation is not 
complete: at r= 1, s2,( lp(; t)= lpi @:,(tl~(). Nevertheless, the large JpI behavior of 
this matches the first two terms of w’( IpJ ); hence, the integrand is 6 (p 3, and the p 
integration converges. 

In fact, it is necessary to adjust the subtraction by finite terms so that the com- 
pensation is exact at non-zero mass as well. Observe that the integrand is IpI times 
a function of tl~(; hence, the p integration produces a result proportional to t ‘. 
Since f” is proportional to t, the final result for the diagonal matrix element is 
proportional to tp ‘. On the other hand, matrix elements of a constant of motion 
between states that solve the time-dependent Schrodinger equation are time- 
independent even when the constant possesses explicit time-dependence. Thus, our 
regularization and renormalization does not respect conservation of the generator. 
This defect is remedied by effecting a complete subtraction through the definition 

:Q,: = lim(Q;’ -i tr,f’lk,,/ O:.), (4.25) 

which differs from 0, by finite terms. 
In conclusion, therefore, we have shown that the vacuum with r = 1, the so-caller 

“Euclidean” vacuum, is completely invariant against de Sitter transformations. 
1 

The other vacua satisfy 

:Q,:IQ)l,=‘=O. (4.26 ) 

:Q,:iQ) = (r - 1) j d-x,P(.u) ?^,’ 2 P”:,ttP) 
1 - (r + 1) sin’(O,.(fp) ~ 0) ,n>, 
, + (r? _ 1) sin’(g ,(rp) _ 0) 

(4.27a) 

As already mentioned, the eigenvalue is non-zero only for the second Killing vector, 
corresponding to dilatations, because f” vanishes for translations while for spatial 



ISOMETRIES OF DE SITTER SPACE 361 

conformal transformationsfO is odd in X, hence, the integral over all .Y may be set 
to zero. For dilatations, :Qz: = D, we have 

where L is the [infinite] length of space. The eigenvalue is not only infrared 
divergent, but also ultraviolet divergent owing to the k integral. Moreover, it is 
time-dependent. Thus, these vacua are only phase-invariant, and the l-cocycle 
which occurs is infinite. 

It may appear puzzling that two generators of a non-Abelian group annihilate all 
vacua, but a third does not. The resolution lies in the infinite eigenvalue of (4.27). 
The situation is analogous to the PoincarC group in flat spacetime, where the 
Lorentz generator when commuted with the momentum gives the Hamiltonian. 
However. the former two annihilate the ground state, which is Lorentz and trans- 
lation invariant, while the Hamiltonian possesses an infinite eigenvalue- -the zero 
point energy. Physically what is being said is that one cannot translate or boost an 
infinitely heavy object. Similar remarks apply to our theory in de Sitter space. 

It should be appreciated that we cannot redeiine the generators so that some 
other vacuum, with I’ # I, becomes invariant at the expense of phase-invariance of 
the Euclidean vacuum. The point is that only finite redefinition is permitted at this 
stage, but the eigenvalue in (4.27) is infinite and it cannot be removed. 

The Y = 1 vacuum has been previously preferred: it is the one that naturally arises 
in a Euclidean formulation [9 J. it allows a sensible definition of energy [ 121, and it 
is relevant to the inflationary program [6]. Now we see that also it is the unique, 
completely de Sitter invariant state. 

V. FURTHER PROPERTIES 

The de Sitter spacetime is conformally flat; see (3.3). Hence, the conformal 
Killing equations 

.r;,: v + r;.. p = R,d’L ,f (5.1) 

possess the same solutions as in flat space: all conformal Killing vectors are 
parametrized by two arbitrary functions. 

I‘“=.~(.r+t)-~~(.K-t) 

f’ = .9(x + t) + %?(A- t). 
(5.2) 

The three Killing vectors (3.5)-(3.7) correspond to 9(r)=!!?(:)= $. $, $?. 
For a massless field, the conformal Killing vectors give a further infinity of time- 

independent generators, because the conserved energy-momentum tensor is 
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traceless. [In the de Sitter space quantum theory, the two-dimensional trace 
anomaly - (1/24n) R does not invalidate the above statement, since the energy- 
momentum tensor may be “improved” by a term proportional to gu,,R, which 
removes the anomalous trace, yet remains conserved for constant R.] However, it is 
known that in the quantum theory, the infinite conformal Lie algebra is realized 
with a center (see (2.25)), and the group is represented projectively. Consequently, 
no state can be invariant against all transformations: the commutators of 
generators do not close: therefore all generators cannot annihilate a state. 

An exception occurs for the SO(2, 2) = SO(2, 1 )@ SO(2, 1) subgroup of restric- 
ted conformal transformations which arise from Killing vectors that are at most 
quadratic in their argument. For these, the center vanishes, as is seen from (2.25), 
and one may inquire how the de Sitter vacua respond to the corresponding trans- 
formations. 

Our previous analysis answers this question for the diagonal SO(2, 1) subgroup, 
which is spanned by the three Killing vectors (3.5))(3.7), but we still need to 
analyze the effect of the remaining three transformations corresponding to confor- 
ma1 Killing vectors .9(z) = -W(z) = $ 4:. $‘. Respectively, these give rise to a time 
translation, 

.A= (1, Oh (5.3) 

a Lorentz transformation 

j‘i; = (s, f), 

and a restricted temporal conformal transformation, 

(5.4) 

,f”d = (~(t’ts’), st). (5.5) 

The regulated charges are subtracted as before, and the action on Y is as 
in (4.19) and (4.20), while the matrix elements are as in (4.21) and (4.23). All three 
vectors lead to the same result. For the off-diagonal part to vanish in the limit 
d + is, i.e., for lim 6,R to be zero, one must have 

QWpl; r) = p2, (5.6) 

which is true only for the Euclidean, r = 1, vacuum. Moreover, for that state the 
subtraction completely removes the diagonal part (4.23), so that the Euclidean 
vacuum of the massless theory is strictly SO(2, 2) invariant, while the vacua at r # 1 
are not even phase-invariant. 

Of course, this result is not surprising: owing to conformal invariance, the 
background metric is invisible and the situation must be as in flat spacetime, where 
a unique Poincare invariant vacuum exists. 

B. Passage to Minkowski Space 

Let us discuss now how the family of phase-invariant de Sitter vacua goes over to 
Minkowski states in the limit of flat space, i.e., for small h, in the metric (3.1). 
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In Minkowski space, the general Gaussian solution of the regulated Schrodinger 
equation in Minkowski time t,, can be written in the form (4.9) (4.10) where now 
the kernel D is given by [assuming translation invariance] 

The complex integration constant rAI may in general depend on lk ,/; only after 
imposing Lorentz invariance do we get I ,, = tanh( Im Us,) = 1, and the unique con- 
ventional Fock vacuum is recovered. 

For a phase-invariant de Sitter state we know that 

(5.8) 

We restore here the tilde notation of Eq. (3.2) to distinguish between the usual time 
[r of (3.1)] and the conformal time [? of (3.2) and (3.3)]. For small h. t diverges as 
l/k and v becomes imaginary. 

Let us first consider the Euclidean vacuum, for which I’= 1 and 
52 = -i(Z/?i) In D = Ili,l @:.(llk,I). In this case, one finds [ 141 R - ,, +(, (~‘4, so that 
in the limit the unique Lorentz invariant Minkowski ground state is selected. 

In the general case, D and hence 52 do not have a limit. In fact. as Iz approaches 
zero, the asymptotic behavior of 0,. [14] gives 

However, since (5.9) has the same form as (5.7). we can compare the two 
expressions for large values of Minkowski time, /,, - I//r, and we identify 

(5.10) 

In this way it can be said that the family of phase-invariant de Sitter states 
produces in the flat limit a one-parameter family of states in Minkowski space 
which are not in general Lorentz invariant. because ‘Y,,, in (5.10) depends on /i. 

In the massive theory, there is an exception to this behavior, given by those de 
Sitter states for which Im r diverges as h vanishes. [Although c;1 is i and Ih-.rl 
independent, it can be a function of the dimensionless parameter nz/h.] In this case, 
Eq. (5.10) shows that rM is driven to unity, so that these de Sitter states approach 
the unique Lorentz invariant Minkowski vacuum, and the arbitrary parameter x 
decouples. 

This difference between massive and massless theory can be physically 
understood by looking at the behavior of the two-point function G(.Y, ~3) [ 131. 
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Besides the usual short distance singularity as .\: approaches ,t: in de Sitter space, for 
r # I, G(.Y, J*) possesses also a singularity at .Y =J’, where ~1’ is a point diametrically 
opposite to J’ on the de Sitter hyperboloid (the antipodal point). In other words, an 
observer at .Y feels both the effect of a “charge” at ~3 and of the “image charge” at J“ 
(even if J“ is outside his horizon). In the massive case, as !I+ 0, the image charge 
produces an exponentially vanishing effect O(C”““) upon .Y and the resulting 
vacuum state becomes insensitive to the choice of r. and r,,, is driven to 1. In the 
massless case, the long range force due to the image charge at ~3’ is always felt at .Y 
and as h + 0 the vacuum state always acquires the same N-parameter dependence 
which was originally present in de Sitter space, so that c(,&, = CL 

APPENDIX 

As discussed in Section II. the subtraction q; which allows defining the renor- 
malized generators, D, = lim., - ,j (Q;l - qf), is found by examining the represen- 

tation functional for the finite transformation, (‘p, IP~~‘~~~I (p7), as the regulator d is 
removed. Qf is given by (3.14); since it is quadratic in the dynamical variables I7 
and @, the representation functional must be a Gaussian in cp,, q2. 

The Schriidinger-like equation (2.4a), produces a set of differential equations for the 
normalizing constant N, and for the kernels A, B, C, which are also contrained by 
unitarity. 

(‘(x, 1’; z)=A*(.u, j’; -T) 

B(s, J’; 5) = B*( y, .Y; -5) (A.21 

N(r) = N*( -T). 

We have not succeeded in finding explicit solutions for these equations. However, 
from the discussion of Section II we know that the infinities which appear when the 
regulator is removed are confined to the normalization constant N. 

The equation which determines N involves A. 

i?,(ln N) = i tr(J”A). (A.3) 

In the limit d + 6 the divergent part of In N, which is linear in T, can be extracted 
from the r-independent divergence in lim, +<, tr(J”A). 

Our heuristic procedure for finding qf consists of removing the regulators first, 
determining A(.r, I’; T), and extracting the infinite part as s +J’, after T has been 
continued to imaginary values T -+ -is. 

When d = 6. A satisfies 

iC:, A = A,fQA + k,f”A - A,f ‘k - k,fOk - uffi’, (A.4) 
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with the boundary condition that Accr ’ as z + 0. Since only the dilatation 
generator requires a subtraction, we take,/” = (t- s). In this case (A.4) is solved by 

(A.51 

As before, 0,. is the phase of the Hankel function of order I’= J$- (~‘lh’); 
see (4.12).’ 

For .Y --f J’, an ultraviolet divergence occurs in A(s. J; -ir). The large p behavior 
of the bracketed quantity in (A.5), with 5 -+ -is, is i( 1 + ($/(2h’$))). Hence we 
conclude that A behaves as 

for s- J‘. This then is the renormalizing subtraction a result which differs 
from (3.15) only by finite terms. 
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