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Abstract 1 : In this first paper of a series of two, we present a 
comprehensive study of the hydrodynamic evolution of matter produced in 
the central region of ultra-relati~vi~stic heavy ion colli.sions and in 
high multiplicity fluctuations of pp collisions. We shall begin with a 
discussion of the limits of the applicability of a perfect fluid 
hydrodynamic description of high energy collisions. A si~mple bag model 
equation of state is argued to have qualitative and semi-quantitative 
features expected from lattice gauge theory and present theoretical 
understanding. We also discuss the boundary conditions for the perfect 
fluid hydrodynamic equations, and what classes of simple events would 
correspond to simple initial conditions. The decoupling of matter at 
1OW energy density and methods for computi~ng transverse momentum 
distributions of hadrons are analyzed. We finally present the details 
of the computer code which we use to numerically solve the hydrodynamic 
equations. 
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Section 1 : Introduction 

Many theoretical studies have shown that energy densities are 
achieved in ultra-relativisti~c nuclear collisions and in fluctuations 
in pp collisions which may allow for the production of a quark-gluon 
plasma!'-6) If the time scale which characterizes the expansi~on of such 
matter is long enough, thermodynamic parameters may be used to 
meaningfully characterize the system and the matter may expand 
reversibly with little entropy production according to the equations of 
perfect flui~d hydrodynamics. In such circumstances, the equations 
which descri~be thins evolution depend only on the condition of the 
matter at some fixed time, and upon the equation of state which relates 
energy density and pressure. The boundary conditions may be chosen 
either as initial conditions, if there is a relivable theoretical 
descripti~on of the ini~tial conditions, or as the final configuration at 
very late times when the matter freezes out and subsequently evolves 
free streaming into particle detectors. In the latter case, 
experimental data provides much of the information needed to solve the 
hydrodynamic equations, since parameters in the hydrodynamic 
simulation must be adjusted to produce the observed particle 
multiplicities. 

'The equation of state of hadronic matter may be computed i. n 
principle in Monte-Carlo numeri.cal (7-16) simulations. At present, such 
computations provide little more than qualitative and semi- 
quantitative insight. It is fairly well establi~shed that hadronic 
matter makes a rapid transition between matter with the few degrees of 
freedom associated with a hadronic gas to matter associated with the 
large number of degrees of freedom of a quark-gluon plasma. (12-16) The 

exact nature of this transi~tion is uncertain, in particular whether it 
is a first order phase transition, but the rapid change of physical 
quantities such as the entropy density, by an order of magnitude in a 
narrow 
uncontestt~~~&Y;fe T;p""";;e Otf "':',"p' t;p;ra;Ere Me;; t wijijch aly;J; 

transition occurs is not well establi~shed, but theoretical speculation 
centers on 200 Mev, although the temperature may be as high as 400 Mev 
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or as low as 100 Mev and still be within the intrinsi~c uncertainties of 
(20) present numerical computations. An equation of state with all of the 

properties needed to adequately describe a rapid transition between an 
ideal pion gas, a description valid at very low temperatures, and that 
of an ideal quark-gluon plasma, valid for very high temperatures, is 
provided by the MIT bag model. In such a model, the transi.tion between 
these ideal gases is di~scontinuous as a function of temperature. The 
transition temperature may be tuned by varyi~ng the bag constant, whi,ch 
for our purposes will be considered to be an adjustable parameter. For 

the types of computations which we wish to perform, treating the 
transition as discontinuous or as smooth will provide only small 
corrections, since we shall only be concerned with gross semi- 
quanti~tative and quali~tative features of the matter as it evolves after 
production. With better knowledge of the equation of state, and 
esti~mates Of viscous coefficients, a precise quantitati~ve comparison 
between theory and experiment should eventually be possible. 

What we are doing more precisely is approximating the transition 
between a quark-gluon plasma, which is an ideal gas at high energy 
density, and a hadronic gas, which is an ideal gas of pions at low 
density, as a discontinuous sudden change between these two ideal 
gasses. For example, the entropy scaled by T3 goes to a constant at 
high density which is the number of degrees of freedom of a quark-gluon 
plasma. At temperatures low compared to the deconfinement temperature, 
but large enough so that the massless pion gas approximation is valid, 
S/T3 goes to another constant. The ratio of these constan~ts is the 
ratio of degrees of freedom of a quark-gluon plasma to those of a pion 

gas, which is large. In general we expect a gradual transition between 
these two limiting cases with a possible discontinui~ty at the 
deconfinement temperature. Monte-Carlo studies indicate that the 
change in degrees of freedom between the pion gas and the quark-gluon 
plasma is rapid, and happens in a fairly narrow temperature range. Our 
approximation makes the change in S/T3 discontinuous, with the entire 
change occurring at the deconfinement temperature. This approximation 
is shown in Fig. 1. Without better Monte-Carlo data than exists at 
present, it is difficult to have a precise quanti~tstive assessment of 
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the reliability of our approximation. 

We have set many goals in this study of the evolution of matter 
produced in high energy hadronic collisi~ons. We would first like to 
understand the qualitative and semi-quantitative features of the matter 
as it evolves after production. For example, how much time does the 
system spend as a quark-gluon plasma, how much time as a mixed phase, 
and how much time as hadronic matter before the matter decouples? How 
does this depend upon the initial conditi~ons and the baryon number of 
the colli~ding nuclei? Do shock waves form in the matter, and if they 

do, how much entropy is produced? Is much collective transverse flow 
generated by the expansion of the matter, and how is this reflected in 
the transverse momentum of hadrons? These qualitative and quantitative 
features of the matter once understood may generate enough insight into 
the nature of these collision processes to suggest new signals and more 
refined computati~ons of physical observables. 

In the preliminary and modest study which we present here, such 
qualitative and semi-quantitative features of fluctuations in PP 
collisions and head on nucleus-nucleus collisions are studied. We 
present full three space dimensional simulations of such collisions 
allowing for a realistic equation of state with a mixed phase and phase 
transition. The principle difference between the results here and 
those of previous workers, wi.th the exception of Pratt who considered 

(22-26) in detail spherical expansion is that we allow for a mixed phase. 

(In Pratt's analysis, some attempt was made to treat the Lorentz 
invariant cylindrical expansion characteristic of the central region of 
ultra-relativistic nuclear collisions. We differ from Pratt in that we 
allow shock discontinuities to propagate through and rarefy the mixed 
phase with arbitrary entropy change. We in fact find that the favored 
situation is maximal entropy change across the shock discontinuity.) If 
there is not a first order phase transition, this mi~xed phase is simply 
the region where the energy density varies quickly but the pressure 
does not. We find that it is essential to include such a mixed phase 
since the system spends much of its time in this phase. The existence 
of such a mixed phase, without extreme supercoolinmg assumes that the 
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nucleation rate of the hadronic matter from the quark-gluon plasma is 
fast compared to the expansion rate. 

Our results are encouraging. With a modest amount of computing 
time, such collisions may be studied for a variety of assumed initial 
conditions and parameters which characteri.ze the equation of state. It 
is easy to imagine that more detailed computations which treat non-zero 
impact parameter collisions of nuclei with various baryon numbers A may 
be carried out without too much increased effort. Entropy generation 
by viscosity may be included. The fragmentation region might be 
studied. Various physical quantities such as flavor ratios, photon and 
di-lepton distributions, particle transverse momentum distributions, 
Hanburry-Brown-Twiss correlations, and collective variables such as 
flow and thrust might be determined. Once this ambitious program has 
been carried out, an event generator with a few adjustable parameters 
may be used for fluctuations in Fp collisions and ultra-relativi.stic 
nuclear collisions with hopefully the same reliability as Monte-Carlo 
simulations of jet processes which are used in jet experiments at the 
pp collider. 

The first step in this ambitious program is the hydrodynamic 
simulation which we present here. Our results should be adequate to 
describe the production of pions and nucleons in the central region for 
impact parameter zero collisions of 
relativistic energies (boost invariant Ley91ulanldri~alnu~~~~etr~~i~lt~~d 

high multiplicity spherical or uniform rapidity fluctuations in pp 
collisions. Details of our computations are sensitive to unknown 
features of these collisions such as the dependence of the central 
region multiplicity upon the baryon number A, and the time at which the 
matter first begins to flow as an almost perfect fluid, Ti. Many 
qualitative and semi-quantitative features such as the expansion time 
and the average transverse momentum of hadrons are not so sensitive to 
these uncertainties, and may provide signals for the production of a 
quark-gluon plasma. 

The outline of this series of two papers is the following: In the 
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first paper we shall discuss in detail the hydrodynami~c description of 
hadronic collision processes as well as i~ts limitations. In the first 
section we shall review the hydrodynamics of ultra-relativistic nuclear 
collisions and fluctuations in zp collisions. We shall discuss the 
limits to the validity of a perfect flui~d hydrodynamic description. In 
the second section, we discuss in detail the boundary conditions for 
the hydrodynamic collisions, and also how experimental data may be used 
to infer some features of these conditions. In the third section, we 
discuss the general features of simple events which may be analyzed by 
the techniques which we present. The decoupling of hadronic matter is 
di.scussed in the fourth section, and methods for extracting the 
transverse momentum distributions of hadrons are reviewed. We finally 
discuss the detailed features of our computer code which simulates 
these collisions in the fifth section. 

In the second paper we present the results of our computations. We 
discuss the qualitative features of our results such as the time the 
matter spends in various phases, and the dependence of transverse 
momentum upon the equation of state. We further explore A dependences 
of the transverse momentum for nuclear collisions, and the dependence 
of transverse momentum distributions upon the mass of the emitted 
particle. 

Section 2 : The Hydrodynamic Equations and Their Approximate 
Validity 

In this section, we shall discuss the perfect fluid hydrodynamic 
equations. We shall begin with a general discussion which does not 
make reference to the specific i~nitial conditions peculiar to high 
energy collision processes. We begi~n with the equation for 
conservation of energy-momentum, 

a TUv=O 
u (I) 

an equation which is always true. There may also be equations for 
conservation of various currents such as baryon number, 
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a JU=O 
u 

(2) 

This latter equation will be irrelevant for our later studies which 
revolve around processes in the central region. In this kinematic 
domain, the total baryon number, (baryons minus anti-baryons), is 
small at very high energies. The smallness is demonstrated by showing 
that the energy per unit baryon number is large compared to the 
temperature, so that thermal excitations dominate the contributions to 
the stress-energy tensor. In the remainder of this paper we shall 
study processes at zero baryon number density, and may therefore ignore 
the added complications arising from Eq. 2. Such currents must of 
course be taken into account when the fragmentation region is studied. 

If in addition to conservation of energy-momentum, we require that 
the expansion of the matter takes place slowly compared to natural 
collision times, that is slow enough that the 
irreversible, then the entropy current is also 

a s” = 0 
IJ 

(7) 

In this circumstance, it may be shown that the stress-energy tensor 
must have the form 

Tp" = (E+P)u%~ + pg"" (4) 

where E is the energy density and P is the pressure measured in a frame 
comoving with the fluid. The fluid four velocity vector is u which 
satisfies the constraint 

U 2 1 = - (5) 

The conservation of energy momentum plus an equation of state which 
relates E to P 
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P = P(E) (7) 

are sufficient to determine P, E and u from condition specified at some 
arbitrary time. Conservation of entropy follows from conservation of 
TU", together with standard thermodynamic relation for the entropy. 
Note that 

sp = ou” (8) 

where u is the entropy measured in a comoving frame. 

If we can argue that the systems we consider are descri~bed by 
perfect fluid hydrodynamics, then the computation of properties of the 
matter produced in ultra-relativistic nuclear collisions or in high 
multiplicity hadron collisions are determined only by conditions 
measured at some fixed time and on the equation of state for matter. 
In the next section, we shall discuss the boundary conditions. As 
di,scussed above, the general features of the equation of state which 
relates E and P are also known. 

We now turn to the question of the validity of the adiabatic, or 
isentropic fluid flow assumption. The criteria that the flui~d flow be 
isentropic is simply that the collision times be fast compared to the 
expansion time. If the expansion is not adiabatic, a description of 
the fluid flow becomes considerably more difficult. New parameters 
enter the hydrodynamic equations, the coefficients of shear and bulk 
viscosity, and the form of the equations are more involved. The 
viscous coefficients are difficult to estimate in &CD, but we shall 
soon review what is known of them. If these viscous corrections to the 
hydrodynamic equations are sufficiently large, then the approximation 
which reduces the kinetic equations to local equations with the 
standard form of the viscous corrections to the perfect fluid 
hydrodynamic equations may itself break-down, and the correct 
hydrodynamic equations may involve many more parameters. The point is 
that for our purposes, the viscous hydrodynamic equations are only 
reliable if the corrections ari~sing from non-zero vi~scosity are small. 
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Another reason besides mathematical simplicity for wishing to apply 
hydrodynamics only for perfect fluids is that for a perfect fluid, the 
entropy is conserved. Entropy conservation relates particle 
multiplicities at early times to that at later times. If the expansion 
is isentropic, a window penetrates through the haze of hadronic 
interactions which allows us to reconstruct primeval particle 
distributions from those observed in the final state of the collision. 

The stress-energy tensor, allowing for the effects of viscous flow 
is 

T!‘” = T;” + hTUV (9) 

where To is the stress-energy tensor for a perfect fluid, as given by 

Eq. I, and AT is the correction which allows for entropy production, 
that is, for viscous flow. By allowing the energy-momentum tensor to 
be piece-wise continuous, these perfect fluid hydrodynamic equations do 
allow for some entropy production through the medium of shock 
di~sconti.nuities. The most general form for AT may be extracted in an 
expansion in powers of gradients of the energy density and fluid 
velocity vector times a characteri~stic scattering length. This 
characteristic scattering length is the mean free path for dilute 
systems such as gases. This procedure for evaluating AT is discussed 
in Refs. 30-31, and we shall not repeat the derivation here. The 
result is 

AT U"= ~[guLuuu~}v’u + n{vPu"+v u " "+guv-u~uv)v.u} 

(10) 

The derivative operator v is a derivative orthogonal to the direction 
of fluid flow 

(11) 
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The coefficients of shear and bulk viscosity are n and 5. For the zero 
baryon number density fluids which we consider, the heat conductivity 
is zero. This expression is only valid to first order in an expansion 
where spatial gradients are weak, and if they are not, Eq. 10 is 
simply incorrect. For systems with sharp discontinuities, AT is more 
complicated and for practi~cal purposes may not be computable, except in 
certain approximations where the sharp variations in the energy densi~ty 
and fluid velocity are approximated as shock discontinuities, that is, 
the fluid is treated as piece-wise slowly varying. Put another way, 
when viscous corrections to the hydrodynamic equations become of the 
same order as the contribution associated with a perfect fluid, the 
framework of conventional viscous fluid hydrodynami~cs falls apart, and 
for practical purposes, we may say that hydrodynamics is no longer 
applicable for a description of the dynamj,cs. This means only that 
perfect fluid dynamics is inapplicable even when supplemented width 
viscous corrections. The full stress-energy tensor is of course 
conserved, but the form of this equation expressed in terms of E, P, 
and u is extremely complicated and in general non-local. 

The question which we shall attempt to address in the remainder of 
this section is to what degree a perfect fluid hydrodynami~cal 
description provides a valid approximate description of the matter 
evolving after a hadronic collision. To begin thins discussion it is 
useful to introduce a mean free path for quarks and gluons in hadronic 
matter. This length scale characterizes the surface thickness of the 
matter, and the length scale which must be compared to the length scale 
of gradients in the matter distribution. If the surface thickness is 
small compared to the spatial size of the system, and if the mean free 
path is short compared to the scale sizes over which the matter 
distribution vari~es appreciably, then it is plausi~ble that the perfect 
fluid hydrodynamic description is correct. Of course, it is possible 
that the naive considerations of mean free paths, which are rigorously 
valid for weakly interacting fluids, may be misleading when applied to 
hadronic matter where non-perturbative effects may be important. We 
shall therefore later more carefully formulate the issue of the 
applicability of perfect fluid hydrodynamics in terms of magnitudes of 
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viscous coefficients. These coefficients may in principle be computed 
using the fluctuation-dissipation theorem and are defined outside the 
domain of weak coupling expansions. 

The simplest estimate of the mean free paths uses the quark-par-ton 
additive cross-section model of hadronic interactions. The basic 
assumption of this extremely naive picture is that the quark-hadron 
cross section is l/3 that of hadron-hadron, 

%h - + ohh " 13 mb (12) 

This cross section will be treated as a constant and independent of the 
energy density of the matter through which the quark propagates. This 
assumption is in contradiction with the properties of quark 
interactions at very high energy densities when perturbative QCD may be 
used. We are assuming that the energy densities are sufficiently low 
that the effects of the matter do not significantly alter the basic two 
body quark interactions. We shall soon present perturbative QCD 
estimates. 

The mean free path is 

Amfp - I/on (13) 

where n is the number density of hadrons. At ordinary nuclear matter 
energy densities, A 

mfp 
- 5 fm. Assuming that the energy density scales 

with T4 as it would for either an ideal gas of pions or a quark-gluon 
plasma, then n - e 3/b . The mean free free path is therefore 

x ” .5 fm , E - l-2 Gev/fmT (14) 

x - .Ol fm, E - 200 Gev/fmT (15) 

For either of these two energy densities, the mean free path is 
extremely small compared to a typical nuclear radius, and effects of 
transverse surface area are quite small for nuclei of reasonable size. 
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In the last case, even for protons, the surface effects would be small. 
Also as we shall soon see, in the expansion of matter produced in high 
energy hadronic collisions, the densities typically scale as a power of 
time as measured in the local comoving frame. 1 dn The expansion rate, n G 
, where n is some typical density such as energy density or entropy 
density is therefore of the order of the inverse proper time T after 
the collision took place. For times which are therefore larger than X, 

viscous corrections are small. Depending upon the initial energy 
density, such times may be quite short. 

The additive quark-parton model can be improved for thermal 
systems by requiring that particle interactions be screened for 
momentum transfers less than the temperature. 
differential cross section as do/dt " uoe -t/K 

If we approximate the 
where K - 400 Mev, the 

mean free path i.s still .5 fm at e " l-2 Gev/fme but is lengthened to 
about .05 fm at E - 200 Gev/fm3. 

At very late times, the matter density eventually becomes so low 
that the mean free path becomes very large. When the mean free path 
becomes so large that in the entire future history of the system, a 
particle may be expected to interact on the average less than once, we 
shall assume that this particle freezes out. At this time the local 
densities of particles follow the trajectories of free particles and 
the hydrodynamic description ends. This freeze out may not occur at a 
sharply defined time, and the matter may therefore propagate with mean 
free paths comparable to expansion times for some time. If this is the 
case, at this stage of the expansion, viscous effects must play a major 
role. We shall use in explicit simulations, a freeze out temperature 
T - 50 - 150 Mev. Such low temperatures appear to be consistent with 
the slow rate of expansion which we observe at late times in the 
explicit hydrodynamic simulations. The main limitation seems to be that 
the system freezes out when the mean free path becomes of the order of 
the transverse size of the system which we consider. In a massless 
pion gas, the mean free path is IO fm when the temperature is about 100 
Mev, and we would probably expect freeze out by this temperature. To 
be more precise, requires a cascade computation which we have not 
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performed. At such late times and low temperatures, the matter is not 
doing much work and a sloppy treatment of freeze out should not alter 
the predicted final state distribution of the matter. The number of 
pions is also expected to be conserved at temperatures much higher than 
this, and the multiplicity distributions are not much altered. Put 
another way, at such low temperatures, interactions are so weak that 
multiplicity and momentum distributions are not expected to be altered 
much in the future of the system. We shall check this assumption in 
our later computations presented in the second paper of this series. 

These additive quark model estimates must surely be modified for 
high energy densities where perturbative QCD adequately describes the 
dynamics. At these high energy densities, the quark and gluon cross 
sections become small, and approach zero as 0 - a", Is29 where u is the 

S 

QCD interaction strength and q is some typical energy scale, q - T. 
The mean free path is 

A I I/b+) 

At large temperatures, as - I/in(T) and x - ln2T/T. 

(16) 

Two groups have independently computed the mean free paths of 
quarks and gluons in a quark-gluon plasma, along the lines previously 

(31) advocated by Shuryak. These different computations differ in the way 
that small angle scatterings are treated, where high order 
perturbative, and possibly non-perturbative, corrections are required. 
Also, the value of the strong interaction coupling constant which is 
used in this evaluation is somewhat ambiguous since it is not precisely 
clear at what momentum scale the coupling constant is to be evaluated, 
that is, should the momentum scale be T or 10T. Finally, at the 
temperatures for which we shall apply their res,ults, the effects of 
higher order perturbative corrections due to inelastic scattering 
should be important. The lowest order computations only evaluate the 
effect of elastic scatterj~ng, and these higher order corrections should 
reduce the mean free path and increase the total cross section. Given 
these intrinsic ambiguities, it is impossible to draw any precise 
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conclusion. What we shall do is give a range of values which span the 
results of Hosoya and Kajantie, and of Danielewicz and Gyulassy and 
allow for some uncertainty in un-computed contributions!2g-30) 
we find for all values of energy density in the range of E - l-1000 
Gev/fmT 

25 - l/20 - l/2 fm, xq _ 115 - 2 fm (17) 

The gluon mean free path is xg and that of the quark is x9 in this 
equation. The variation i.n mean free path as the energy density varies 
over this wide interval is at most a factor of 2 in our estimates. The 
mean free path may therefore be effectively be regarded as a constant 
as the energy densi~ty varies over this range. The gluon mean free path 
is about a factor of four smaller than that of the quark as a 
consequence of the larger color charge of the gluon, which forces it to 
interact more strongly than the quarks. 

For the mean free paths of Eq. 17, one would expect the surface 
effects for quarks to be large for large nuclei only under the most 
pessimisti,c scenario. Under optomistic scenarios, the corrections even 
for hadrons might be small. For gluons, one would not expect large 
effects for large nuclei, but might find large effects in hadrons. For 
large nuclei, the effects of finite nuclear size should be manageably 
small, but for hadron interactions the situation is entirely unclear. 
For very high multiplicity pp collisions, the ratio of mean free path 
to spatial size may however be favorable, and simi~lar to the case for a 
nucleus-nucleus collision. In such a situation, even if the mean free 
path at the time of matter formation is not small compared to the 
spatial size of the system, if the initial energy density is suffi- 
ciently large, then after some expansion, the system may have large 
energy density and be in a large spatial volume. At such a time, 
however, it is difficult to abstract boundary conditions for 
hydrodynamic equations, and also the usefulness of the hydrodynamic 
description of the evolution of the produced matter as a basis for 
understanding the characteristic features of final distributions and 
providing a framework to calculate the rates of specific sj gnals 
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becomes marginal. 

To what extent perfect fluid expansion is modified by viscous 
corrections is resolved by using the condition that the rate of entropy 
production due to viscous terms be small compared to the change in the 
entropy density due to expansion. This criterium may be formulated 
precisely in terms of viscous coefficients, but we shall here formulate 
the problem semi-quantitatively and qualitatively in terms of mean 
free paths. The change in the entropy density due to expansion is 
given by the perfect fluid hydrodynamic equations, for power law 
expansion typical of solutions to these equations, as 

ds/dT " --s/T (18) 

The change in the entropy density due to entropy production is 

ds/dT - (T~/T)s/T (19) 

where ~~ is the collision time. The criterium that perfect fluid 
hydrodynamics be valid is therefore simply 

Tc/T cc 1 (20) 

Since the collision time is roughly independent of energy density, 
and therefore of T, after some time T, the system always is capable of 
expanding to a good approximation as a perfect fluid. This is because 
as a consequence of the similarity solutions of the hydrodynamic 
equations, at later times the system is expanding more slowly. 

The collision times given by Eq. 17 show that for times T > l/5-2 

fm, the quarks may expand isentropi~cally, and the gluons for times T > 
l/20-1/2 fm. These numbers are not inconsistent with the assumption 
that after matter forms at a time Ti - l/10-1 fm, the matter quickly 
thermalizes and expands to a fair approximation as a perfect fluj,d. At 
the earliest times, there is the greatest entropy production, and as 
time evolves, the system behaves more and more as a perfect fluid. To 
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resolve this problem more precisely, it would be nice to have a non- 
perturbative estimate of the viscous coefficients. 

Perturbative estimates of collision times have been used to 
estimate the coefficients of shear and bulk viscosity. Hosoya and 
Kajantie find(") 

<=o (21) 

.2 
n = c$lna 

T3 (221 
S 

The evaluation of Danielewicz and Gyulassy gives a result which is a 
factor of three (30) larger. The hydrodynamic equations may be used to 
estimate the total amount of entropy production 

'final - Sinitial{l + TcLil (23) 

a result which is exact to frist order in viscous corrections for I+1 

dimensional hydrodynamic expansion. This equation illustrates the 
increasing effects of entropy production at increasingly early proper 
times. 

At very early times there is entropy producti,on due to a variety of 
effects, and it would be extremely valuable to have a controlled 
theoretical analysis of the pre-equilibrium quark-gluon plasma. (32) 1% 

would seem that such an analysis is tractable since at early times the 
energy density is high and the effects of interactions are weak. Such 
an analysis would be required to rigorously derive the inside-outside 
cascade within &CD. The initial conditions for the hydrodynamic 
equations would follow from knowledge of the initial state nuclear 
wavefunctions, about which little is presently known. A spectrum of 
fluctuations could be derived, and the parameter Ti could be computed. 
The magnitude and importance of coherent phenomenon could be deduced. 

Another possible place where perfect fluid hydrodynamics might 
break down is when the quark-gluon plasma expands through a first order 
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phase transition, or if the quark-gluon plasma must be produced from 
hadronic matter by undergoing a first order phase transition. In 
either of these possible scenarios, large scale density fluctuations 
;;+~30-;lgroduced, and a global hydrodynamic description might break 

The system might break apart into droplets of matter which 
might slowly burn, or explosively detonate the plasma. The possibility 
that the system might break up into slowly burning droplets has been 
proposed by van Hove, and would occur if the plasma spinoidally 
decomposed, that is, the system falls apart rapidly with a large volume 
change and consequent large density fluctuations!37) If the plasma 
could supercool, then explosive detonation droplets might form. If 
these large scale density fluctuations were not too strong, the matter 
might recombine in the hadron phase, and a viscous expansion would 
smooth out the density fluctuations. There would be some entropy 
production, but the final matter distribution might be considerably 
smoot‘ned out. If the densi~ty fluctuations were too severe, the plasma 
might break apart into isolated droplets each of which might be treated 
hydrodynamically. 

Although in exceptional circumstances, large scale density 
fluctuation might be expected to occur, we argue that for average 
collisions, such fluctuations should be smoothed out. In a typical 
collision, large scale density fluctuati~ons are seeded when the pion 
gas begins to dominate the volume of our expanding system. At thi.s 
time, we can describe the system as a pion gas with droplets of plasma 
embedded in it. If the droplets of plasma are equally spaced, as 
should be approximately the case for average collisions, the first 

density for which plasma becomes embedded in a pion gas, rather than 
pion embedded in plasma, is given by computing the fractional volume 
occupied by closest packed spheres. The ratio of plasma volume to 
total volume is f _ (2 nR$)/(8Ri) - l/2. At the time that this occurs 
the separation between droplets is twice the droplet size, d " 2Rd. As 
the system expands, the separation between the droplets increases. 
Assuming that the expansion is I+1 dimensional, the separation between 
droplets is determined by requiring that the droplets of plasma 
uniformly fill all of the volume. If this is the case, as it should be 
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if the motion of the plasma droplets is random, the total volume of the 
system increases by T/T~/~ where 71/2 is the time at which the closest 
packing of plasma droplets occurs. Since ~~~~ - 2rq, where ~~ is the 
time it took for the plasma to lower its density to a small enough 
value so as to enter the mixed phase, and since the last time the 
droplets appear in the system is when the system completes the mixed 
phase is Th, the separation between droplets when they disappear from 
the system is d " 2Rd ( Th/2Tq) l/ 3. As we will argue in later 
sections, the ratio between Th/Tq is given by the ratio of degrees of 
freedom of a hadron gas and that of a quark-gluon plasma, - 15. The 
separation is therefore d - 4Rd. 

At this late time, the expansion time for the system is Q. The 
typical diffusion length during one expansion time is therefore ldif - 
(~h/~)l/2x where ~~ - x are the scattering time and mean free path 
respectively. For a pion gas at a temperature of 200 Mev with a pion 
cross section of 20 mb, this mean free path is about 2 fm. Taking the 
hadronization ti~me to be Th > 30 fm, a number which we shall later show 
is at the low end of values appropriate for Urani~um-Uranium nucleus 
collisions, we find ldif - 8 fm. If the droplet size at closest 
packing is taken to be a fermi~, then the diffusion distance is larger 
than the separation when the droplets disappear. In this case, we 
expect that any thermal gradients which are generated due to the 
density difference between plasma droplet and pion gas will be largely 
smoothed out by diffusion. Even if the droplets are as large as two 
fermis at formation, diffusion in one expansion time should be 
sufficient to largely smooth out density inhomogeneities. 

To make this case firmer, it would however be useful to carry out a 
detailed cascade computation. At the least, there is no reason to 
assume that the system does not expand to a good approximation as a 
mixed phase with only small energy density inhomogeneities in average 
collisions of large nuclei. The situation is less clear if the nuclei 
are smaller so that the time for longitudinal and transverse expansion 
is shorter, or if the droplets of plasma are large than a few fermis at 
formation. For very small nuclei, we would in fact expect that if a 
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quark-gluon plasma is formed in a collision, there may typically be a 
good deal of spatial inhomogenei.ty generated by nucleation. A cascade 
computation would determine the extent of such inhomogeneities for 
arbitrary size nuclei. 

In the analysis which we shall present, we shall assume that the 
quark-gluon plasma smoothly turns into a hadronic gas. This might 
occur if the plasma converted to a hadron gas through a mixed phase, 
and the nucleation time for the formation of hadron matter was short 
compared to the expansion time. Also, in the van Hove scenario, if the 
droplets formed as matter falls apart quickly rehomogenize themselves 
in a hadronic gas, again the scenario we describe applies. Finally, if 
the transition from quark-gluon matter is only a rapid transition and 
not a true first order phase transition, then the dynamics of the 
transition region is well approximated by an equation of state with a 
mixed phase region corresponding to the region of rapid transition. In 
this latter scenario, large scale density fluctuations are not 
expected. As our explicit computations indicate, the matter formed in a 
hi~gh energy collision seems to spend a large amount of time in a mixed 
phase, compared to natural hadronic time scales, and in the absence of 
strong first order phase transitions, which might generate strong 
supercooling, the mixed phase scenario is probably appropriate. 

Since as we shall show, the matter takes a long time to get out of 
the mixed phase, and because the hydrodynamic expansion is power law, 
the matter expands slowly as a hadronic gas. The freeze out occurs 
therefore at a very late time and low temperature. In the fourth 
section of this paper, we shall describe in detail our algorithm for 
decoupling. 

Section 3: The Initial Conditions 

In this section, we shall consider in detail the initial conditions 
for perfect fluid hydrodynamic equations which should be appropriate 
for high energy collision processes. We begin by studying spherically 



-21- 

symmetric ini.tial conditions, and their relevance to a class of 
fluctuations in high energy pp colli,sions. We then turn to initial 
conditions which are boost invariant along the collision axis, and 
discuss their relevance to both fluctuations in i;p collisions and ultra 
relativistic nuclear collisions. We begin by reviewing the 1 space 1 

time scaling (4) solutions proposed by Bjorken. Then following the 
analysis of Baym et. al., we generalize these considerations to include 
the central region of collisions of finite nuclei. (23)We analyze various 
possibilities for the initial transverse entropy and velocity profile. 
We also relate the ini~tial time of matter to the initial temperature. 
We also present methods of extracting some of the parameters which 
characterize initial conditions from experimental data. 

In some fluctuations in high energy Fp colli.sions, matter may 
initially form in a region which is spherically symmetric. For 
example, in a high energy gluon-gluon collision, the gluons in the 
colliding hadrons may undergo a central collision and radiate a large 
number of gluons which are on the average at rest in the center of mass 
frame of the two gluons. Such a situation has been proposed in the 

(35) Pokorski-van Hove model. 

In a spherical fluctuation, we shall show that the fluctuation is 
in a limited region of rapidity, and determine the shape of the 
distribution. This fluctuation is centered on the rapidity of the 
'fireball' produced by the gluon collision. In the frame comoving with 
this fireball, particle distributions are spherically symmetric. A 
first question we must ask is how the spherical nature of the 
fluctuation is reflected in the rapidity distribution. To understand 
how this might be done, we make a massless pion approximation, and 
identify pseudo rapidity with rapidity. In this limit, 

y = - In tan(0/2) (24) 

where o is the angle relative to the beam axis. Suppose that the 
fluctuation is centered at zero rapidity. Then for a spherical 
fluctuation, 
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dN -,- dN do dN 1 dN 1 
5= do dy = 5 coshy I fi co&y (25) 

Since by assumption, for spherical expansion the angular distribution 
dN is uniform zl -2 ' 

a spherically symmetric fluctuation is characterized by 
a cash y fall off centered around the total rapidi~ty of the 
fluctuation. Such a fluctuati~on is shown in Fig. 2. 

Since fluctuations are in general not spherically symmetric, it is 
essential to use the predicted rapidity distribution to select those 
fluctuations which are in fact spherical. It is also important to note 
that the initial radial velocity distribution for the fireball is not 
in general zero throughout the matter. Since we expect that the matter 
is initially randomly distributed throughout the fireball, it is 
plausible to assume that on the average, the outward initial velocity 
will be zero throughout the matter. There will of course be 
fluctuations in these initial conditions, but we shall only study the 
generic typical fireball. 

Since matter distributions with sharp edges are difficult to use in 
numerical simulations, we shall smooth out the matter distribution at 
the surface of the initial fireball. (For any reasonable physical 
system, this smoothing length is naturally the mean free path for 
particle interactions.) We therefore take an initial matter energy 
density profile to be a Fermi-Dirac distribution, 

1 
E = Eo r-R)/& 

-- 

e( 
(26) 

+1 

In this equation, the radius of the initial matter distribution is 
taken to be R. The surface thickness is 6, a parameter which we shall 
make sufficiently small so that the results of our numerical 

simulations tend to a uniform limit. 

For the hydrodynamic numerical simulation which we shall later use, 
it is also not convenient to take the velocity to be zero everywhere. 
We shall choose the initial fluid velocity to be zero inside the 
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matter, but to initially approach v. outside where there is no matter. 
We shall later probe the sensitivity of this assumption to arbi,trary 
choices for vo. (For a physical system, it is plausible to assume that 
the initial velocity in the diffuse region outside the matter 
distribution is of the order of a typical particle transverse velocity 
appropriate for average multiplicity pp collisions.) The specific 
choice which we make for the fluid velocity profile is 

v = '0 i ' - (r-&a 1 (27) 
e +l 

We have not yet estimated the radius R of the fireball arising as a 
fluctuation. The uncertainty principle suggests that the initial size 
of the matter distribution is - I/pt where pt is the typical transverse 
momentum of particles in the initial fireball. This value should also 
arise in any scale invariant description of the initial fluctuation 
process, that is, I/pt is the only quantity with the dimensions of a 
length. It is necessary in this connection to assume that these 
fluctuations are rare enough so that overlapping fluctuations are not 
important. Also, unless R << 1 fm, finite size effects due to the size 
of the hadrons which constitute the beam, are important. The 
proportionality constant which relates R and pt is difficult to 
estimate without a more detailed description of the formation process. 

Using the above assumptions about the nature of the region in which 
the matter initially forms, and the assumption that the matter expands 
according to the laws of perfect fluid hydrodynamics, it is possible to 
abstract the correlation between multiplicity and transverse momentum 
of pions!3G-38) To find this correlation, we must use an equation of 
state. We shall also need to study decoupling, that is, how the matter 
freezes out from a flowing non-viscous fluid into a free streaming 
hadron gas. 

To make a relation between injtial and final distributions of 
particles, consider the quantities E/S and E/V!") The energy per unit 
entropy is conserved in perfect fluid hydrodynamic expansion since both 
total energy and total entropy are conserved. The energy per unit 
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entropy is roughly speaking a measure of temperature, and is computed 
by standard techniques. The energy per unit volume is determined by 
the conserved total energy and by the volume which is an initial 
condition. 

The theoretical thermodynamical correlation between E/S and E/V is 
straight forward to understand. At low temperatures where there is an 
ideal pion gas, and high temperatures where there is an ideal quark- 
gluon plasma, E/S is 3l'/4. At temperatures where the system rapidly 
crosses over between a hadronic gas and a quark-gluon plasma, the 
temperature and E/S remain approximately constant. At low 
temperatures, the energy density changes less rapidly with increasing 
temperature than at high temperatures since the degrees of freedom of a 
pion gas are less than those of a quark-gluon plasma. At the phase 
transition, the energy density changes while the temperature remains 
constant. In Fig. 3, E/S is plotted vs E/V for a bag model equation of 
state, with a bag constant of B '1 4 = 200 Mev. The flat region where 
E/S is constant as E/V changes by an order of magnitude is indicative 
either of a rapid crossover or a phase transition between hadron gas 
and plasma. 

It is experimentally straightforward to measure the total energy E 
of particles in the initial plasma fireball. This is measured in the 
rest frame of the fireball and is proportional to 2 the transverse 
energy per unit rapidity, JG dN dY 

dy -Pt3;J Since the volume scales as p<', 
the energy density is up to an undetermined numerical constant K 

E 4 dN -= KPtG v (28) 

The energy per degree of freedom is more difficult to extract. 
Experimentally, the energy per particle, or average transverse 
momentum, is measured. The average energy per particle and the 
transverse momentum are related as pt = : i , which follows only from 
the assumed spherical symmetry of the matter distribution. To relate 
the total number of particles to entropy requires a brief study of 
decoupling. As the temperature decreases below the phase transition 



temperature, at some temperature heavy mesons are no longer important 
and there is an almost ideal gas of massless pions. For a range of 
temperatures where this is true, the total entropy and total number of 
pions are both conser.ved and are related as S - 3.7 N. Before this 
temperature is reached, pion number changing processes, which involve 
four body collisions, have frozen out. This happens much before there 
are significant modifications of the equation of state due to finite 
pion mass, since the pion number changi~ng processes involve four powers 
of Boltzmann factors, e -m/T . With the relation between S and N, we may 
now find that between pt and dN/dy. The phase transition temperature, 
and the ratio of energy densi~ties below and above the phase transition, 
which is the ratio of degrees of freedom of the pion gas and the quark- 
gluon plasma, therefore follow in a model independent way from a plot 
of pt vs pt dN/dy. 

In this analysis, the initial energy stored in thermal fluctuations 
reappears in the transverse momentum of pions. The thermal energy is 
converted into energy of collective radial flow. Since the system is 
in isolation, this is required by energy and entropy conservation. 

Some features of the hydrodynamic expansion may not be extracted 
from the general considerations presented above. For example, if the 
initial energy density is large, the transverse momentum of large mass 
particles is expected to be enhanced by a much greater factor than that 
of pions. This follows since the transverse momentum enhancement for 
pions arises from collective radial flow of a fluid. Heavy mass 
particles with the same outward flow velocity acquire a larger 
transverse momentum. It is also difficult to extract the lifetime of 
the fireball, or rates for di-lepton and photon emission without a 
detailed computation. 

Average ultra-relativistic nuclear collisions, and fluctuations in 
pp collisions of high multiplicity, but which are uniform over a wide 
rapidity interval, must be treated differently from the case of 
spherical fluctuations. For head-on nuclear collisions, and probably 
for uniform rapidity high multiplicity pp collisions, the matter forms 
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more or less uniformly over a transverse area which is the geometrical 
cross section of the collidi~ng nuclei or hadrons, and the geometry of 
the collision is cylindrically symmetric. To simply analyze this 
problem, we first assume uniform matter distribution in the transverse 
di~rection. Followi~ng Bjorken, we also assume that the distributions 
are uniform in rapidity. Fluctuations may be found which satisfy this 
criterion, and for average ultra-relativistic nuclear collisions 
between nuclei of equal A, this criterion should be approximately 
satisfied for rapidities not too far from the central region. 

If the particle distributions are uniform in rapidity, the local 
comoving distributions of particles are Lorentz invariant. The fluid 
velocity vector u must therefore be a Lorente form invariant vector 
under transformations along the collisions axis, which is only a 
function of x. Since u2 = -1 , u must be of the form 

uu = xv’/, (29) 

where 

-( = {iJ2-Z2 } l’ 2 (30) 

is the proper time. The space-time rapidity variable is 

t+z 
II = i In{=] (31 ) 

For the Lorentz invariant situation we consider here, the fluid 
rapidity o and the space-time rapidity n are equal 

n= 0 (32) 

The scalar energy density E, the pressure P and the entropy density CT 
are Lorentz scalars and are therefore functions only of T. 

As T becomes smaller, earlier times are probed in the collision. 
As discussed in the first section, at too early a time, the perfect 
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fluid hydrodynamic description must break down. This happens at some 
time which is of the order of a scattering time ~~ appropriate for the 
matter at the time T. Before this time, entropy producing effects are 
important, as is particle production of the matter which produces the 
quark-gluon plasma. 

If the initial energy density is sufficiently large, it is possible 
to relate the initial temperature and the formation time Ti. In this 
context, formation time is meant as the earliest time when it is a good 
approximation to treat the evolution of the matter as a perfect fluid. 
To estimate this ti~me in terms of the temperature, we must relate the 
collision time to the temperature. In a scale invariant theory, a good 
approximation if the initial energy density is sufficiently large, the 
scattering time is(40-44' 

7~ = K/Ti (33) 

where K is an as yet undetermined constant of order one. It should be 
noted that this relationshi~p is also typical of uncertainty principle 
relationships between the formation time and the typical energy scale 
of the matter. 

The constant of proportionality may be estimated by a variety of 
means. Phenomenological analysis of JACEE experimental data, which we 
shall soon discuss, and various theoretical estimates suggest that if 
the colli.sion time is chosen to be a fermi/c, then the initial 
temperature is approximately 250 Mev. We therefore have an approximate 
relationship of the form 

ri(fermi/c) = 250T"" 
1 

The uncertainties in this relationship are probably of order 50$. 

The solution to the perfect fluid hydrodynamic equations for the 
scale invariant longitudinal expansion is especially simple and has 

(4) been discussed by Bjorken. For 
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P+ 

the energy density is 

the temperature is 

T = Ti [:i } 11 3 

and the entropy density is 

(35) 

(36) 

(37) 

The entropy density may be related to the multiplicity per unit 
rapidity. Since the total entropy S is 

s = 
I 

rdyd2rl o (39) 

we have that the entropy per unit rapidity is 

dS 2 - = dY TX T CT = .R27i oj (40) 

The entropy rapidity density is therefore invariant in time, a feature 
which is generally true independent of the equation of state, and which 
follows from the isentropic nature of the perfect fluid hydrodynamic 
equations. 

As was argued above for the case of spherical expansion, the 
entropy density and pion multiplicity may be related as 

ds=37dN 
0 ' 0 

(41) 

so that the multiplicity distribution may be used to abstract the 
entropy density. Since the initial entropy density is related to the 



initial temperature as 

ui = 3 30 4 3 Ndof T? (42) 

where Naof is the number of degrees of freedom of the quark-gluon 
plasma, 

Ndof = t10.5 Nf + 16} - 40 (43) 

if the number of participating quark flavors is approximated as 2.5. 
We have therefore that 

Ti - *6 Ty l/3 
( & g 1": (44) 

If we assume that Ti and Ti are related according to Eq. 34, then we 
can determine ri from experimental data. With K - 250 ivIev, we have 

1 - 4 p3/2 ( -L& $.!J ]'I2 
Ti - a 

(45) 

This form of the functional relation between multiplicity and 
formation time has been observed in string models of high energy 
collisions, and is probably more general than its derivation here. If 
we take the results from the JACEE experiment as 

dN 
= ch 

I 4A (46) 

then the relation between time and A becomes (40-44) 

ri _ l-2 A-l6 (47) 

For large nuclei such as Uranium, this formula suggests that the 
formation time might be as small as .3 fm/c, with a temperature as high 
as TOO-800 Mev. For small nuclei, Eq. 47 most surely breaks down, as 
does a hydrodynamic analysis for average collisions, and ri probably 
saturates at a fixed value of ri - 1 fm/c. 
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With this analysis in hand, we now proceed to an analysis of 
collisions taking into account the transverse matter profile. As was 
the case for spherical expansion, we shall take the transverse matter 
profiles as given by Eqs. 26-27. The only difference is that the 
transverse radial coordinate, not the radial coordinate appears. 

If we have a fully three dimensional situation, we would in general 
expect the perfect fluid hydrodynamic equations to i.nvolve t, z and the 
transverse coordinate r. This is not the case if the central region 
multiplicity density dN/dy is independent of y, since if we express the 
hydrodynamic equations in terms of T, n, and r with 7 and n as given by 
Eqs. 30-31, then the Lorentz covariance of the equations allow scalar 
quantities not to depend upon n. This is not the case when dN/dy is not 
independent of y, as would happen if we appli~ed this analysis to the 
fragmentation region. In this case, the lack of boost invariance of 
the assumed multiplicity distribution induces a lack of boost 
invariance of the hydrodynamic equations. The longitudinal boost 
invariance together with u 2 = -1 requires that the fluid four velocity 
be of the form 

u = ur(T,r)(t/~, vl(r,r),z/T) (48) 

where yr is 

Yr 
2 -112 = {I-V,} (49) 

The Lorentz scalar quantities such as the pressure, energy density, vI, 
and entropy density are functions only of T and r, with no dependence 
upon n. Notice that as was the case for the I+1 dimensional expansion, 
the fluid and space time rapidity are equal, 

n= 0 (50) 

where the fluid rapidity is defined to be 

@=&in {g] (51) 
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The perfect fluid hydrodynamic equations for the stress energy 
tensor may be written in a simple form. If we use 

T 00 = {E+P]uouo -P (52) 

and 

T 01 = (a+P}uou' (53) 

the hydrodynamic equations are 

a ,Too + f a,[r To'] + 1 {Too+P} = 0, (54) 

and 
a,To1 + f a,[r (Too+P}v$} + 1 To' + a,P = 0. (55) 

It should be noted that the hydrodynamic equations for spherical 
expansion are the same as those above with the trivial modification 
that all terms proportional to I/ T are dropped and everywhere r + r2. 
The initial conditions for the spherical and Lorentz invariant cases 
differ only in that the initial time can be taken to be zero for the 
spheri~cal expansion, and is finite for the Lorentz invariant case. 

Section 4 Decoupling 

As the matter expands according to the laws of perfect flui~d 
hydrodynamics, at some poi~nt it achieves a sufficiently low density 
that in the entire future history of the fluid, a typical particle may 
be expected to scatter less than once. In the future, it should 
therefore be a good approximation to treat the particles as free 
particles. To analyze this problem, we must follow through the history 
of the fluid and determine roughly when the fluid freezes out. We must 
also determine the entropy production at freeze out. Since in our 
analysis, freeze out occurs at a late time when the local excitation 
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energy is small and when most of the work has been done on particles, 
the amount of entropy production should be small compared to the total 
entropy, and in our analysis, we shall ignore this contribution. We 
therefore make the approximation that the system expands as a perfect 
fluid until freeze out, which happens instantaneously Finally, we need 
an algorithm for determining particle distributions if the fluid 
velocity and density is known immediately prior to freeze out. 

As we discussed in the second section, at some time after the 
collision which forms the matter, the expansion time becomes large 
compared to the collision time. This may be seen from the power law 
nature of the expansion, combined with the assumed slow variation of 
the collision time. The collision time should be slowly varying until a 
phase transition between quark-gluon plasma and hadron gas is 
initiated. 

We can estimate the time at which the plasma begins to become a 
hadron gas. We shall first consider the case of Lorentz invariant 
expansion. At the initial time, the temperature is Ti I K/Tie The 
system expands as T = Ti(li}li3, so that 

If an initial time of Ti - 1 fm/c, then T is about 2 fm/c at a 
temperature of 200 Mev. If on the other hand the formation time was as 
small as .3 fm/c, as it might very well be for ultra-relativistic 
Uranium collisions, then the time is 20 fm/c at the phase transition 
temperature. For an initial temperature of 500 Nev, corresponding to 
an initial time of .5 fdc, the time is about 10 fmjc at the 
transition. 

For such large times, we might legitimately worry about whether 
transverse rarefaction might disrupt the system. For large nuclei such 
as uranium, except for the highest initial temperatures, this is 
probably not the case for two reasons. First, if the system were to 
transverse rarefact with a rarefaction wave with sound velocity typical 
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of an ideal gas, v = 3-l/2 = .6, the rarefaction time is 10 fmfc. On 
the other hand, as the matter expands it reaches the critical 
temperature at the edge. Then the pressure gradient disappears and thi,s 
part of the wave is not accelerated any more. Closer to the collision 
axis only the forward edge (that is, the slow part) of the rarefaction 
wave reaches the matter before it is cooled to mixed phase and the 
transverse acceleration ceases. As a result at time T = ~q a large 
part of the system is in the mixed phase which extends radially beyond 
the original radius RA and expands slowly transversally. A shock wave 
propagates slowly inwards at the interface of the mixed phase and 
hadron gas and in the inner parts the expansion is almost one 
dimensional until the time T = Th when longitudinal expansion alone had 
diluted the energy density to sH, the energy densit y of the pion gas 
at the critical temperature. 

For spherical expansion, long times are also required before the 
system begins to convert into hadronic matter. This follows because 
the rarefaction must proceed against an expanding flui~d into a region 
of mixed phase where the sound velocity is zero. As we shall see in 
the next paper, for modest values of the temperature, we find that 
extremely long times - 2-20 fm/c are required before the system begins 
to hadronize. 

After the quark-gluon plasma reaches the phase transition 
temperature, it must convert the entropy stored in the plasma into the 
entropy of a hadron gas. Since the degrees of freedom of the plasma 
are an order of magnitude larger than those of a pion gas, this 
conversion takes a long time. If the system is only longitudinally 
expanding during this time, the ratio of the time at which the plasma 
began the phase transition, 'q to that at which it completes the phase 
transition, rh is given by the ratios of these degrees of freedom 

Th/Tq - Npl/N, - 15 (57) 

This time might be anywhere in the range of 30-300 fm/c. If the time 
is so large as 300 fm/c, the assumption that transverse rarefaction 
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may be ignored has surely broken down. Nevertheless, the time it takes 
to complete the transition is long both compared to a natural time such 
as a fermi~, which controls the rate of pion scattering, and long 
compared to the time that it takes the system to reach the phase 
transition temperature. The system spends a very long time in a mixed 
phase at a temperature close to the phase transition temperature. Di- 
lepton and photon emission must surely be affected by the long time 
spent in a mixed phase. There should be a contribution to the emission 
spectrum of di-leptons of the form e -M /T t P where Mt is the transverse 
mass and Tp is the phase transition temperature. This contribution 
might dominate the emission spectra for moderate values of the 
transverse mass. This might be studied at low mass and moderate pt 
so as to avoid problems with background due to resonance decays and 

still have a significant thermal signal. 

The situation is also probably qui~te similar for spherical 
expansion. The time the system spends in a mixed phase is probably 
large. The system emerges from the mixed phase expandi.ng slowly 
compared to natural hadronic time scales. 

If the system is expanding slowly when it reaches the hadron gas 
phase, it probably maintains itself in equilibrium width respect to pion 
number, and expands to a fair approximation isentropically for some 
time after completing the transition. As the system cools, at some 
temperature the effects of finite pion mass begin to become important. 
Also the density of pions is decreasing and interactions begin to 
decrease in magnitude. This effect of low density probably begins to 
show up first in the interactions which change pion number. These 
interaction involve four pion collisions, and as the density decreases, 
these interactions rapidly shut off. The reverse reaction of two pions 
goes to four shuts off because the reaction takes a lot of energy and 
the tails of the two pion distribution are sampled. We assume that 
both 2 + 4 and 4 + 2 pion number changing reactions shut off at the 
same time. As this occurs, the pion number becomes frozen at some 
fixed value. We assume that this freezeout occurs at a temperature 
which is sufficiently large that the massless pion approximation is 
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still valid. Thi.s seem to be the case from explicit studies of pion 
number changing processes!45) The entropy and particle number are 
related as N " 3.7 S. 

Since this freeze out happens rather late, when the expansion is 
gentle and most of the work has been done in expanding the quark-gluon 
plasma and converting into a hadron gas, the subsequent evolution of 
the system does not probably much affect distributions of particles. 
If we approximate the system as frozen out at this time, and compute 
again assuming a freeze out at a later time, we do not expect that 
physical quantities will change much. We shall verify this in our 
computations. 

It is useful nevertheless to be convinced that the freeze out does 
not occur until very low energy densities at very late times. To see 
this, consider the mean free path for pion scattering 

h - l/E0 (58) 

where E is the pion number density and LI is the pion-pion scattering 
cross section. Since the pion number density goes as I/T, 

correspondi~ng to a conserved total number of pions, for the Lorentz 
invariant 1 dimensional expansion, and 0 is roughly constant until the 
pions are non-relativistic, the mean free path scales as T. For power 
law expansion, the rate of expansion is proportional to I/T. Thus as 
long as the 1 dimensional expansion scenario is valid, the pions stay 
in local thermal equili.brium until they become non-relativistic. Of 
course, once the three dimensional nature of the expansion is 
important, the mean free path grows as T3 and the system rapidly 
freezes out. This again should happen only at quite late times, and 
again the system is quite cool. 

Our conjecture is therefore that the systems which we consider do 
not freeze out until very late times when the system has done almost 
all the work it can do to generate particle distributions. The 
results we compute for particle distributions should therefore be 
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fairly insensitive to the details of freeze out, such as the time the 
system freezes out, and the chosen freeze out temperature. With this 
in mind, we shall consider results for momentum distributions of pion 
for a variety of freeze out temperatures. Most of our results will be 
for a freeze out temperature of 140 Mev, a number which is arbitrarily 
chosen, but will not much affect our results. 

We have still not presented our algorithm for freeze out. This 
(46) algorithm is essentially that of Cooper and Fry. We repeat their 

considerations here. We begin by deriving an expression for the number 
of particles passing through the freeze out surface which is 
parameterized as OP. This is a three dimensional space-time surface 
which is determined by a freeze out condition such as T(t,?) = To. It 
can be visualized as a moving spatial surface $(t) describing the 
position of matter which at the time t has reached the freeze out 
temperature. If this condition is reached simultaneously in a certain 
spatial volume, then these regions of space belong to U!J. 

If dN is the number of particles passing through the surface 
element don and if f(x,p) is the Wigner distribution function which 
describes the probability that a particle of momentum p and energy E = 

G2+m 1 2 112 1s at the space-time coordinate x, then 

dN = f(x,p)d3p {;dt-dx+}.n^ d2S (59) 

In this equation, the particle velocity is ;, the normal to the surface 
is fis. The first term in this equation is the current of particles 
with momentum d3p through the surface element r&d23 in the time 
interval dt when the surface element is in the fixed position. The 
volume term d3.x = dx' *ri,dzS takes into account the change of the flux 
through d$ due to the displacement, d? , of the surface element in the 
time interval dt. Thus, spatial volumes where the decoupling 
condition is reached at a given instant, t, may be included in this 
volume term. This situation can take place around the symmetry axis 
in cylindrical expansion if the initial temperature distribution is 
flat and low enough so that the decoupling temperature is reached 
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before the transverse rarefaction has time to propagate to the axis. 

The above relation for dN may be rewritten in the Lorentz 
invariant form as 

E dN/d3p = f(x,p) p-do (60) 

where the surface element 

dop = (d3x, dt n^, d2S) (61) 

transforms under Lorentz transformations as a Lorentz four vector. 
The expression for E dN/d3p is therefore Lorentz invariant, as it must 
be. 

The particle distributions after the decoupling are obtained from 
Eq. 60 by integrating over the entire freeze out surface OP. We shall 
assume that at freeze out the distribution function f(x,p) is that 'of 
an ideal fluid 

f(x,p) = & {e -6(X)U~(X).Pu * ,]-l 
(62) 

Here B(X) = l/T(x), up(x) is the fluid four velocity, and g is the 
number of degrees of freedom, g = Ndof, for the particles in question. 
If the freeze out condition is T(x) = Tdec, then B(X) = l/Tdec = 
constant for the entire jntegration. 

Before going into the details of the calculation of the transverse 
momentum distributions, we shall consider the simpler task of computing 
the average transverse momentum due to collective flow as a function of 
the particle multiplicity. This computation isolates only the 
contribution to transverse momentum due to the collective fluid flow of 
the system. This should be equal the average total transverse momentum 
if the system evolves from a high temperature to a low temperature, so 
that at the low temperature of decoupling thermal motion is very small, 
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and the transverse momentum is given entirely in terms of that of 
collective flow. Realistic cases are handled by a more complicated 
algorithm which we shall soon discuss. 

In the case of longitudinal boost invariance, we can compute the 
multiplicity distribution dN/dy in terms of the entropy density dS/dy 
which is known from the local values of entropy density and pressure. 
Similarly, if the local boost invariance holds, the total transverse 
momentum of the particles arising from collective flow in a given 
rapidity interval equals the total transverse momentum of the fluid 
with flow rapidity equal to ordinary rapidity in the same interval. 
This transverse momentum can be computed as 

Pt = j TrVdo, (63) 

where TrU is the transverse ,,-component of the stress energy tensor, 
and the integration is over that part of the freeze out surface u!J 
where the flow rapidity is in the considered interval. 

In the case of spherical expansion, the average pt is determined 
simply by the ratio of total energy (assuming massless particles) and 
total entropy. Since the total energy is always conserved, it may be 
computed from the initial conditions. On the other hand, entropy may 
be produced during expansion, as in the case of formation of shocks, 
and should be computed at the freeze out as 

S = fop s-do (64) 

where su = UU!J is the entropy four current. 

We will now consider details of the decoupling integrals only for 
the cylindrical expansion. The spherical case can be worked out 
similarly. With the longitudinal boost invariance, the freeze out 
condition is of the form F( T,r) = constant. The equation for the 
decoupling surface is therefore of the form T = Td(r), and is 
independent of n. On the other hand, the surface element of any space- 
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time surface with cylindrical symmetry may be written as 

dop = rdrd+ (drdz,<dtdr,idtdz,O) (65) 

In the decoupling integrals for the densities, Eqs. 63-64, the 
integrands do not depend on the angle $ and we get 

u-do = 2nrT(dr cosh(yt) - dT sinh(yt)) drl 

and 

g'Udo = IJ dor = 2vrTdTdn 

(66) 

(67) 

leading to 

apt 
G = 2n J rrdr {w sinh(yt)cosh(yt)dr - 

T = Td(r) (esinhz(yt) + Pcosh*(Yt)) } (68) 

for the total transverse momentum due to collective flow in the 
interval dn. The transverse rapidity is here yt. The integral for 
dS/dn can be similarly expressed. It should be noted that <pt> = 
(dPt/dn)/(3.7 dS/dn) holds only in the situati.on where the boost 
invariance is a reasonable approximation, as it probably is in the 
central region of heavy ion collisions. Otherwise, the total 
transverse momentum of particles and of flow do not match in a finite 
rapidity interval. 

In the above notation, the momentum distribution of the final 
particles has the form 

dN mtcosh( q-y)-ptcos( $1 
dydt = p$ j rT d$ drl ----- --------__ 

T = Td(r) sP'qTdec f 1 

where 

p-u = mtcosh(yt)cosh(n-y)-ptsinh(yt)cos(#) 

(69) 

(70) 
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Eq. 69 is still a three dimensional integral. If the denominator of 
the integrand is expanded as a geometrical series, the integrals over 4 
and n can be performed. The resulting series contains products of 
modified Bessel functions and converges quite rapidly when Tdec 5 140 

Mev _ xl,. Such an expansion is therefore useful for the numerical 
integration. Including the first term of the series corresponds to 
replacing distribution functions by Boltzmann distributions. 

Eq. 69 is useful for computing the transverse momentum 
distribution including the effects of thermal motion. Included in the 
distribution of particles in this equation is this effect. To compute 
<pt> we simply integrate over these distributions with weigh pt. 

If one wants to study the spectra in the fragmentation region, the 
condition vz = z/t does not hold. Also the parameterixation of the 
decoupling surface then depends upon n. As a result, the integration 
over n must be done numerically. Since we consider here the 
hydrodynamics in the boost invariant situation only, we will not go 
into details of decoupling in the fragmentation region. 

In our analysis, we shall choose surfaces of decoupling 
corresponding to temperatures in the range T - 100-140 Mev. These 
temperatures are high enough so that the massless pion gas 
approximation is still probably good, but low enough so that most of 
the work involved in transverse expansion has been completed. To go to 
lower temperatures, the massless pion gas approximation must be 
discarded and a pion chemical potential must be introduced. The pion 
chemical potential is needed since pion number is conserved, and if 
masses are non-zero, entropy conservation no longer guarantees pion 
number conservation. With such corrections, it is possible to go to 
lower temperature than we present here. However, since there is little 
work done at such low temperatures, and since the entropy production at 
such a low temperature due to freeze out should be small, our 
computations should probably give a good approximation to a more 
thorough and complete treatment. 
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Section 5 Numerical Methods 

The numerical method which we use to integrate the hydrodynamic 
equations is a relativistic extension of the flux corrected transport 

(47) algorithm proposed by Boris and Book. The extension we employ has in 
large part already been developed by the Frankfurt (48-49) For group. 
completeness of this paper, and since in the case of rarefaction of 
shocks, the algorithm does not automatically yield unique solutions, we 
shall outline here the method. 

Hydrodynamics is governed by a system of non-linear partial 
differential equations which can possess discontinuous shock wave 
solutions. In such a situation, many types of solution algorithms, 
such as the method of characteristics, whi.ch has been used to consider 
the expansion of a quark-gluon plasma in the absence of phase 
transition, become inapplicable. In our problem, shock waves occur as 
rarefaction shocks when the matter transversely expands into vacuum. 
They are allowed to exist because of the first order phase transition 

(26) which is incorporated into the bag model equation of state. 

When the rarefaction takes place into vacuum, there is no 
external constraint which would fix the velocity of the shock front or 
equivalently of the matter behind the shock. Instead they can vary 
within a certain range in which the conservation of and 
momentum fluxes can be (26) 

energy 
satisfied. From the point of view of the 

numerical calculations, it is useful to think of the ratio of entropy 
fluxes, R = ~yv/~~~~v~, as a parameter which differentiates between 
the possible rarefaction shocks. In the actual computations, we must 
then be able to ensure the right amount of entropy production across 
the shock front in order to have the desired solution. We shall 
return to this question after introducing general features of the FCT 
technique. 

The FCT is an algorithm that can be used to improve the shock 
handling properties 
schemes!5') 

of many of the usual finite difference transport 
To illustrate the method, let us consider a continuity 
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equation 

adat = -a(vp)/ax (71) 

where p is a positive definite density and v is a given velocity 
field. (In the actual problem of hydrodynamics, v is also defined by 
the system of equations.) 

Assume next that a finite difference approximation can be written 
in the conserving form 

n+l 
Pi = pT - [Fi+l/? - Pi-l/21 (72) 

where the F's are called transportive fluxes and are functions of p 
and v at one or several time levels tn and several spatial grid points 
Xi * The explicit form of these fluxes depends on the particular 
difference scheme which is used. In general high order schemes provide 
accurate solutions when p is smoothly varying but produce erroneous 
oscillations near steep gradients. These ripples are due to numerical 
dispersion (phase error) characteristic to high order methods and can 
result in failure of numerical computation. On the other hand, low 
order methods do not suffer from these oscillations, but instead from 
extensive numerical diffusion which tends to smooth out any shock 
fronts. 

The basic idea of the FCT is to construct the transportive fluxes 
F as a weighted average of fluxes FL and FH which are computed 
according to some low order and higher order scheme respectively. The 
weighting is done, point by point, in such a way that the higher 
order fluxes will be used only to the extent where no dispersive 
ripples arise. The procedure to do this is called flux correcting or 
flux limiting and is the key point of the method. 

the computation proceeds through the following 
steps!50;n pilcti;ZZ first step, called the convective or transport 
stage, one computes a tentative solution p n+l using the low order 
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fluxes F = FL in Eq- (72). Then the anti-diffusive fluxes 

A = FH-FL (73) 

are defined in order to cancel the strong di~ffusion of the transport 
stage. If these fluxes were used as such, the result would be that of 
the higher order scheme. In order to however avoid the undesirable 

ripples, these anti-diffusive fluxes are corrected or limited to 

A! If l/2 
= c. ~fl/*Aif1/2 ' 0 < c. < 1 

- I*112 - 
(74) 

and the final values of D at the time level t n+l are calculated as 

n+l n+l 
P = P - [A;+1/2- A:-1/2] (75) 

The criterion for the flux-correction is such that p n+l as calculated 

from Eq. 75 must not have extrema which are not already present in 

P. n+l This criterion appears to be very efficient in determining the 
correct balance between the low and high order terms so that no 
dispersive ripples appear. It also has the important property that 
the anti-diffusive stage, Eq. 75, maintains the positivity of p. 

Further, it is seen that the whole scheme conserves the total quantity 
associated with the density p, any flux subtracted somewhere is added 
somewhere else. Several flux limiters and specific algorithms using 
FCT have been developed since its invention!47750) The particular 
algorithm which we are using is the one introduced by Boris and Book 
in Ref. 47 and is called SHASTA. In this early application of FCT, 
the high order scheme is not explicitly stated. Instead, the anti- 

diffusive fluxes are defined in such a way that for the uniform 
velocity case they cancel the diffusion caused by the low order scheme 
at the transport stage. The algorithm may however be cast in the 
general format presented above, and doing so the version of SHASTA 
which we have used is defined in the following way. 

The low order fluxes are 
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FL 1+ l/2 
= ; [ (1-Qij2 P; - Qf P;+,] (76) 

where 

Qi = (; + $/(I + Ei+l- Ei) 

and 

ei 
= pd2 g 

1 

(77) 

(78) 

n+1/2 The quantities 6x and 6t are the grid di~fferences and vi are the 
centered velocities. The positivity of p at the transport stage 

nt I/ 2 
Pi 

II 
= 0: - Fi+1/2 t FL 

l-1/2 (79) 

is mai~ntained if 1 ei( < l/2. 

The transport stage of SHASTA can be represented pictorially. In 

Fig. 4, the density p is shown at different steps in the transport 
computation. The transport is initiated by representing the density 
with straight lines connecting the p values of adjacent grid points, 
Fig 4a. The fluid elements defined by the straight-line sections are 

nil/2 then moved to new positions xi+6tvi , Fig. 4b, in such a way that 
the area under the curve is conserved. the new values of the 

nt l/2 
Finally, 

density, p i , are computed by assigning the part of the fluid 
element left from xi+ i 6x to the cell (xi- $ 6x, xi + 4 6x) leading 
to Eqs. 78-79. 
boundary xi+ i 6x. 

Clearly Ft+1,2 is the flux through the cell 

As already mentioned, the high order fluxes are not used 
explicitly. Instead, the anti-diffusive flux is defined directly as 

A. - n+l - ntl 
1+1/2 = n(Pi+l- Pi ) (80) 

where n = 1 8 + ;'is called the anti-diffusive coefficient. This form 
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is obtained by demanding that the diffusion of the transport stage is 
completely canceled in the case of constant velocity. The 
corresponding high order flux P! 

1+ 1/ 2 
= FL 

1+1/2 
+ A. 

If 1/ 2 
is a rather 

complicated four point formula whi.ch we need not be concerned about 
since only the quantities A are needed in calculations. 

The crucial step of flux correcting is achieved in the SHASTA 
algorithm by a simple formula 

C 
Ai+1/2= S max [O, min(Ai+l/2S,IAi+l/21t SAi+s/2} 

(81 ) 

where 

- n+l 
Ai+l/2 = P i+l 

- n+l 
- P (82) 

1 

and 

s = Sign{Ai+l,2} (83) 

It can be verified that this equation is a realization of the general 
flux limiting criterion. It ensures that the corrected anti-diffusive 
fluxes cannot push the final values of the density at xi 

n+l n+l 
Pi =Pi - A! 

1+1/2 
+ AT: 

l- l/2 (84) 

n+l beyond the values p i*, at the neighboring points. 

We now turn to a discussion of handling the shocks. Usually the 
propagation of shocks is accompanied by entropy production which means 
that in the solutions of the ideal fluid flow, the shocks appear as 
discontinuities. Physically, the shocks have a finite thickness and 
even though the perfect fluid description may be a good approximation 
in the smooth regions of flow, viscosity becomes important in the 
region of shocks where the velocity gradients are very large. When a 
numerical method is applied to solve ideal fluid equations in which 
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shocks arise. it must either be capable fitting the shock discontinui- 
ties or of 
shocks!52) 

producing enough entropy to allow the formation of 
The standard procedure in the second alternative is the 

inclusion of an artificial viscosity with whi,ch shocks can be resolved 
reliably in a few grid points. 

In the FCT technique, the entropy production is due to the residual 
diffusion which is left uncancelled because of the flux correction. 
It seems to have the remarkable property of being able to produce the 
right amount of entropy within one or two grid points when the strength 
of the shock is fixed externally for example by appropriate boundary 
conditions. We have tested it for relativisti~c compression shocks up 
to shock velocities, vshock = 0.95, (corresponding to piston velocity 
0.9) when the entropy flux ratio R = 1.34, and it reproduces a sharp 
shock front with only transient ripples. 

In the case of rarefaction shocks which occur (if allowed by the 
equation of state) when matter expands into the vacuum, there is no 
external fixing of the strength of the shock from the boundary 
conditions because the continuous rarefaction wave which joins the 
shock to vacuum can adjust to any shock strength. What solution is 
then produced by a given numerical algorithm (if any) depends on the 
diffusive and viscous properties of that algorithm. 

In the case of SHASTA, the amount of residual diffusion can be 
controlled by the anti-diffusion coefficient n in Eq. 80. To ensure 
the condition 1 E/ < $ one usually takes &/6x < 4 . Then $ ~2 << 4 
for most parts of the fluid flow, and one can disregard the velocity 
dependence of 11 and take q = 1 8' It turns out that even with the 
extra diffusion resulting from this approximation, the SHASTA 
algorithm produces a rarefaction shock with almost no entropy 
production. For these solutions, the matter behind the shock is 
supersonic and they can be argued to be unstable by general stability 
criteria. (53-54) On the other hand, subsonic shocks are not stationary 
in the expansion to the (23) vacuum. Thus the desirable solution, 
usually referred to as the Jouguet shock, corresponds to a situation 
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where the velocity of the outflowi~ng matter wi.th respect to the shock 
front equals the velocity of sound cs. It also corresponds to a 

(26) maximum entropy production for a given initial density of matter. 

We have not tried to implement the condition of sonic velocity 
since this would lead to very complicated procedures for the actual 
calculations with different initial conditions. Instead we assure 
that the code produces eno.ugh entropy to be able to find the Jouget 
shock. In SHASTA this can be achieved at least in two different ways; 
artificial viscosity can be added to the algorithm, or the value of n 
can be changed. We have tested both possibilities for a one 
dimensional case with constant initial densi.ty where we know the shock 
part of the solution!26) Both procedures give the desired result and 
at least in the one dimensional case, equivalent results. The value n 
needs to be reduced below 0.1 to achieve the maximum entropy shock. 
For the calculations of spherical and cylindrical expansion we have 
used the value 0.08. 

Section 6 Summary 

In this paper, we have discussed the limits of the validity of a 
hydrodynami.cal description of high energy hadronic collision 
processes. We have formulated the hydrodynami~cal equations for high 
energy nucleus-nucleus collisions, and for fluctuations in pp 
collisions. We have outlined the methods required to extract 
transverse momentum distributions of hadrons. We also have presented 
an explicit method to treat systems with phase transitions using the 
flux corrected transport hydrodynamic code of Boris and Book In a 
later paper, we shall present solutions of these equations and 
explicitly determine transverse momentum distributions. 
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Figure Captions: 

Figure 1: The entropy per T3 vs T. The unbroken line represents 
our approximation, the dashed line is a guess for a realistic 
relationship. 

Figure 2: An example of a rapidity fluctuation which might occur 
in a pp collision which might produce high enough energy density to 
yield a quark-gluon plasma. 
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Figure 3: E/S vs E/V for the Bag model. 

Figure 4: The transport stage of SHASTA. Two fluid elements 
(solid walls) and three grid cells (dashed walls) are shown. (a) 
Initial location of fluid elements (b) Location and shape after 
transport (c) Determination of new values of p on the grid. 
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