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ABSTRACT 

Using the ADM formalism for General Relativity the approach to a space-time sin- 

gularity of a general inhomogeneous universe, in an arbitrary number of dimensions, is 

studied. The question of whether chaotic behaviour is a generic feature of Einstein’s equa- 

tions, in an arbitrary number of dimensions, is explored. We find that models that contain 

ten or more spatial dimensions are non-chaotic and their approach toward the initial sin- 

guiarity is monotonic, whereas for those with dimensionality between four and nine their 

approach is chaotic. A clear geometrical picture is constructed whereby this result can be 

understood. 
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I. Introduction 

The nature of the initial singularity has been one of the most outstanding problems 

in physics. The singularity theorems 1 tell us that at least within the realm of classical 

(non-quantum) physics an initial singularity is almost unavoidable. Unfortunately, these 

powerful theorems do not tell us much about the properties of the singularity. In order to 

learn more about it we have to look for specific solutions of Einstein’s equations. The most 

general homogeneous closed cosmological model containing a singularity is the anisotropic 

Bianchi IX model. When isotropic, it reduces to the Friedmann-Robertson-Walker (FRW) 

closed model. Early studies of this model2 revealed that the nature of the initial singularity 

was far more complex than anything found in the FRW case. It was a chaotic state and 

initial conditions were completely unpredictable. The system had an ergodic behaviour. 

On approach to the initial singularity, the scale factors underwent a sequence of oscillations 

where periods of expansion and contraction of the scale factors took place in turn (see 

ref.(3) for a review). The characteristic feature of these oscillations was the fact that both 

the amplitude and the frequency diverge on approach to the singularity and the system 

becomes unpredictable. Nevertheless, the volume evolved smoothly as a monotonically 

decreasing function of time having a zero value at zero time. This oscillatory behaviour 

was described by a series of “bounces” that changed the model from one Kasner state 

into another. One of the most striking features of this bizarre behaviour was the fact 

that it was a generic property of the model. Any Bianchi IX vacuum solution developed a 

chaotic behaviour on approach to the singularity regardless of its initial values or boundary 

conditions (on a later hypersurface) i.e. the diverging oscillations appeared for all but a 

set of measure zero initial conditions. This was all very well, but for all we know the 

universe need not be homogeneous or even be approximated by a homogeneous model 

near an initial singularity, so we had to make sure that this property was not a particular 

feature of these restricted models. However, soon after, it was shown that a “general” 
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inhomogeneous solution existed (or could be constructed) near the singularity, which had 

the same chaotic behaviour’. 

We should, at this point, clarify what we mean by “general”. We will call “general 

* a solution that contains the maximum number of arbitrary (non-removable) spatial 

function i.e. all possible gravitational degrees of freedom are presents. These functions 

then determine the initial (boundary) conditions on a given hypersurface. This surprising 

result lead to the belief that, at least at the classical level, the Big Bang singularity must 

have possesed some of this properties. 

A powerful method can be used to extract more information about these solutions. 

This is based on a Hamiltonian formulation of General Relativity: by foliating space-time, a 

canonical Lagrangian can be constructed. The problem of solving Einstein’s field equations 

for the evolution of the universe is exchanged for that of a point particle moving inside a 

time-dependent potential. This canonical formulation’of General Relativity is known as the 

ADM formalism5. The method is very succesful when applied to homogeneous cosmologies 

where the potential can be easily identified with the spatial-curvature of space. The method 

will be described later on. 

Recently, the idea that our Universe is of a higher spatial dimensionality has been 

revived. Our old 3+1 space-time is not big enough to accomodate today’s gauge theo- 

ries. Both, supergravity and superstring theories require for their internal consistency and 

finiteness more than three spatial dimensions. This has become an almost indispensable 

ingredient in any gauge theory that attempts to explain physics at very high energies. 

Without trying to justify this assumption from physical first principles and exploiting the 

mathematical interest that models in arbitrary dimensions have, we will take it to be valid. 

We will also assume that the space-time is described by a PseudoRiemsnnian manifold of 

dimension (n + l), with a well defined Lorentzian metric satisfying Einstein’s equations, 
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and ask the following question: Is the chaotic behaviour found in Einstein’s equations in 

four-dimensional space-times a generic feature, or is particular to this dimensionality ? 

Several attempts to answer this question have been made in the past. There are ex- 

amples in the literature where homogeneous models have been constructed which approach 

the singularity in a non-chaotic way. Most of these models have space-times of the form 

M’ x B where both submanifolds are homogeneous and in some instances anisotropic6. 

The case where the topology of the manifold is not that of a product space has only 

been explored when n = 4 where all the possible Lie algebras have been classified. No 

chaotic behaviour was found in any of these models when the metric was diagonal. The 

general homogeneous case has not been explored”. 

However the question remains unanswered. The Universe was probably very inhomo- 

geneous initially and it is not possible to extrapolate the results found for homogeneous 

models to this more general case. Very recently a surprising result was reported in ref.(S) 

where a “general” solution to Einstein’s equations was constructed near the singularity 

that had no chaotic behaviour for n > 10, it contained all the necessary degrees of freedom 

of the gravitational field to be considered a general solution. Although, uniqueness has 

not been proven for this solution, its existence is probably sufficient to conclude that if the 

universe had more than ten spatial dimensions, then it was probably not chaotic in the 

begining. Worth pointing out is the fact that n = 3 is certainly a very special case at it 

presents the same behaviour in the homogeneous and inhomogeneous cases. 

In this paper we will rederive the result found in ref.(8) using a completely different 

technique, that of Hamiltonian dynamics. We will give a clear geometrical interpretation 

to the result that n = 9 is the dividing line between chaotic and non-chaotic behaviour. A 

rigorous proof of this statement will be given in section III where we will also argue that the 

most general models with 3 5 n 5 9 are chaotic near the singularity. With this formalism 

it is possible to replace the field equations describing the evolution of the universe by a 



point particle moving inside a time dependent potential, this being the spatial curvature 

of the modelg. This allows a qualitative description of the behaviour of the universe. The 

whole evolution is reduced to a sequence of “bouncesn against potential walls with free 

motion in between. This free motion is described by Kasner solutions while the bouncing 

law can be derived from the assumption of perfect collisions. The walls of the potential 

are in general functions of time, their shape is basically preserved ss time passes but they 

move apart ss the singularity is approached. We will show that the dividing line when 

n = 9 only reflects the fact that the walls are moving so fast that after bouncing a few 

times the Universe particle cannot catch up with the walls, the velocity of the walls and 

the particle aquire their critical value for this n. 

We will start by introducing the ADM formalism. The first step consists in splitting 

the (n + 1) space-time metric g,,,” into its space and time components 

NiN’ - N1 Ni 
9 pv = 

Ni Sij 

where P,V run from 0 to n, while i, j from 1 to n. N is called the lapse function and Ni 

the shift functions. It is always possible to choose a gauge where Ni = 0. In this gauge 

the line element is given as 

h2 = -N2dt2 + gijdx’dz’ 

The Einstein-Hilbert action will be the usual one 

S fi NR dz(“+” 

(1) 

Where 9 = det(gij) and R is the (n + 1)-dimensional Ricci scalar. Units are taken so that 

16nG = c = 1. 
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In order to construct a canonical formalism it will prove useful to rewrite the La- 

grangian in term of the metric components and its velocities as the canonical variables 

LADM = &fi(giigk’ - g’kg”)~ik~j~ - NP 

with P being the spatial-curvature scalar calculated with gij. Before varying (3) we would 

like to mention some invariance properties of the Lagrangian that will be crucial to our 

argument. The ADM decomposition is formulated entirely in coordinate space. However, 

this is not always the best frame to use. We will require a formulation in form-space. One 

of the advantages of this is the fact that the metric can always be put in diagonal form. 

Let gob be the metric in form space, then there exist non-singular matrices o;(x) such that 

gij = U,“g&U: 
I 

(4) 

It is easy to see that (3) is invariant under the metric transformation given in eq.(4). This 

means that the same equation obtained in coordinate space can be used in form space. 

It will prove useful to introduce Misner’s decomposition for the metric” 

gob = e2a(e2B)ab = e2a&b 

with a&, a traceless n x n matrix and g = e 2”a. We shall assume that a is only a function 

of time, then the Lagrangian finally takes the following form 

1 I L -,,b-& 
LADM = $‘,,&,d 9 - 

n(n - 1) (52 + fie2?aPP 

fi 

with N = e-““N. From its variation with respect to I? we get the zerozero Einstein 

equation 

-&-~ac&,dif”biicd - 
n(n - 1) &2 _ ,anap = 0 

l+ 
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At this point we will fix completely the gauge by taking fi = ir and the u” to make the 

metric diagonal. In this csse the line element takes the form 

ds2 = -e2”=dcy2 + eZo(e2p),,b *sob (7) 

with 

(ela) = diag (e2p’, . . ..e’@“) ; u” = ,$dz’ (8) 

The p ‘s are general functions of the space-time coordinates, subject to the constraint 

p-0 (9) 

In this particular gauge eq. (6) becomes 

- t?“aP = +I - 1) (10) 

This equation is formally identical to that of a point particle moving inside a time depen- 

dent potential of the form -eznaP. The analysis of the motion will be done in the next 

section. 

II. The Potential Picture 

As we know from the study of the three-dimensional mixmaster model, the analogy 

between the evolution of the Universe and that of a point particle moving inside a time 

dependent potential is both intuitive and useful. We saw in the last section that the 

potential for the problem wss given essentially by the spatial curvature of space. This 

curvature is a well defined object in terms of the metric components rl, 

; c [ (Q8=8b-8”)2 + ~a.a~~cc~~-2~‘-B.] + c Dae-28” 

*Aa a **es 1 
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where both CL(x) and D”(x) are functions of the spatial coordinates. The Cic(x) are 

defined in terms of the o” by the relation 

do” = -~C~(X)oboc 

The explicit form of the C&(x) and D”(X) will be of no importance for the subsequent 

calculations. No further assumptions for p are necessary, however we should point out that 

the solution with g = cord. and Q = ilog corresponds to the usual Kasner solution. 

To analyze the evolution of the point particle we require the evolution equation for 

the time-depenent walls. The equipotential surfaces for the three different types of walls 

are given by 

/3” - pb - p’ + (n - 1)a = con&. (a # b # c) (12.4 

-pa + (n - 1)” = con&. (12.b) 
i 

;P - pb - ;F + (n - l)a = const. (a # b # c) (12.c) 

As mentioned before the p’s have to satisfy eq.(9). From this we can see that the potential 

walls expand as the singularity is approached. In order to study the motion between 

bounces, an approximation has to be made; since the potential in eq.(ll) is exponential, 

we can safely ignore it when the universe-particle is far from the “walls”, i.e. we assume 

free motion between bounces. In general none of the C,q or Da functions vanish, so all 

possible walls should be present. This is the major difference with the homogeneous cases 

where the symmetries imposed on the spatial hypersurfaces forces some of the C,q and D” 

to vanish, so effectively some of the walls are not present. However, if there is a non-zero 

measure region in P-space along which, the universe-particle never hits any walls, then 

there is no chaotic motion near the singularity. The universe-particle will, after a (perhaps 

large) number of bounces go into this region, becoming a free particle. We shall now derive 

a condition for the universe-particle not to bounce indefinitely. 



The velocities of the different walls satisfy the following equations, 

d&au + dam,,, + dp:,u _ -- - 
da da 

----n-l (a#b#c) 
da 

(13.4 

KmlI _ n _ 1 -- 
da 

(13.6) 

14%rt +d@tdt +id@:d --n-l (a#b#e) --- __ -_ 
2 da da 2 da 

(13.c) 

From eqs. (9) and (13) we get the direction of the velocity vectors for the three kinds of 

walls to be 

l %bc = ((0 ,.., o,-1,o (..) O,l,O ).., O,l,O ,.., O)- &l ,..I l,.., 1)) 

l na = 

J- 1-a 
((0 ,.., O,l,O ,.., 0,o ,..( O,O)-$,l,.., l’.., 1)) 

iiabc = & ((0 ).., o,-;,o ,.., O,l,O ,.., o,$o 1..1 O)-$,l,.., 1 ,..I 1)) 

In the expression for nabc the overall factor is due to proper normahsation, the first piece in 

the parenthesis can be read off (13.~) directly, and the -1, 1 and 1 appear as the a’th, b’th 

and c’th entries. The second piece is necessary to ensure that n&c lies in the hyperplane 

I2 ntbc = 0 
A=l 

The expressions for II, and r& are derived in a similar manner. From (13) we can also 

read off the speed of the walls, we find 

V 
n-l 

abc = 

If--- 
3-i 

v, = n-l 

J-- 
1-t 

~abc = 
n-l 

if-- 
i-’ 

n 
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for the three eases. Let us introduce the velocity of the universe-particle by e z v = 

(V’,tJ,..., u”). In terms of this eqs. (9) and (10) b ecome (in the region where the potential 

is negligible) 

gJA=o (14) 

and 

guAY = n(n - 1) (15) 

The motion of the universe-particle as well as that of the walls is restricted to the hyper- 

plane defined by eq.(14), therefore from here on, when we speak about walls we mean the 

intersection with this hyperplane. Obviously the inner products of vectors defined in this 

hyperplane coincide with that of the big n-dimensional space. 

For a given velocity v of the universe-particle the speed at which it moves towards a 

wall, is n,.v where XI, represents any of the three direction vectors above. Therefore the 

condition that the universe-particle does not hit this wall simply becomes n,.v < V,, and 

the requirement that the universe does not hit any walls becomes maxw(n,.v - VW) < 0. 

Since we are only asking for the existence of some v satisfying this, then the “no-bounce” 

condition can be formulated as follows: If 

min,(max,(n,-v -VW)) < 0 (16) 

then a region in velocity space exists within which the universe-particle never bounces and 

eventually moves freely having a non-chaotic behaviour near the singularity. Finally, we 

shall express the velocities in terms of the Kasner indices by the relation pa = i(va + 1). 

In terms of this eqs. (14) and (15) become 

Z,pA=l 

gIlPA,’ = 1 

(17) 

(18) 
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and the condition (16) when calculated for the three different walls reads: 

minp(ma&+(-p” + pb + pc - 1)) < 0 (a # b # C) (19~) 

min,(max,(p’ - 1)) < 0 (19.b) 

min,(ma&b,(-ip” + pb + ipc - 1)) < 0 (o # b # c) (19.~) 

Eq.(lQ.b) is always satisfied and it is easy to show that if we assume, the first is satisfied 

too, then the third follows and viceversa. Then, we only need to assume one of the 

conditions holds, as the other two contain no new information. We will choose eq. (19.a) 

to build the argument of the next section where we will show this condition can only be 

satisfied if n 2 10. This will prove the existence of a region in velocity space for which 

the universe-particle can never reach any wall. This result will also imply that for n 5 10 

there is at least one wall that can not be neglected. 
I 

It will prove useful to rewrite (1Q.a) in a different way, 

maXp (min&oabc) > 0 

where ffabe = 1 + p” - pb - pc. 

(20) 

III. The Critical Dimension 

In this section we shall show (i) that for spatial dimension n > 10 is it possible to find 

p’s with all the aabcrs positive, and (ii) that for n 5 9 and any given II at least one of the 

cPbC’s are negative. This proves that for n 5 9 the general solution to Einstein’s equations 

is chaotic, while for n 2 10 non-chaotic solutions exist. We shall specifically show that for 

n 2 10 a whole region of parameter space (p-space) can be found in which the solution is 

non-chaotic. The existence of such a region suggests that the general solution for n 1 10 is 

never chaotic, since one might expect that the universe after a finite number of bounces will 

end up in the region of parameter space corresponding to non-chaotic behaviour. When 
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first in this region the universe will never bounce again, i.e. the universe remains non- 

chaotic for arbitrary small times. However for n 5 9 the universe will bounce indefinitely 

due to the presence of a negative o Obc, i.e. the universe is chaotic for small times. 

For all the &&‘s to be positive it is enough to require the smallest, amin to be positive. 

The smallest 19~ = 1 -b-p0 -pb -pc results when pa is as small as possible and pb and pc are 

es large as possible. Regarded as a function of the p’s we shall search for maxima of Q,,,;,, 

and check if any of these corresponds to positive values of omin. Clearly it is sufficient to 

check the region I of p-space where 1 2 p’ 2 pz 2 . . . 2 p” > i - 1 (notice that the smallest 

value any p can take is i - 1). It is necessary to check not only the interior of I but also 

the boundary of I, which corresponds to regions with some of the pO’s equal. To do this we 

consider subregions S of 2 defined as the regions of p-space where p > q’ > . . . > q’s > r 

and p appears k times, q’ appears I; times, z appears m times and k + m + Eli = n (this 

means that p’ = p* = . . = pk = p, pk+’ = . . . = pk+‘l 5 q’ etc.). In this notation we wish 

to extremize onin = 1 + r - (2 - 6ik)p - &kq’ under the constraints cp’ = C(P’)~ = 1, 

i.e. cl E kp + mr + cl;q’ - 1 = 0 and cr G kp’ + mrr + c li(qi)2 - 1 = 0. Using the 

theory for Lagrangian multipliers we extremize 

(2,in = 1 + ,’ - (2 - 6,k)p - 61kq’ + XC1 + PC2 

After some tedious calculation we find that extremes correspond to 

x 
‘=-%+2pk 

L(2 - 61k), q’ = -& + &ik,, r = -& - &, qi = -$ 

for i = 2, . . . . is and 

;(4 -3&l) + i6kl + ; - ;) 

1 n 
fi=sFs n-1 k Li___JA(4-36k~)+$6k,+;-; 

WI 
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in which case 

%nin = i(4 - 36k,) + ;6k, + ; - ; (22) 

Since we are considering the region with p > q’ > . . . > q’s > r we ct~~l ignore the 

upper sign. We also see that the maximum appears when 6kr = 0, then o,in = q - 

This is largest for k ss large as possible, that is when k = n - m (so 

all li = 0). At its maximum we then find 

This is maximal when m = ; (of course m must be an integer, so if n is not a multiple of 

3 then m equal to the integer closest to t maximizes o,in). 

We are now ready to draw a number of conclusions. For n 5 8, the maximum of omin 

is negative. This means that given any velocity p of the universe-particle, at least one of 

the aobc(p)‘s corresponding to this p is negative. In our geometrical picture this means 

that the universe-particle is bound to bounce off some wall corresponding to one of the 

negative Q’S. After the bounce the universe-particle has some velocity p’, again at least 

one of the aabe(p are negative, so a bounce is inevitable, and so on. This shows that for 

n < 8 the universe-particle wil I continue bouncing indefinitely. For n = 9, omin = 0 in its 

maximum, but for all other p’s it is negative, so except for p in a set of measure zero, we 

expect the same chaotic behaviour for n = 9 as for n 2 8. For n 2 10 we get omin > 0 in 

its maximum and therefore o,in > 0 in a whole region around its maximum ensuring that 

the universe-particle moves freely and never bounces. (Also notice that for n large Qmin 

tends to 1 in its maximum and to 1 - fi in its minimum, so for even large n there is always 

a region in p-space with at least one of the Q’S negative.) The only points (in p-space) not 

included in the preceeding analysis are the “endpoints” of I: (i) p’ = 1, p2 = . . . = p” = 0 

with tr,in = 0, and (ii) p’ = . . = p”-’ = a, p” = z - 1 with o,in = -;. However these 

do not affect our conclusions. 
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We have argued above that in n + 1 dimensions with n 2 10 we can find a non-zero 

measure region in p-space for which all the a “bcrs are positive. This ensures that solutions 

with p in this region are general in the sense defined in the introduction and are well 

behaved on approach to the singularity. For n 5 9 we have shown that except for p in a 

set of measure zero, at least one of the cPbc(p)’ s are negative ensuring that the general 

solution for n 5 9 is chaotic. 

Of course the results of this section can be obtained directly from Einstein’s equations 

in their normal form. However, to do this it is necessary to assume that the metric 

components scale like some power of time, gno - tPa, where the exponents can be functions 

of the spatial coordinates and satisfy the two Kasner relations (17) and (18). In this case 

the requirement that the spatial curvature terms (which corresponds to the potential terms 

in our picture) be negligible translates into the condition that t2& - tzOlb’ vanishes for 

small t. This means that the Q abc’s must be positive, in agreement with (20). The main 

difference between this approach and the approach described in section II is that in the I 

latter we need not make any assumptions about the functional dependence of the metric 

components. The first approach was used in ref.(8) to argue that when n > 10 the universe 

is non-chaotic. 

IV. Conclusions 

Using the Hamiltonian formulation of General Relativity, we have studied the be- 

haviour of a general inhomogeneous solution to Einstein’s Equations. The question posed 

in the Introduction: Is a Universe described by General Relativity necessarily chaotic near 

an initial singularity ? The question has several answers. i) If the Universe has only three 

spatial dimensions then the answer is yes, chaotic behaviour is a generic feature of this 

Universe4. ii) If the spatial-dimensionality of the universe lies in the range 4 5 n 5 9 and 

the spatial hypersurfaces are homogeneous, then probably the answer is no. However, for 
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the most general inhomogeneous model with 4 5 n 5 9, the answer is yes, for II 2 10, the 

answer is no. 

We have constructed a potential picture where most of the above results can be un- 

derstood in a geometrical way. The probiem of solving Einstein’s equations is replaced by 

that of a point-particle moving inside a time dependent potential; chaotic behaviour is just 

a reflection of the way in which the point-particle bounces off the walls of this potential. 

The free motion of the particle (far away from the walls) is described by a Kasner model, 

while the bouncing law is derived from the assumption that the collisions are perfectly 

elastic. Our construction permits us to derive a condition for which the particle velocity 

vector is such that it can never reach any wall. In this case no chaotic behaviour is present 

for n 2 10. Even though we have been able to construct a geometrical description of the 

behaviour of the universe near the initial singularity, we cannot provide a deep explana- 

tion to why the model picks up the particular dimensionality of ten as the critical one for 

chaotic behaviour. 

This work was supported by the Department of Energy and NASA. One of us (A.H.) 
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