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ABSTRACT 

We study the effects of anisotropic cosmologies on inflation. By properly formulating 

the field equations it is possible to show that any model that undergoes sufficient inflation 

will become isotropic on scales grater than the horizon today. Furthermore, we shall show 

that it takes a very long time for anisotropies to become visible in the observable part 

of the Universe. It is interesting to note that the time scale will be independent of the 

Bianchi Model and of the initial anisotropy. 
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Introduction 

In order to explain the homogeneity and flatness of the presently observed Universe, 

it is usually assumed that this has undergone a period of exponential expansion ’ In most 

scenarios the expansion of the Universe is described within the framework of the homoge- 

neous and isotropic Friedman-Robertson-Walker cosmology (FRW). The reasons for this 

are purely technical. The simplicity of the field equations and the existence of analyti- 

cal solutions in most of the cases has justified this over simplification for the geometry of 

space-time. However, there are no compelling physical reasons to assume the former before 

the inflationary period. To drop the assumption of homogeneity would make the problem 

intractable, however the isotropy of the space is something that can be relaxed. Several 

authors2 have studied particular cases of anisotropic models and found that the scenario 

predicted by the FRW model is essentially unchanged even when large anisotropies where 

present before the inflationary period. 

In this paper we will sssume the universe is homogeneous but not necessarily isotropic. 

It will then be described by one of the Bianchi Models 3. It has been shown elsewhere4 that 

under very general conditions all Bianchi cosmologies (except maybe Bianchi IX) with a 

cosmological constant and an energy-momentum tensor satisfying the strong and dominant 

energy conditions, will unavoidably enter a phase of exponential expansion. With the help 

of this result we will show that if the number of e-folds the Universe expands during its 

exponential phase is given by N then it will take a time of the order t N eZN&, where A 

is the cosmological constant, for anisotropy to have any effect on the observable universe. 

One remarkable result is the independence of this result from the type or magnitude of 

the initial anisotropy. We should point out that this holds even for models that do not 

contain the FRW as a special csse (only Bianchi I, V, VII0 and IX contain FRW models). 
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The Held Equationa 

We shall write Einstein’s field equations in the form 

R,v = T,w - ;g,J 

with 

TIly = (p+p)uru, +pg,,v +&w++$&6- &w(&d@~) 

(1) 

Units are such that 8xG = fi = c = 1 and the signature is (-,+,+,+). We shall 

assume that the fluid is at rest in the comoving coordinate system so that u,, = 6: and 

the velocity can be normalized to give u,,u p = -1. We can see that the energy momentum 

tensor has contributions from a perfect fluid for which we will assume the existence of an 

equation of state of the form p = 7p and from a homogeneous massles scalar field 4 with 

potential V(4). In particular, we could identify the cosmological constant A with V(0). 

As mentioned earlier only homogeneous and anisotropic models will be studied here. 

In particular those which have space-lie surfaces of homogeneity (i.e. a Ga acting simply 

transitively on a Vz). This type of cosmological models have been widely studied and 

classified some time ago 3. They essentially fall into one of 9 classes of equivalence (these 

are not disjoint classes), the so called Bianchi Models (type VI and VU are really one 

parameter families of models labeled by a parameter h). 

In the past it has proven useful to classify the nine Bianchi types into two diijoint 

groups depending on the different properties of the isometry groups (the Lie groups). We 

will call them class A and class B. For models of class A the metric and field equations 

can be written in a compact notation 3. For the other models the field equations have to 

be given independently. 
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In order to highlight the important features of the field equations we are going to 

write them in the following form 

. . . . 

$ + $; f ;; = F,(X,Y,Z) +p 

v 9% +i 
y+yx+zTz=F2(x,Y,2)+~ 

i ik ik 
z+zx+zx=F3(X,Y,Z)+~ 

(3-l) 

(3.2) 

(3.3) 

where 2 F s’, etc., with t the proper time. 

There is one more equation, namely the (z) equation, however it will not be used to 

construct the argument so we will omit it. X,Y,Z represent the scale factors along the 

principal directions. p is going to contain all the information of the fluids, scalar field 

and the cosmological constant. The specific form is given by F = p + id2 + A. Using 

the continuity equation is easy to get the form of the energy-density and the dynamical 

equation for the scalar field, 

(4.2) 

with pe an integration constant closely related to the initial entropy (in any open or 

flat model this identification is not important). 

For Class A model we have 



Fl (X, Y, Z) = l I( 2(XYZ)2 
N2Y2 - N3Z2)2 - (NIX’)~] 

F2(X, Y, Z) and Fs(X, Y, Z) can be obtained by a cyclic permutation of the elements 

in the numerator of equation (5). The Ni detine the different Bianchi types and are given 

in table 1. 

Bianchi type Nl N2 N3 
Z 0 0 0 

zz 1 0 0 
vzo 1 -1 1 

vzz, 110 
vzzz 1 1 -1 

IX 1 1 1 

Table 1 

For Bianchi V and Vzh(h # 0) we have 

Fl (X, Y, Z) E -“($- ‘Oz) + $& 

---2(&j + aoqo) 2b2 
Fs(X,Y,Z) z x2 - - 

Y4Z2 

F3 (X, Y, Z) = 
-2(4 - aoqo) x2 (6.3) 

with ac a positive constant. If we take qo = b = 0 we get Bianchi type V, for qo,b 

non-zero constants we get Bianchi type vZa(h # 0) and finally if we take h = -1 we get 

Bianchi type ZZZ. 

For Bianchi types ZV and Vzzh(h # 0) the equations are slightly more complicated. 

However they essentially have the same form as those mentioned above. For a full descrip 

tion of types ZV and VIZ see ref.(5) and (6) respectively. Every argument used in this 
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paper is applicable to these two models, but for sake of clarity we will not treat them in a 

separate way. 

The only Bianchi model representing a closed Universe is type IX, it generalizes the 

closed FRW, Bianchi Z and VZZO are flat while V and VZZh are open, generalizing their 

FRW counterparts. 

The Inflationary Phase 

Granted that the model is going to enter an inflationary phase 4 we will now show 

that is going to take a very long time for anisotropy to act back on the observable Uni- 

verse once inflation has come to an end. Leaving effectively a Universe that is almost 

undistinguishable from a perfect FRW. This is a general feature of Bianchi cosmologies. 

The argument we shall use is applicable to almost all Bianchi Models (except maybe 

type IX, we shall address this point later). Thii generalizes and extends previous attempt 

2 where either the anisotropies were treated as small perturbation on a FRW background 

or the anisotropic models contained FRW as a special case. In these models it wss found 

that inflation was a remarkably efficient method of isotropization. However, one could 

ask whether this feature is not a consequence of the fact that even without inflation these 

models would have become FRW-like anyway. We shall show that the answer to this 

question is certainly negative. 

We shall build our argument using only eq. (3) and concentrating on a model of class 

A (the same argument can be used for all the other models). The effect of a successful 

inflation on the Universe is twofold, on the one hand it makes the Universe (scale factors) 

expand exponentially, on the other hand it generates an effective reheating converting the 

vacuum energy into radiation through coupling of 4 to other fields. If we denote by N the 

number of e-folds the Universe expands during inflation, then thii parameter is going to 

determine the time-scale for anisotropies to act back on the observable Universe. We shall 

assume for concreteness that the universe inflates due to the presence of a cosmological 



constant A, identified in some suitable model with the initial value of some scalar field 

potential. After inflation the effect of the scalar field is negligible and the cosmological 

constant becomes zero. When translated into the scale factors it means we can relate the 

values immediately before and immediatly after inflation by, 

(X(t), Y(t), Z(t))eN (2(t), P(t), 2(t)) ; t 1 to (7) 

The initial conditions are determined by demanding that (k(to),?(to),Z(to)) take 

the values of the respective scale factors immediately before inflation. After inflation the 

field equations look like 

i + it I k ii _ FI(~‘,+‘, i) + A(~(to)~(to)i(to))) 

x it’y 22 e2N (z(t)P(t)i(t))t 

Where the last term appears as a consequence of the conversion of vacuum energy 

into radiation. Thii equation becomes more transparent if we introduce new variables 

(z,y,z) c h(k,?,@ and r c At then eq.(B) becomes 

. . . . 
z + ;; + Et = Fl(z,y,z) + 

1 - 
(zyz) d 

with initial conditions given by (z, y,z) = ~(k(to),?(to), j(to)) at r = r 2e.N to 

(i.e. z(r = 0) = 0. Equation (9) h s ows that at r L- 1 we may expect the anisotropic term 

to become important; when translated to our proper time thii corresponds to t u e2N&. 

If we now look back at the equation for the 4 6eld we see that the effect of anisotropy 

is not of great consequence. The way the scalar dynamics are coupled to the expanding 

Universe is trough a “friction term” proportional to the volumetric expasion rate . For 

this models it goes like d(‘og\TYZ)l. This term is such that 



Then the only effect of anisotropy before inflation is to increase the friction coefficient 

and make inflation more efficient (the field will roll slower over the potential). This was 

first noticed by Steigman and Turner 2. This result shows that after a succesful inflation 

any Bianchi model “turns into” a FRW and will stay that way for a long time. 

The only problem with a Bianchi IX model, as it is with a closed FRW model, is 

one of timescales. If it is possible to enter the inflationary phase well before the model 

recollapses then all our arguments still hold true. However, this requires a comparision of 

two time scales that are strongly dependent on initial conditions. We require a knowledge 

of the initial anisotropy as well as the initial energy density in the form of radiation. 

We would like to point out that the uncertainty in type IX has nothing to do with our 

argument breaking down for closed models, but rather with initial conditions. In the other 

csses the initial conditions are irrelevant since these will only alter the time it takes for the 

inflationary phase to start, and our Universe is probably insensitive to those timescales. 

ConcInsions 

We have shown that any homogeneous model belonging to one of the Bianchi classes 

that undergoes sufficient inflation is going to become isotropic to a very high degree of 

accuracy. Furthermore, the time it takes to become anisotropic after inflation is very 

long. In all models we found the timescale to be of order e2Nv% where N is the number 

of e-folds the Universe expands during the inflationary phase and A is the cosmological 

constant. It seems remarkable that this timescale is independent of both the Bianchi type 

and the initial conditions set on the anisotropy, curvature and radiation content. 

We would like to thank M.S. Turner and D. Lindley for several encouraging conver- 

sations. This work wss supported by the Department of Energy and NASA. 
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