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ABSTRACT

Topologically massive SU(N) gauge theories are studied by using the
loop expansion in Landau gauge. Ward identities for infinitesimal and
topologically non-trivial gauge transformations are derived, and checked
to one loop order. The renormalized propagators and vertices are shown
to be well behaved about =zero momentum to arbitrary order in
perturbation theory. We also establish that only massive states

contribute to the discontinuities of physical amplitudes.
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I. INTRODUCTION

There are dynamics possible for gauge theories in an odd number of
space-time dimensions which are not open to those in an even number. In
three dimensions, a Chern-S5imons term can be added to the fundamental
action for a gauge field.l_ll The Chern-Simons term has a coupling which
scales like a mass, but unlike the ways in which gauge £fields are
usually given a mass, no gauge symmetry is broken by its introduction,
although parity is.

The Chern-Simons term has topelogical significance. For a
non-abelian gauge group, if the theory is to be invariant under certain
large gauge transformations, which are not continuously deformable to
the identity, the ratic of the Cherm-Simons mass, m, and the gauge

4,
coupling, g2, must be quantized: >

&ﬂmlgz = an integer.
In this work we study topologically massive SU(N) gauge theories in
the loop expansion. Without the Chern-Simons mass, the loop expansion

1,12

would not get us very far. The coupling constant g2 has dimensions
of mass, so for each order in g2, we obtain a factor of ~g2/Jﬁ2, where p
is a momentum characteristic of whatever process we are considering.
Thus perturbation theory cannot be used to compute in the infrared
limit, p20.

With the Chern-Simons term, however, it seems possible that if we
choose 4ﬂm!g2 to be a very large integer, and if perturbation theory is

in fact an expansion in gzlm, then the infrared behavior should be

calculable directly, at least in this region of small gzlm.
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We show that naive expectations are borne out. With the proper
choice of gauge, the renormalized propagators and vertices are
computable, about zero momentum, as a power series in ngm. (We refer to
this as their being "infrared finite", and give a precise definition
later.) The physical spectrum starts with N2—1 gluons degenerate in
mass, and the only discontinuities of S-matrix elements are from massive
states.

These simple conclusions belie a great deal of structure in the
theory. While the two and three point functions are infrared finite in
Landau gauge, they are not so in any other covariant gauge. Even 1in
Landau gauge, there are individual diagrams which bring in infrared
singular terms ~g2/Jp2. Infrared finiteness happens in Landau gauge
because of an 1Infinite number of cancellations, to arbitrarily high
order in perturbation theory, between such singular contributions.
These cancellations are not proven diagramatically-we do not know how to
do this-but as the result of a cancellation theorem. The consequences
of this theorem are quite surprising, considering the ease of its proof.

Similarly, to compute on-shell matrix elements, one first
calculates off-shell guantities. The discontinuities from (unphysical)
massless states only disappear as all legs go on mass shell. This, of
course, 1s typical of gauge theories.13"17 What is striking here is how
the mass shell is approached: the renormalized gluon propagator does
have a true massive pole on the real axis, but the factor for
wave~function renormalization is imaginary even at the pole.

A priori, it is not obvious that a perturbative analysis should be
possible. After all, a customary assumption in perturbation theory is

that the (dimensionless) coupling constant can be continuously varied.
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This 1is not possible here, since g2/m~l/(integer). Nevertheless, we see
no pathology in any quantity, in any gauge, which indicates a problem
with the loop expansilon per se. At least as far as topologically massive
chromodynamics is concerned, the usual assumptions about perturbation
theory appear to be unduly restrictive.

There is one check of consistency that is particularly important.
If the renormalized theory is to be invariant under large gauge
transformations, a certain Ward identity must hold. This relation is
distinet from those implied by invariance under infinitesimal gauge
transformations, and so we call it a "topological"™ Ward identity. This
topological Ward identity requires the difference between the
renormalized and the bare value of me/gz to be an integer. Calculation
in Landau gauge for a SU(N) gauge theory shows that this difference is
N, to arbitrary order in g2. Consequently, not only does perturbation
theory respect the topoleogical Ward identity, but it even knows that the
number of colors is an integer.

In Sec. II, we explain what we mean by infrared finiteness, and
derive the Ward identities. Two and three point functions are computed
to one loop order in Sec. III. Sec. IV presents the cancellation
theorem, which leads to a discussion of infrared finiteness to arbitrary
loop order in Sec. V. The discontinuities of amplitudes occupy Sec. VI.
In appendix A, we discuss some of the physics of an abelian theory with
& Chern-Simons mass term, including why it has fractional

statistics.ls’l9

Appendix B examines the unusual way in which
spontaneous symmetry breaking affects the mass spectrum 1in a gauge

theory with a Chern-Simons term. Appendix C contains some computational

details necessary to Sec. III.
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II. THE QUANTUM THEQRY
The lagrangian is a sum of three terms,
L=L+ L + Lgauge . (2.1)

LO is the usual action for a non-abelian gauge field,

1 By
LO 5 tr (FHVF ) B (2.2)
va = SPA“—QvAp+ g {Ap,Av] . (2.3)

Lm is the Chern-Simons term,

- HVA 2
Lm ime tr (ApavAk+ 3 gApAvAR) , (2.4)
and Lgauge includes the gauge-fixing and source terms for covariant
gauge,
L = - Ler aah? 4 (o ptn - 2era A _ (2.5)
gauge £ U 1 u

The ghosts of Faddeev and Popov contribute

mpy | R =a,, .} _a p-a, b ¢
(Bun)D n (Bpn 37n ) + gf , (3'n )Ap n . (2.6)
The gauge group is SU(N), with a matrix notation: A = A? ta, F = F?
M H uv v

a a . . .
T . The 17 are antihermitian matrices in the fundamental representation:
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the fabc are the structure constants of SU(N).

The theory is defined in three space-time dimensions, which we take
to be Euclidean, of signature (++4+). The coupling of the Chern-Simons
term is imaginary in Euclidean space-time (the mass m of Eg. (2.4) 1is
real), and real in Minkowski space-time. This Is just like the coupling
of a ® term in four dimensions.

For an odd number of dimensions, the operation of parity, P, can be

defined as a reflection in all axes:

x“g—x“ LA 2 =A .

The usual gauge field Lagrangian is even under parity, L0 3 +L0, but the

Chern-Simons term is odd, Lm 3 —Lm. Two reflections give the identity,
P2=+1, which is the analogy, in Euclidean space-time, of PT{and CPT)

invariance in Minkowski space-time. Under a gauge transformation,
-1/1
A 2Q (=3 +A )8 . (2.7)
p g B u

LO is gauge invariant; Lm is not:
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3 3 im 3 BV -1
Ja’ s ] a’xr + 5 [ a’x e 3 ErC(d WA A (2.8)
+ 8n2 EE iw
g
where
v=—— [ %% M (070 N e i), (2.9)
2412 H v .

The set of gauge transformations is divided into global gauge rotations,
BHQHO, and all others, for which we assume that f(x)?1 as xH0,
Integrating over global gauge rotations requires the system to have a
total color charge equal to zero. In this case, AP(X) falls off faster
than 1/{x]| as xp%w, and the second term on the right hand side of
Eqg. (2.8), which is a surface integral, vanishes.

The last term in Eq. (2.8) does not vanish in general. The w of
Eq. (2.9) 1is a winding number, which labels the homotopy class of Q(x).
For continuous Q(x), topology tells us that w is an integer. Deser,

’ ocbserved that even if the Lagrangian is not

Jackiw, and Templeton
gauge invariant, the partition function, ~IdAp exp(-Id3x L), can be,

provided that m!g2 is quantized:

1

9, (2.10)

) |5
g

q=0,1,2... By convention, m, and so ¢, are taken to be positive. In

the perturbative regime, we assume g>>1.
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It does not matter if L, is replaced by bL0 in Eq. (2.1), since by

0
rescaling Ap’ g, and m, b can always be set to 1, without affecting the
quantization condition eof Eg. (2.10). The only exception te this is the
degenerate case, when b=0, This limit will be of help in Sec. IV in
establishing a cancellation theorem about the complete theory.

Quantizing the theory is straightforward. The exact gluon and

ghost propagators are, in momentum space,

ab ab
Apv (p} = & Auv(p) ,
(2.11)
L “-l’)
1200%) = 52 3pH
From Egs. (2.2) and (2.5), the bare propagators are
bare pgpv pl 1 PEpv
A @ =8 T T T RE w3 7 3t i, e (21D
H " p b p +m (p™)
phare ( 2y 1. (2.13)

Self-energy terms combine with the bare propagators to give the exact

ones:
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R bare -1
a @ = (@) e e (2.14)
w2
A(p™) = D (2.15)
Z(p)p
~ 2 ~, 2
Z{p")y = 1 + N(p™) (2.16)
The analysis of invariance under infinitesimal gauge
transformations proceeds in much the same way as for the massaless
theory.16 The longitudinal part of the gluon propagator 1is not
renormalized,
BV -
PP Apv(p) £
which means that the gluon self-energy, Hpv(p)’ is transverse in p:
2 2 A 2
Huv(p) = (Gpvp - pppv)He(p ) + m Epvlp Ho(p ) (2.1
The exact gluon propagator is then
P, P A
- S TS 2 B_Y) .
ﬁpv(p) (6pv 2 mren(p )Epvl 2)
P P
(2.18)
PP
77, 2 R RE
2(pT)(p+m__ (p™)) (p™)

where
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2% = 1+ 1D, (2.19a)
2, 2
zm(p Yy =1+ Ho(p ), (2.19b)
and
2
2 Zm(p )

mren(p ) = m . {2.19¢)

2(p°)

mren(pz) is the renormalized, momentum—-dependent '"mass."

Power counting shows that only the gluon self-energy might be
ultraviolet divergent. By the form of Eq. (2.17), He(pz) and Ho(pz) are
free of ultraviolet infinities. Any regulator can be used to compute
Hpv(p), as long as 1t respects the symmetries of gauge invariance and
parity.

What Thappens in the infrared 1is much less obvious. For
perturbation theory to make sense, it 1s clearly necessary for the
renormalized propagators and vertices, about =zero momentum, to be

essentially the same as the bare ones, up to small corrections ~g2/m. To

be precise, we call the propagators "infrared finite" if

7372(0), Z =2 (0), and Z5Z(0), (2.20)
m m

are all well-defined, and computable as a power series in ngm:

@«

2 n
z=1+ :E: a (&) (2.21)
n'm

n=]

etc. We shall show that the 2's, which are gauge dependent, are
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infrared finite only in Landau gauge, E=0. Notice that the Z(p)'s, as
defined, are dimensionless functions, so requiring each Z(0) to obey
Eq. (2.21) is a much stronger condition than merely requiring that
Huv(p) and pzﬁ(pz) be finite as p20.

The exact three-point functions are

abe . .abe
ruvk(p’q’r) igf Fu\,l(Pstr) ’
(2.22)
~ ) be~
Fab;(p,q;r) = ~igf" cTl(p,q;r) ,
p+q+r=0. Figi is the proper vertex for the coupling of three gluons,

, , . ~abec |
one with momentum p, Lorentz index |, color index a, and so on. T X is

the ghost-ghost~gluon proper vertex, for a gluon with momentum r,

Lorentz index X, and color c, etc. We define 14-17
~ ON
Fk(p,q,r)~p Fak(p,q,r) . (2.23)
At tree level,
bare
val {p,q,1) mspvl+ GPv(p q))L + Gvk(q r)Ll + ka(r_p)v , (2.28)
P37 (4 qir) = 6 (2.25)
ai P 9 U

The Ward identity which relates the three-point vertices is 14-17
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G A
r T

1 [ TR
=~ § - Ja'T, (r,p3a); (2.26)
Z(pz) oA r2 Ap

p v, tr -
pq Aol(r)vah(p,q,r)

A;i(r) is the transverse part of the gluon propagator.
We shall establish that these vertices are infrared finite 1in

Landau gauge, so for £=0, we can expand them about zero momentum:

Tuvk(p,q,r) = Zg(m Epvh + Guv(p_q)l + Gvk(q’r)p + Gku(r-p)“) e,

(2.27)
Fuv(p,q;r) = Zgaak + ... (2.28)
as p,q, and r20. The Ward identity of Eq. (2.26) gives
2z Z
£ :E , (2.29)
Z pA
m = m (0) = — m . . (2.30)
ren Z

Eq. (2.29) is the same as in the massless theory; Eq. (2.30) is new, but
hardly surprising.

Invariance under infinitesimal gauge transformations can be used to
derive relations between higher point Green's functicns. For example,
the gluon four-point function satisfies the same relation as when n=0.
The P-odd part of the gluon self-energy, Ho(p2)=2m(p2)—l, is in no way

constrained by the infinitesimal Ward identities.
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To derive a topological Ward identity, we rescale the fields and

. . , . ren
couplings so that we obtain a renormalized Lagrangian, L , which

generates the exact Green's functions, at least about zero momentum.

With
A o5 jzaA™™ 4 s 5 nren ,
3 B
2 2 -1/2
- 5 — > - )
g 23/2 g ., m z ° £ 2 e JP Z Jp s (2.31)
then
ren HVA ren ren, 2 Eg ren,ren,ren
L o =-izZme tr(Ap 3ATH S 3 e A A ), (2.32)
and similarly for L% and LT®" . Under a gauge transformation,
0 gauge
Are“aﬁ'1(§~ La s A’e“) a . L (2.33)
I3 Zg g 1 1}

The renormalized partition function is {1Invariant under large gauge

transformations if

m - Z ¥ m _
4 ( 2) = Anzm (Z ) 5 = 9.0, ° {2.34)

H
14
=

=]

=]

qren is a (positive) integer, but there is no reason why it should be
the same integer as the "bare" q of Eq. {(2.10). We see that it is only
through the topological Ward identity, Eg. (2.34), that Zm is related to

the other renormalization constants of the theory.
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Topological Ward identities will often arise in a theory with a
multi-vaiued action. For example, following Schwinger,20 consider a
theory of charged particles interacting with (Dirac) magnetic monopoles,
where the monopoles are viewed as fundamental particles, and not as
composite entities.21 Then twice the product of the electric and
magnetic charges must be integral, for both the renormalized, Z(eg)ren,
and bare, Zeg, quantities.20 This is precisely analegous to the

tat t that d d be int . Similarly, 2 = Z
statemen at g and q nee e integers milarly, as (eg)ren

3

2eg, the photon's wave-function renormalization constant, 23, must be a
, 20 . 2,

rational number; in the present instance, Zm(Z/Zg) is a rational

number. What is striking about topelogically massive chromodynamics is
that we can calculate 9on and the Z's directly (see. III). As of vet,

it is not possible to compute 23 in a field theory of monopoles.
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ITI. ONE LOOP ORDER

Before plunging inte calculation, it helps to isolate which
diagrams might be infrared singular. We shall discover several
cancellations, the reason for which will only become clear in Sec. IV.

There are several ways in which infrared singular terms could
arise. One 1s any diagram involving ghosts, since neither the ghost
propagator, nor the ghost-ghost-gluon vertex, are changed by the
introduction of the Chern-Simons mass term. For the gluon propagator,
Eq. (2.12), problems will arise from the P-odd part, and the piece
proportional te the gauge-fixing parameter,f{. The latter should be
worse, since for p20, it is Epppvl(pz)z, vVersus —euvkpl/(mpz) for the
P-odd part. In the three gluon vertex, Eq. (2.24), the P-odd piece is
more dangerous than the P-even, for a factor of wmomentum in the
numerator of a loop integral will tend to soften the infrared behavior.
The ghost self-energy is simplest. It 1is independent of 5,1’12
receiving no contribution from the P-odd part of the virtwal gluon

propagator, and so is infrared finite:

2 2 2 2
fi(pd) ~ & f k“p =(k-p) =N
p° g ? (D)
(3.1)
2
-
m

Except for the tadpole diagram, the contributions to the gluon

self-energy are those of Fig. (1).
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The P-odd part of the gluon self-energy, Ho(pz), is due to
Fig. (1.a}. For instance, consider the piece of Fig. (l.a) which has a
P-odd part at one vertex, with the other vertex and propagators P-even.

In Landau gauge,

A 3
2 k d’k
I ~gme j- {3.2a)
Wy VAL ) (k) 2 4m®)
L
70 " FunaP (m ) (3.2b)
When E£#0,
3
2 .2 d’k
HHV~ Em e P £ ]‘ 3 5 (3.2e)
k™ (k+p)
2..2
1 g N¢
~ - Epvkp 37 p2 . (3.2d)

The actual contributions are more complicated than as written in
Eqs. (3.2a) and (3.2c}, but the differences do not change Eqs. (3.2h)
and (3.2d).

Using this type of analysis, it <can be shown that Ho(pz) is
infrared finite in Landau gauge, H0(0)~gzlm. Because of the contribution
of Eq. (3.24), [_(p°) = -g’N €7/(32/p") +..., I_(p%) is  infrared
singultar for &#0. (There is a term linear in £ in Ho(pz), but that is
infrared finite.)}

For the P-even part of the gluon self-energy, He(pz), it is clear

that the virtual ghost loop, Fig. (l.b), is a problem:
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il

o i v 3
(p) s g“Nf kT (ktp) d & (3.3)

- 2
K e (1.b) W p)? (2m)°

This appears to contribute an infrared singular term ~g2/Jp2 to ﬂe(pz).
For an arbitrary diagram, we shall refer to that part of it which

comes from taking the P-odd piece of each gluon vertex and propagator as

the "purely e-part" of the diagram; the ghosts and their vertices are

left unchanged. The purely e~part of Fig. (l.a) is

ooy~ g2 [ e n® a%k
v P 5 2 2 2 2 22 3
Fig.(1.a), k™ (k+p) (k"+m”) ({k+p) +m™) (2m)

purely e-part

(3.4)
Obvicusly, Egq. {(3.3) cancels against Eq. (3.4) as p30!

This cancellation is enough to guarantee that He(pz) is infrared
finite to one loop order in Landau gauge. This is not true if E#0. If
for each gluon propagator in Fig. (l.a) only the piece ~f{ is included,
the denominator of the loop integral will depend only on k2 and (k+p)2,

and so contribute an infrared singular term to He(pz):

2. .2
2 N

1 (p2) = - &5 (1 - ) ... (3.5)

e 2 2

64 [p P
There may also be infrared singular terms ~§ in He(pz); we did not

evaluate them.

The cancellation about zero momentum between Egs. (3.3) and (3.4)
is 1implicit 1in the calculations of Deser, Jackiw, and Templeton,5
although they did not discuss it as such. It turns out to be the key in

understanding why the theory is infrared finite in Landau gauge.



-18- FERMILAB-FPub-85/66-T

Similar cancellations happen for the vertices. About zero momentum
in Landau gauge, the purely e-part of Fig. (2a) cancels against
Fig. (2b) (there is no purely e-part to Fig. (2¢}, as the four gluon
vertex is P-even), as do the purely e-parts of Figs. (3a) and (3b).
This implies that Zg and Eg are infrared finite to one loop order.

If ghosts are a problem, why not go to a gauge where they can be
ignored? In an axial gauge, npAu=0, ghosts decouple, and there is no

P-odd part to the three gluon vertex. The gluon propagator is

bare (nppv+punv) pupv 1
a v (p) = suv - n-p * 2 2 2
¥ (n-p) p +m”
A x A« (3.6)
A (ppsvkrn P —pvspkrn p) ™
B T L nep 2, 2 2
p (p +m”}

Unlike covariant gauges, because of the terms ~ 1l/n+p and ~ 1/(n-p)2 in
Eq. (3.6), in axial gauge the 1infrared divergences of individual
diagrams must be regulated in some fashion. Given the difficulty of
calculating with the propagator of Eq. (3.6), we did not pursue this.
After all, as gauge variant quantities, there 1is mno reason why the
renormaliized propagators and vertices should be infrared finite in a
given gauge: what is remarkable is that they are so in Landau gauge.
Arguments in axial gauge will help in establishing the cancellation
theorem of the next section.

The computation itself requires some diligence; see Appendix C.

All results are in Landau gauge:
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2 ‘ 2 2 2
2, __ 8N IS - I p_4m”
e ) 6mm | 2t om [ me ( 2
P P
(3.7}
-1 2-m2
=~ + sin b ,
2 ( 2. 2 )
p +m
2 2N ‘ m2 v 2 2 2,222 4
O0{p") = £ty B, YP_ Tim [(p Y 4p m -m ]
o 167m 2 3, 2.2
U 6% an’(eD
2 2 2 2.2 -1 2—m2
+ 2(3p " -m ) (p"+m )" sin EE—_E (3.8)
p +m
2,2 2.2, 2 . - p?
- ép {p -2m"}¥{(p +4m " )sin > 5 ,
p +4m
2 2y m2  yp° 2, 221322
I(py =B-—{-s5-11% + 22— Imm“2(p") +=pm
e 327m 3, 2.2 2
P 2m (p")
7 4 2 .22 22 _ ~if p*-n’ 2.2
+Em ) = (p"=Tm")(p"+m )" sin EE——E + [(p ) {3.9)
P +m
2
2 _
- 13p“m2+&ma][p2+ﬁm2]sin ! \/——EE“"E
P +4m
These self-energies were alsc calculated by Deser, Jackiw, and

Templeton.5 ﬁ(pz) and Ho(pz) agree with their results; He(pz) does not

{Appendix C). From Egs. (C.7)-(C.9),
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2
=188 (3.10)

m = 127 ’ (3-11)
5 g’N
Z = 1 -~ -2—5; - (3-12)
Further,
Z =1 3.13
g ( )

Because the gluon propagator 1s transverse in Landau gauge, whether or

not m#J, arguments familiar from four dimensions15 can be used to

conclude that Eg = |1 to any order in perturbation theory. This is true

only in the limit of zero momentum -~— while Eg = Eg(O) =1, Eg(pz) # 1
2

for p= # 0.

By the Ward identity of Eq. (2.29),

- 1
Z'g =1 24m

2N .
= (3.14)
m
We also verified, directly from the diagrams, that the Ward identity of
Eq. (2.30) holds.
The properties of the self-energies for Minkowski values of p2
{real pz<0) will be discussed in Sec. VI. At present we consider only

their values at zero momentum.

The renormalized mass is

mren(O) = EE m=m (1 b 22 g_ﬂ) . (3.15)
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The renormalized mass at zero momentum, mren(o)’ enters into the proof
of infrared finiteness in Sec. V, but otherwise it is not of especial
interest. The gauge-invariant quantity of physical significance is the
position of the pole in the renormalized propagator: this is given by
mren{_mz)’ Eq. (6.11).

The topological Ward identity of Eq. (2.34) is satisfied:

q =41,(“'—2) =g+ N . (3.16)

ren
rer

Even though perturbation theory includes only small fluctuations about
the vacuum, it still respects the invariance wunder large gauge
transformations. The sign of Eq. (3.16) 1is also 1interesting-since
qren>q’ the renormalized value of the dimensionless coupling constant,
~(g21m) , is less than the bare value.
ren S

It is not difficult to argue that, at least in the perturbative

regime, g>>1, the result of Eq. (3.16) 1s exact, and valid to any order

in perturbation theory. Suppose that the Z's had been calculated to two

loop order:

2 2 2
Z=1+_7_g__N+ag_N , {3.17)
m 127 m o
~ 2 2 2
E_=-2-—=1—1—5—N+b(E—E) : (3.18)
Z ~ 61 m M
g Zg

Plugging into Eq. (2.34), we find
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16N°

=g+ N +
qren 2 N

(a+2b-1/6) . (3.19)

q can be an integer for arbitrary N, and arbitrary gq’>1l, only if

rer

a+2b = 1/6 . {3.20)
Beyond-but not at-one loop order, the topological Ward identity acts
like a "typical" Ward identity. That is, if we know leg = E/Eg to
~O{(g2lm)n], and Zm to ~0[(g2/m)n—1], n>l, then the topological Ward
identity tells us what the coefficient of Zm is to ~ O[(gzlm)n].

The topological Ward identity has a smooth limit at large N. As
N¥w, m and gZN should be ~ 0(1), so take g=rN, Qo = rrenN' T and T oon

are integers, which are large in the perturbative regime, but they are

fixed numbers at infinite N. Eg. (3.16) gives foen r+l.
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IV. A CANCELLATION THEOREM

We have seen that in the infrared, the worst problems are due to

the purely e-parts of diagrams. So let us construct a theory in which

these are the only diagrams:

L =1L"+ L' s (4.1)
£ gauge
f e d I"l"'j)L 1 ' __2_ tatal gt
L ie tr (ApavA)L + 3 8 ApAvAR)' (4.2)
' 1 ' 1 2 B= ' tat B
L = - = tr {3 A + {9 n)D'n-2trf{J'A . {4.3)
gauge mg ® B u
This is just the original theory, with L0=0. Ap has been rescaled,
prA;lJm, and g' = g/vm is a dimensionless coupling constant.

We call LE the "e-theory." Similar models have been considered by

9,10

Hagen. g' is still quantized, Anl(g')z = q.

The gluon propagator is

bare A P pv
B s e T (4ut)
# L™ (p™)

As p290, this propagator has the same singularities as that of

Eq. (2.12).

The ultraviolet behavior, however, is very different from that of
the original theory. Instead of being super-renormalizable, the
¢~theory is only renormalizable, and at least in principle, there can be

logarithmic ultraviolet divergences in perturbation theory.
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Suppose that from the generating functional, G{J'),

exp [-c(I")] = fDA}’l(x) exp [—[d3x LE] , (4.5)

the effective action has been constructed by Legendre transformation:

§

= 33;?;7 G(J") , (4.6)

A'(x)
11

1Y 1y 3 |r}-t .
Seff(Ap) = G{J") j‘d x JPA . {(4.7)

In general, Soff (AL) will be a very complicated functional of A;(x). It
can only depend on gauge-invariant operators such as tr(FLv)z, but its
dependence on them can be non-local, to arbitrarily high order.

An exception is Landau gauge, where Seff(A;) is very simple. L' is

always odd wunder parity, L' ? -L'. As £E-0, the term ~tr(3pA'p)2 in

can be taken te vanish. When this happens, ﬁ,n, and J' can be
gauge u

defined to transform under parity in such a way that L'au o is also
P-odd, Léauge 3 “Léauge’ £=0.

Hence in Landau gauge, we have the unusual circumstance of a theory
in which all fields, and sc their bare propagators, as well as all bare
vertices, are odd under parity. The effective action is constructed in
the usual fashion by tying together these bare propagators and vertices.
But if each and every propagator and vertex 1is P-odd, then order by
order 1in perturbation theory, there is simply no way that any P-even

term can enter into §_ (AL): being odd under parity is a symmetry of

ff

the e-theory, respected both by the bare and effective actions.
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This conclusion dis only possible because all of the bare
propagators and vertices are P-odd. If some fields in the theory were
P-even, the bare action would have P-even parts to it, so that although
it might be P-odd overall, this would be violated by loop effects,
through P-even terms in the effective action. Such examples can easily
be constructed with (interacting) scalar fields, for with scalars, it is
inevitable that if some fields are P-odd, others will be P-even. of
course, 1if the bare action has both P-even and P-odd terms to begin
with, so will the effective action. As we shall see below, this happens
in the e-theory outside of Landau gauge, £#0.

Indeed, it is so extraordinary to have an (interacting) £field
theory 1in which all propagators and vertices are P-~odd, that the only
other examples we are aware of are essentially direct generalizations of
the e-theory in Landau gauge. These are gauge theories in an odd number
of space-time dimensions, with no matter fields, for which the action is
entirely a Chern-5imons term; generalizations that involve

k4

5upersymmetry3 and gravity are also possible. As for the. e-theory,
we expect that in a gauge which does not introduce P~even terms, such as
Landau, that the effective action of these theories is P-odd, 1like the
bare one. Eq. (4.8) also generalizes to these theories in an obvious
manner.

Returning to the e-theory, how can we construct an effective action
which is P-odd? To be odd under parity, Seff(A;) must involve an odd

t

numpber of AL'S and 8 's; to be Euclidean invariant, these need to be

contracted with objects like with the anti-symmetric tensor, Euvh Thus
we might expect Seff(A;) to be constructed from Idax L' times P-even

2
functions such as tr(FLv) . Remember, however, that L' transforms
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non-trivially under gauge transformations, Eq. (2.8), so any term such
as Id3x L' tr(FLv)z, etc,, cannot result in a gauge-invariant partition
function. The only way that Seff(Ap} can be P-odd, and exp (_Seff(Ap))
gauge invariant, 1s |if Seff(Aﬂ) has exactly the same form as the

original action:

Y _ 3_- BvA ' v _2....._3L Patatat
f(A Y = j.d x —iZ2'¢ tr(AuavA + 350 & ApAvAl) . (4.8)

Z
s
ef m g A Z

where 2" and Zg. are wave-function and vertex renormalization constants.

The Ward identity of Eq. (2.26) holds, and implies

fw_‘“
b

(4.9)

™~
N

with Z' and Eg, the renormalization constants for the ghost and its
vertex. In the e¢-theory, there is no constant analogous to Zm.

To determine Seff(AL) in Landau gauge, we need only to find 2Z' and
Zg,. To do so, we consider the e-theory in axial gauge, npAfu=0. It is
apparent that in axial gauge, the e-theory is a free field theory! (It
is less obvious why m/(g')2 is still gquantized, but it is.6) This means
that in axial gauge, all renormalization group functions must vanish.

This includes the B-function for g', B{g'), the anomalous dimension of

A;, yA.(g'), and the anomalous dimensions of composite operators, such

3!
as that for tr(F’ )2, Y 2(g'):
tr(F' )
uv
B(g") = v, (g") =7 ,(g') = ... =0 (4.10)
tr(F' )
in v

for all g'.
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The renormalization group functions of a gauge theory are gauge
invariant only at a fixed point. Since every value of g' is a fixed
point, B(g') = 0, Eq. (4.10) is valid in any  gauge. For

Blg') = TA,(g’) = 0 to be true, Zg' and Z' must be finite functions of
n

E
Let us return to Landau gauge. To all orders in g¢', Z ,=l. By
the Ward identity of Eq. (4.9), this implies that 7' is also a finite

function of g'. Explicit calculation to two loop order shows that
z' =7 =1 ; (4.11)

to ~0[(g')&], there are not even finite terms # 1 in the 2' 's.

Qur cancellation theorem is the statement that, in Landau gauge,
the effective action of the e~theory is given by Eq. (4.8), and that the
Z' 's are finite. ({(We suspect that Eg. (4.11) holds toe all orders in
g', but have not proven this. To establish infrared finiteness in
Sec. V, the Z' 's of the eg-theory do not have ta be = 1, but merely
finite.) All of the cancellations between the purely .e-parts of
diagrams in Sec. III are examples of this theorem.

For an arbitrary n-point function between gluons in the original
theory, the theorem guarantees that when £=0, to any order in gz, the
leading infrared divergences from the purely e-parts of diagrams must
cancel against each other.

What happens in the e-theory for «covariant gauges other than
Landau? The term ~tr(3pA'p)2 in Léauge does not vanish if £#0Q, so the
bare action has bhoth P-even and P-odd terms. Consequently, the

effective action will include P=even terms such as tr(F'v)2 and the

like. FEq. (3.53) is the simplest example of such a contribution.
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By Eq. (4.10), any gluon rencrmalization constant is finite. z
and Eg' might be infinite for £ # 0, as long as Z'/Eg, is finite. The
detailed form of Seff(A;) embodies one simple property. To recover
Eq. (4.8} in Landau gauge, any gluon n-point function need vanish as a

power of £, when E-0, if n24.
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V. INFRARED FINITENESS

Henceforth we restrict ourselves to Landau gauge.

We start by considering the infrared singular terms for the P-even
part of the gluon self-energy, He(pz). To two loop order, there are no
diagrams whose purely e-part contributes to He(pz). There are still

infrared singular terms, such as that of Fig. (4.a):

M v ~
no(p) - ng L) ooy a’
| Fig.{(4.a) (k") (k+p)

(5.1)

ﬁ(0)~g2/m, so this seems to give a pilece ~32/Jp2'(g2fm) in He(pz). The
purely e-part of Fig. (4.a) vanishes, since to one loop order, the ghost
self-~energy does not depend on the P-odd part of the gluon propagator
(sec. III).

The diagram of Fig. {4.a) can be viewed as a self-energy insertion
on one of the ghost legs of Fig. (1.b). The other diagrams wﬁich are in
danger of contributing ~32/Jp2'(32/m) to Ee(pz) include a diagram which
is like a vertex renormalization for each vertex of Fig. (l.b), and
similarly for Fig. (l.a).

There is a convenient way of organizing these contributions, which
is a kind of "infrared renormalization." Let AL stand for the
connections to the bare propagaters and vertices, computed about zero
momentum. For now, we 1include only the one-loop terms in AL, so

AL~O(gzlm). We rewrite the bare Lagrangian, L, as
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L=1+A4L - AL = L™ - aL . (5.2)

L™ is the renormalized Lagrangian of Sec. II, which generates the

renormalized propagators and vertices, about zero momentum, to one loop
order.
. 4
Our strategy is transparent. To calculate to ~0{g }, in two loop
R ren . . 2

diagrams we take L ~ L, so Fig. (4.a) is unchanged. AL~0(g" /m)
contributes through insertions in one loop diagrams, like that of
Fig. (4.b). Evidently, Figs. (4.a) and (4.b) cancel about zero

momentum. Because the Z's contain terms of ~O(g2/m), one—loop diagrams

must be recalculated, using Lren instead of L. TFor Fig. (1.b),

Z n v 3
2 k' (k+ 47k
no(p) o~ +gn | B 2( p)2 3 (5.3)
* Fig.{(1.b), z K“(k+p)“ (2m)
Lren
The purely e-part of Fig. (l.a) gives:
B (p) ~ . (5.4)
[ Fig. (l.a),
purely e-part,
Lren
2 4
_ gZN Eg kp(k+p)v B ren d3k
z Ep)? Gl ) (Getp) e’y (2
ren ren

—~

m__=m__ (0). By the Ward identity Z /Z = Z /Z, Egs. (5.3) and (5.4)
ren ren g g

cancel against each other about zero momentum. This is enough to show
2 2 2 . 2
that there are no terms ~g /vp :(g" /fm) in He(p ).
The extension to higher orders 1s direct. At n 1loop order, the
2
most infrared singular term in He(p ) can be no worse than

~g2pr2-(g2/m)n_1. There are several ways these terms could arise.
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The first is from the purely e-parts of n-loop diagrams. These

vanish unless n is odd, as for Figs. (l.a) and (l.b). <Calculating with

L . L, the cancellation theorem to n lcop order tells us that the sum

of the purely e-parts of these diagrams vanish about zero momentum.
Secondly, there are infrared renormalizaticns of the purely ec-parts

of diagrams to n' loop order, n'<n. These are diagrams computed to n'

loop order with Lren; n' must be odd, and the 2's of L'°" include terms

n—n']-

up to ~ O[(ngm) An example is Egs. (5.3} and (5.4). The sum of

these terms vanish by the Ward identities, and the cancellation theorem
to n' loop order.

Finally, there are contributions which can be viewed,
diagrammatically, as self-energy and vertex insertions into the purely

g-parts of diagrams at n"

loop order, n" odd and <n. These diagrams
will have parts that are not purely e-like, arising from the self-energy
and vertex insertions, such as Fig. (4.a). These diagrams cancel about

n-n")

zero momentum against Insertions of AL, computed to ~0[(g2/m) , into

the purely ¢-parts of n" loop diagrams: e.g., Figs. (4.a) and.{(4.b).
This shows that order by order by order in g2, all terms ~g2pr2-
2 n-1 2
{g"/m) in He(p ) cancel about zero momentum.
The possible infrared singularities of the P-odd part of the gluon
self-energy, Hﬂ(pz), the ghost self-energy, ﬁ(pz), and the three-gluon

vertex are all similar. For instance, at two loop order each of them

has diagrams whose purely e-part contributes, in a schematic form,
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22 ¥ 1 n 3. 3
"I 53 2 2 o dkdik,
k1 k2 (k1+k2+p) (k1 +m”)
(5.5)
EY (=
~ In
m 2
p~0 P

2
To arbitrary order, the worst terms are ~(g /m)n ln(mzfpz), where n need
be even. Because these terms arise from the purely c-parts of diagrams,
they have a direct interpretation in terms of diagrams in the e-theory
12N 2,2
of Sec. IV. A term ~(g')" 1ln(A"/p”) in the e~theory (A = an ultraviolet
2 n 2, 2
cutoff} corresponds to one ~(g"/m) In(m"/p”) for the purely c-part of a
diagram in the original theory. We know from Sec. IV that to any order
in (g')z, there are no ultraviolet logarithms in 2', E', and Zg,; this
2
implies that to any order in g, there are no infrared logarithms in
~ ¥

Ho(pz), I{p”), and the three gluon vertex, respectively.

There is one point which we have overlooked. Besides terms

2 2 2 n-1 , 2 . ]
~g /vVp (g /m) in He(p ), there are also infrared logarithms
‘ 2

possible, ~(g21m)n ln(meP ), for even n. By the Ward didentity of
Eq. {(2.26), these infrared logarithms must cancel, since they do so in
Zg and Z { remember Zg=1 in Landau gauge). Similarly, by its Ward
identity, the four gluon vertex must also be infrared finite.

Having made no pretense of rigor, this concludes our proof that the
renormalized propagators and and vertices are infrared finite in Landau
gauge.

Our process of infrared renormalization is similar to ultraviolet
renormalization in a renormalizable field theory, but the analogy is not
exact. Consider, for example, a proper n-point function of gluons,

F(n). We suppress the coler and Lorentz indices, and take the n-1
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independent momenta, and their dot products, etc., to be of the same

order, ~Jp2. To one loop order, the purely e-parts of diagrams give

r{m g

., 2.n-3 ¢
pz_m (vp™)
[T(z) is ~ gZJp2 since F(2)~Hpv(p).} By the cancellation theorem, the
purely e-parts of diagrams cancel about zero momentum, and so F(n) is
really only singular as
n
I,(n) . g
2. n-4
p240 m{+vp~)
F(n) is finite as pzﬁﬂ for ns4, but it seems improbable that this will

be so if n25.

This 1is wunlike wultraviolet renormalization, where once the
ultraviolet infinites are removed from the propagators and vertices,
they will not show up in higher n-point functions. With our infrared
renormalization, the propagators and vertices are infrared finite, but

higher point functions are not.

(n)

This is not a significant matter, though. T is only singular as

(n)

all of 1its external momenta ). Suppose we insert a T , n25, as part

of a diagram for a propagator or vertex to some high order in gz. Then

(n)

the point at which ¥ is singular will be a set of measure zero for

the loop integrals, and can be ignored. Thus the infrared singularities

F(n)

of the for n2 5 does not contradict our proof of infrared

finiteness for n< 4.
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{n)

In any case, our real interest in the T , n>4, is when all of its
external legs g2o on the mass shell. This is the subject to which we

turn next.
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VI, THE DISCONTINUITIES OF AMPLITUDES

The bare equation for the propagation of a gluon is

2 , A,,a,V -
(3 Gpv+1m5pvka JA {x) 0 (6.1}

in Landau gauge. Expanding Ai(x) in plane waves,

A:(x) = ez exp(ip*x) + c.c. , {6.2)

, : a a
the polarization vector, eu, is transverse to pu, ppep = (, Under gauge

transformations,

fabcAb c

A% > A% 4+ 5 2% 4 g A . (6.3)
(T T n

We neglect the last term in Egq. {(6.3), on the grounds that it generates
perturbative corrections to asymptotic states. For the gauge

transformed Ai {x) to remain in Landau gauge, 82Aa(x)=0. A solution is

AZ = —icaexp(ipo-x) + c.c. . {(6.4)
o, 2

with pg a null vector, (pp) = (O, Thus, if the gluon's momentum is null,

p2 = 0, by setting pﬁ = pp, e: is defined only up to the transformation

e? 3 ® 4+ cap . (6.5



-36- FERMILAB-Pub-85/66-T

For massless gluons, the part of e: parallel to p}l can be
eliminated by Eg. (6.5), with the remainder perpendicular to pu:

p\jlpup; # 0. This shows that for each

e? = eapl, where pL-p = 0, but ¢

1t H

color index, a massless gluon in these dimensions has one (physical)
5 , , ]

degree of freedom, versus two in four dimensions.

For m # O, consider first the massive pole in the propagator, at

pzs—mz. The polarization vector satisfies

(6.6)

For example, in the rest frame

p" = (-im,0,0)

we take the first coordinate to be time, and the other two, space. The
, a .
solution for ep is
ea

e =;/_2— (.011,1) ]

50 e: is a right-handed (spatial) vector for m>0. For the opposite sign
of the Chern-Simons mass, m<0, ez is 1left-handed in the rest frame.
Cutside of the rest frame, ei has both time and spatial componentsj the

latter are a definite mixture of left and right handed terms, depending

upon the sign of m.
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Whenm # 0, if p~ = 0 ,

VA a - H_oa _
£ e Py 0 , p ep o . (6.7)
The solution 1is ei = —capu, but by the residual gauge freedom, we can

set c? = 0. Consequently, while the bare gluon propagater does have
poles at =zero momentum, there are no physical degrees of freedom
associated with the massless modes.

This result is not that surprising. Unlike a Higgs mechanism, the
introduction of a Chern-Simons mass term does not alter the number of
physical degrees of freedom for the gauge field. On the wmass shell,
there 1is one degree of freedom per color index for a massless gluon, so
when m # 0, this single degree of freedom goes into the massive mode,
leaving only gauge variant parts for the massless pole.

Physical amplitudes are obtained in the wusual fashion. For

)

example, to obtain n-particle T-matrix elements T(n , one starts with

the proper n-point function, F(n):S"'(p,q...). Each leg is put on the
mass shell, p2=q2=...=-m2, and dotted with a suitable pélarization
vector,

(n) _ a b {n)ab...

T eu(p)ev(q)"'r pv...(p,q...)

If it can be shown that the massless modes do not contribute, then the

(n)

Cutkosky rules imply that the only discontinuities of T for Minkowskil

2 .
values of the momenta, p~ real and <0, are those of massive particles.
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The contributien of the massless modes to the discontinuities of
physical amplitudes cancel as a consequence of gauge invariance, in
essentially the same way as they de in ordinary gauge theories with

13-17 fo
spontaneous symmetry breaking. To show that the discontinuities
from intermediate states with a single massless mode vanish, we start
with a n-point amplitude in which all of the legs except one are on the

~

mass shell, T(n)i(p); P is the momentum of that one leg, etc. The

infinitesimal Ward identities can be used to show that ppf(n)a(p) = p2

n
2 7
times a function which is regular at p = 0.1 For the massless mode, e

=—capu, 50 ei(p)f(n)ﬁ(p) - 0 as pz*O, which establishes what we desire.
The extension to intermediate states with more than one massless mode,
for which the contribution of ghosts must be added, can be carried out,
following, e.g., Ref. 17.

The massless modes do not contribute to the discontinuities of
physical amplitudes, but they do for quantities that are gauge variant.
This is idillustrated by the self energies to one loop order,
Egs. (C.12}~(C.14)-they all have branch cuts which start at zero
momentum.

This raises an obvious guestion-if He(pz) and Ho(pz) each have such
branch cuts, how can the renormalized propagator have a simple pole at
p2 = _m2? To answer this, we observe that a physical amplitude is formed
from the gluon self-energy, Hi:(p), by contracting each leg with the

2
proper polarization vector, and setting p = —m2:
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* * 2
(e?) Hab(p)eb q = - (e re™) mz(H (~-m7)-1 (—mz)) ) (6.8)
N RV v 2 2 a e o
p =-m
where Eq. (6.6) has been used. As a gauge-invariant quantity, the

discontinuity of Egq. (6.8) must start with the exchange of two massive

gluons. Kinematically, this is impossible at p2 = —mz, hence

Im (n (-%) - I (-mz)) -0 . (6.9)
e [a]

The renormalized mass is given by Egq. (2.19c), so Eq. (6.9) ensures that
m ( 2) is real at 2=='—m2 to one loo crder although m { 2) i
ren'? P P ! g ren' P s
2

complex for O>p2>-m2 and ~m2>p .

The results of Sec. III obey Egq. (6.9), Egs. {C.18) and (C.19);:

2
2 - .2 _ g N
Im (He(—m )) Im (Ho( m )) = Sim . (6.10)

2

It is worth mentioning that Eq. (6.9) is a Ward identity which must hold
in any covariant gauge. An example is the Ez terms in Ho(pz) and
He(pz)— at p2=-m2, these terms cancel, Eqs. (3.2d) and (3.5).

By Eq. (6.10), the wave-function renormalization <constant is
complex on the mass shell, Im[Z(—mz)]#O. This phenomenon 1is only
possible if the gauge theory 1s non-abelian and has a Chern-Simons mass
term, for without the Chern-Simons mass, the gluon has only a single
self-energy, I, which satisfies Im(Il) = 0 on the mass shell. Even so,
that Im(Z(—mz)) # 0 here appears to be just a curiosity, since

Im(Z(-mz)) cannot be measured directly in any physical process.
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On the mass shell, the renormalized mass 1is (Eqs. (C.18) and

{(C.19)}

2
"
= Y = _g N b
mphys E mren( m-) m (1 * 3omm (271n3 )) (6.11)
to one loop order. This m determines the gauge—-invariant position

phys

of the pole in the renormalized propagator, and so is properly termed
the physical mass.

Qur arguments about the discontinuities of physical amplitudes
apply only to one loop order, but they can easily be extended to

arbitrary order. To higher corder, it is necessary to take into account

the shift in the physical mass from its bare value, and that Z(—m2 )

phys

is complex. Egq. (6.8), evaluated at p2=-m2 will ensure that the

phys’

massive pole in the gluon propagater remains a simple pole. Thus the

rencrmalized on shell equation for a gluon differs from the bare one,

; 2(—m2 S) factors

Eq. (6.1), merely by the replacement of m with m ohy

phys
out. The remaining steps go through unchanged.

Our results can also be used to show that the correlatioﬂ functions
of gauge invariant operators fall off exponentially over large distances
in Fuclidean space~time. This is best shown by example: we compute the
two-point function of tr(va)2 to ~0(1). At leading order, we can take

only the abelian piece of the operator, tr(F )2~tr(3 A -8 A )2, and the
[TRY Ev v

bare gluon propagators in the one-loop diagram. The result is
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<0|tr[Fiv(~p)]tr[Fiv(p)]50)

(6.12)

(k- (k+p)~m ) +k (k+p) —m4 d3k
= B(N -1 3
(k +m )((k+p) +m ) (27)

, 2 2
independent of £. Terms involving k" (k+p)” in the denominator of the
loop 1integral have cancelled against identical terms in the numerator.
This can be wunderstood by computing the two-point function as an

infinite sum of form factors,
0 2 (F 2 0 < F )2 0> 2
< Itr(Fuv) tr( uv) |0> = f<n|tr( v 10> 3 {6.13)

Y represents the sum over intermediate states. Gauge invariance for the

n

operator and its form factor exclude any massless states from the }. To
n

~0(1), only (massive) two-particle intermediate states contribute,
Egq. (6.12),
Our results show that it is possible to answer detailed questions

about the physics of topologically massive chromodynamics. Further

studies are presently underway.
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APPENDIX A: THE ABELIAN THEORY

In this appendix we consider some elementary aspects of an abelian
gauge theory with a Chern-Simons mass term. After seolving two problems
in statics, we discuss how charged particles can be said to exhibit

|
fractional statistics over large distances.

The Lagrangian is
mpvi
F + > €

AuavAK + J“Au , (A.1)

F = d A -0 A . The space-time is Minkowski in this appendix, with
pv BV vy
signature (-++). Also: x“=(xO ;), £ =+ ¢ i,j = 1,2. In two
3 Oij ij! ? »
B . > 3 j

space dimensions, the curl of two vectors 1s a scalar: axb = Eija b-.

The action transforms by a surface term under a gauge

.5 .

transformation™, so m is not quantized.

We assume that all matter fields are heavy: if their mass is My
their charge e, ezlmH<<1. Proving infrared finiteness in the quantum
theory is trivial, so we can take the photon to interact with a fixed
external source JF.

>
The field-strength tensor va is composed of an electric field E

and a pseudo-scalar magnetic field B:
rd i
N G N L (A.2)

There are three equations of motion:
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3-% + mB = JO , (A.3)
3B - aOE +mEx = 3, (A.4)

and one Bianchi identity,

3B - F=0 . (A.5)

For static charge distributions,

1
3% m’

=3 gﬁ%;i (30- §§ 3x3) ; (A.7)

the E and B fields fall off exponentially, ~exp(-mr), over distances far

B = (3x3wmjo) , (A.6)

(r))m_l) from any charge distribution (by convention, m>0). To solve

static problems, it helps to recognize that

2 (pemady = 33 . (A.8)

For the distributions we consider, this implies that B+mAO is constant

away from sources, soO

-nE = 3B (A.9)

in source~free regions. Egq. (A.9) is reminiscent of the self-duality

condition in four dimensions.
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We turn now to our two examples.

Point Charge:2

PO xes?d ,3=0 (A.10)

For m = 0, E = er/(27r). When m # 0, one matches A0~ln(r), valid for
r<<m_1, onto the solution of the free, massive wave equation which falls

off at spatial infinity:

0 e
A = - P Ko(mr) . (A.11)
KO the modified Bessel function of zercth order. In this 1instance,

B = —mAO, so

B~-250 in{rm) , r((m_l . (A.12)
2n
B~2 [-B (-mr) r))m_l . (A.13)
2 2nr 5P ’ . :
This shows that static charges induce magnetic flux. Indeed,

consider a distribution of charge arbitrary except that it is bounded in
size. Integrating Gauss' law, Eq. (A.3), over a region A whose contour

_)
C is everywhere far from any charge, since E~exp(-mr) ~0 on C, we obtain

29
a relation between the total flux, ¢ = IAB d"x, and the total charge,

o 22
e ot JAJ d"x:
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¢ =e fm . (A.14)

The Chern-Simons mass transforms a particle with charge e inte a flux

"tube", of width ~m—1, and strength e/m.

Line Charge

JO = ef(x) , 3 = ev G(X); s {A.15)

-~
which is a wire with current ev along y. For m=0,

B=Svex E=—‘§e'(x)x , (A.16)

B'{x) = +1 for x%O. When m#0 ,

B = % (1 + ve'(x)exp(-mix|) ,
(A.17)

E = BO'(x)x

It is amusing to note that if the charges move at the speed - of 1light,
v =1, by Eq. (A.17) there are fields on only one side of the wire.

The solution for the line charge shows that the Chern-Simons mass
produces a separate part of the electric field, E;zx, from moving
charges. This is like the Hall effect.8

For two charged particles, the interaction energy between thenm,

» vanishes over large distances in the static limit:

int.
e.e - 3
172 vXT
Eint.(r) -1 27m 2 ' (A.18)
r>>m r

The charges of the particles are ey and €53 their relative separation
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and velocity are ? and 3, respectively.

While Eint_(r)ﬁo as r + @, quantum mechanical effects can still
produce correlations between particles over large distances. Suppose
that we fix particle 1, and rotate particle 2 infinitesimally slowly
around 1 by 27. The wave function of 2 changes by exp[iezfx-dT] @
exP(ie2¢1) = exp(ielezfm). The wave function of 1 changes by an egual
amount, since 2 is itself a source of magnetic flux, and so the total
two-body wave function changes by exp(Zielezlm). Interchange of 1 and 2
is like a rotation of the relative wave function by 7, so under
interchange, the two-body wave function changes by exp(ielezlm).

This phase is of 1little consequence if the particles are not
identical.2 If the particles are identical, e = e, = e, let us choose a
gauge in which the vecteor potential i1s essentially zero everywhere,
except around the two particles. In this gauge, the two-body wave
function must be defined so that upon interchange of 1 and 2, there 1is
an additional factor of exp(iezlm) which multiplies the usual * 1.

It is in this gauge variant sense that charged particl;s exhibit
fractional statistics. Wilczek18 first observed that flux tubes with
arbitrary flux have fractional statistics. It is known19 that charged
particles coupled to an abelian gauge field with a Chern-Simons mass,
but no term ~ } Fuvz’ do as well, so it dis not surprising to find
fractional statistics in the full theory, Eq. (A.l). What we find of
interest is that the full theory provides, physically, such a direct

example of Wilczek's original insight, since any charged particle acts

like a flux tube over large distances.
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The effect only occurs for particles separated by distances >>m_1.

Cver distances sm-l, charged particles do generate magnetic fields, but
their mutual electric fields are not negligible, and there is no simple
expression obtained as they encircle. In particular, it is sensible to
speak of the charged particles as being, fundamentally, either bosons or
fermions - the equal time (anti-) commutation relations between the
charged fields follow from their properties at short distances, and
remain those of (fermions) bosons. Further, it is only the charged
fields, and not the photon itself, which have fractional statistics:
e.g., the contribution of the photon field to the generator of angular
momentum is standard {appendix, Ref. 9).

The ratio ezlm, which fixes how fractional the statisties of
identical charged particles are at large distances, is an arbitrary
number. We remark that the ez and m which enter here are renormalized,
and not bare, quantities; they are obtained from the renormalized photen
propagator about zero momentum. In this way, the fractional nature of
the statistics, = ezlm, is itself renmormalized.

Does a non-abelian gauge theory with a Chern-Simons mass term
exhibit fractional statistics? To answer this, we first need to
understand how to measure the total color charge in a non-abelian
system.

Let J" be an external source of color, for either gluons or matter
fields. As before, we choose a region A whose boundary C is everywhere
far ())mvl) from where J"'#0.

The obvious definition of the total charge,
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-)
Btot =[ CIE (A.19)
A

is a color matrix, but otherwise it is not very physical. The color

current is only covariantly conserved, l')p..T]l = (, so Seot is generally

time dependent; g is also gauge dependent.

tot

To avoid these problems, we define the 'global" color charge, Q:

Q=2 ¢ (f- -2 Kx) adl (A.20)
C
2> . ' E
n is the normal to C. Using Gauss' law, and that E~0 on C,
-
Q= j‘ {JO- g [2, -E] - mg Kxx}dzx {A.21)
A

The last two terms in Eq. {A.21) represent the corrections to 8ot which
are necessary in a non-abelian theory.
? .
Why is Q superior to ot Unlike Beop’ Q is independent. of time.
This is because the vector KP,

[T vpo BvA
K 3 F me" T3 A (A.22)

has zero divergence, BFKP = (. Neglecting surface terms at spatial
. 0 .2» . .

infinity, Q = IAK d"x, BOQ = 0. Secondly, Q is invariant under

arbitrary local gauge transformations £, as long as color fields at

spatial infinity are unchanged by Q: if @ = exp(A), by Eq. (A.20) Q is

-+ 5
invariant if A(xo,x)ﬁo as X,
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These properties of Q are not accidental. In AO =0 gauge, Q 1is
precisely the charge associated with global rotations of color.

Now let JV represent two identical, colored point particles, 1 and
2. They are far enough apart so that we can integrate over regions
>»m ° in size around each without crossing the other. Their local color
charges, as in Egq. (A.19), are &, and gy0 and their global coler
charges, as in Eq. (A.20), are Q1 and QZ' As particle 2 is wrapped
around 1 by 21, the two—body  wave function changes by
~exp(ingzfm)exp(ingllm). This factor 1s not invariant under local
gauge transformations, as would be a term like exp (ZinQzlm).
Consequently, identical colored particles do affect each other over

large distances, but this has no (relatively!) simple interpretation as

a sort of fractional statistics.
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APPENDIX B: SPONTANEOUS SYMMETRY BREAKING

When spontaneous symmetry breaking occurs, the presence of a
Chern-Simons term for the gauge fields alters the mass spectrum in a
striking way. We illustrate the effect with an abelian gauge field, but
it also happens if the gauge field is non-abelian.

We take as our Lagrangian

1 g2 im  uvi
L A va t5oe ApavAk
(B']-)
2 2 2 A 2.2
+ IDu¢I -t + 5 (fel 3T+ Lgauge ,

Dp = au + iEAp; pz,h and m>0. We return in this appendix to Euclidean

space-time. ¢ is a complex scalar field:

1
6= (6. + 6. +1id.) , (B.2)
/2 0 1 2

for real ¢0, ¢1, and ¢2, with
2 I - -

SE L 8> = 9> =0 (B.3)
The gauge field is redefined as

1
B =A +—— 3 . B.4
n ket u¢2 (B.4)

By a suitable choice of Lgauge ('t Hooft gauge), the bare inverse

propagator for Bu becomes
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2 2 -1 A
AHV = (p +ms)6uv + (£ —I}Pupv+ m Epvlp . {B.5)

2 2 2
m, =e ¢0 . {B.6)

The bare propagator for Bp is found to be

2+m2
A = (6 - pupv - o € pl) 2 8
Wy Bt P MY e
(B.7)
{p2+m2+m§)
+Epp )
2 2 2
MY p(pT)(p HEm))
where
p(p%) = (pP4m2)? + n¥pP= (p7mDy(p7mdy (5.8)
and

3]

2
mi = mi P n? = /mz(m2+4m§) . (B.9)

What is remarkable about Apv is that it has two distinct poles

which are physically significant, one at p2 = —mf, and one at p2 = *mf.

. 2 2 .
The piece of Apv prV also has a pole at p Ems, but this 1is a

gauge-variant excitation - e.g., it decouples for £3®, as expected in 't

Hooft gauge.
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About the two poles in 4 _,
pv

m2+n2 ] v
A ~ S T (B.10)
HY 2 2n2 p2+m2
p -m +
+
n2—m2 s v
A~ . {(B.11)
TRY 2 2,2
p2 m2 2n p tm_

This shows that each of the two poles, at p2 = —mi and p2 = —mE,
contribute to the dpv part of Apv with positive residue, so both are
physical, gauge invariant excitations for m and ms#O.

In the limit that ms<<m,

m4
mi ~ m2 , m2 ~ —% R (B.12)
m
and A behaves as
TRV
§ v
Ay~ ~E . (B.13)
pzﬁwm p +m
ms<<m 2
B $ v
A ~ - (B.14)
Y2l 2 w’ 2m?
p -m_ P
m {<m
3
When ms%O, m 30, but from Eq. (B.14), the state at p2 = ~mE decouples
from the GPV piece of Apv' Turning off the symmetry breaking,

¢D =m_ = 0, removes one of the two physical poles in Apv; this agrees

with our analysis in the text.
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To see why Apv has two physical poles for m and m # 0, we consider

the (bare) on-shell equation for Bu, as in Sec. VI:

2 2 )Y v
((—3 +ms)6uv—im epvka ) B (x) o |, {(B.15)

BuBu(x) = 0. With

B (x) = xp(ip*x) + c.c. , B.16
" x epe p(ip-x c.c { )
e =10 , and
P K
2 2 v A
(p tm ) ep +m Epvke p =0 . (B.17)

We solve for e}1 in the rest frame:

o' = (~im , 0, O) ,

Without the Chern~Simons mass, m = 0, m = ms, and e and e are

1 2
arbitrary. This is what wusually happens with spontaneous symmetry
breaking in three dimensions - at p2 = —mz, the B}1 field has two degrees
of freedom, one from A , and one from the scalar ¢2.

With the Chern-Simons mass, and ms # 0, there are two solutions to

Eq. {(B.17), m = m, . Their polarization vectors satisfy
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e, =i o e . (B.18)

B]-1 must still have two degrees of freedom on the mass shell, but instead
of one mass, with a two~component polarization vector, when m and m # 0
BP is on shell at two distinct masses, though the polarization vector of
each has only one (independent} component.

Why? Remember that the Chern-Simons mass is P-odd, so the mass
spectrum should reflect this handedness. This is not possible if Bp is

on shell at one mass point with two independent components for eu. So,

and m_. The polarization vector

Bu "splits" into two on shell masses, m

of each, ei, is a definite mixture of right and left-handed terms for

w>0. When the sign of the Chern-Simons mass is flipped, this mixture
h iji-) tfi
changes: e,/e] e,/e| as mr-m.
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APPENDIX C: THE SELF ENERGIES TO ONE LOQP ORDER

We present here some of the details of the calculation of the self
energies to leading order in Sec. III,.

The integrals are

2 2 3
Mp>=&—f (km'*P L, (c.1)
k (k+p) (k +m ) (2ﬂ)
2 P 3
1,7 = 5 [ oAk (c.2)
(2m)
T (p’) = - EE% { /~ Fo i 4 2m } , (C.3)
e Q (2w) T
where
Q= kz(k2+m2) (k+p)2{(k+p)2+m2] , {(C.4)
p = (K07~ p)?) (5k% 45k prapPean’) (c.5)

P, = 6k° + 18k'kep + 20k°p? + 221%(k-p)p’

- 12¢kep) + 91 - 7(kep)2p? (c.6)

+ 022k + ak%kep + k%07 + (kep)?).
Dimensional regularization was used to <compute these integrals;

e.g., the last term in Eq. (C.3) is due to the tadpole diagram. While

generally care must be taken in applying dimensional regularization to
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theories that dinvolve the antisymmetric tensor Epvk’ we do not need to
concern ourselves with such subtleties. Unlike a renormalizable theory,
in a super-renormalizable theory such as this, any ambiguities in going
from 3 to 3+¢ dimensions will vanish smoothly as £30.

The resulting self energies are given in Egs. (3.7)-(3.9).

About zero momentum,

2 2 2
T2 . EgXN ¥ _ 1 vp__ _ P
I(p™) - ix t T39m 5t e . {c.7)
p2<<m2 30mm
2 2 2
I (p?) ~ &N I _ 3 . ) (c.8)
o m 12w 16m 2
p2<<m2 240nm
2 2 2
(s ~ && .3 _ Y, 13 . (C.9)
e m 24n 128m
p2<<m2 480 Mm
For large momenta,
Ip) ~ B2 0, , (€.10)
2 16 2 2
. >)m2 vp 6mvp 32p
2 2
m(e =~ &8¢ 13 4o m . )} (C.11)
a 2 32 2 2
o >>m2 vp 3nvp 32p
2 2y 11 m 15m°
I (p%y ~ B -==4 + + . . (C.12)
e 2 64 2 2
p2>>m2 vp Invp 64p

The first terms on the right hand side of Egs. (C.10) and (C.12) agree

with the one loop results in the massless theory,l’12 as they should.



-57- FERMILAB-Pub-85/66~T

The discontinuities of these amplitudes can be extracted directly.

To continue to Minkowski momenta, we take

p2 = exp (-in)s,

with s a positive, real number. Using

RY x 2
Re sin 2 3 == + % 6(s-m") , (C.13)
\, p +m
1 2
Re sin 1 e L 9(8-4m2) y (C.14)
\, p2+4m2 2

B8(s) = 0 or 1 for s<0 or >0, we find

2 2.2

Imfi =~ 322 f—; (1-[1-‘5';-] e(s-mz)) , (C.15)
2 2 2,2 2
N Vs 3s 2{3s+m ) {s-m")
Im ﬂo = %ZE 0 (4 -5t 2 9 8(s-m )
m s m
(C.16)
3(s+2m2)(s-4m2) 2
5 8(s-4m ))
sm
2 2 2.2
g N Vs s {(s+7m )(s-m") 2
Im He = 1380 (1 t =5 - 2 ) 9(s-m")
m s m
(C.17)

(52+135m2+4m2)(s-4m2)
+
22
8 m

8(3—4m2))

On the mass shell,
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2 2
2y g N 27 gN
Ho( m" ) 16nm 1+ i ln3) + i 6om . {c.18)
2 gZN 27 g2N
He(-m ) = Temm (3— e ln3) + 1 6om {C.19)

Using the analyticity of the self energies in the cut p2 plane,
they can be written in a dispersive form, as an integral over their
imaginary parts along the cut. This is the form that Deser, Jackiw, and
Templeton chose.5 ﬁ, eq. (C.12), agrees with their result, as does that
for Ho, eq. (C.13), up to an overall difference in sign for Ho. Qur
result fox He, eq. {C.13), does not agree with theirs. However, our He
has the correct limit at large momenta, eq. (C.12), and satisfies the
proper Ward identity on the mass shell, eqgs. (6.10), (C.18), and {C.19).
The He of Ref. 5 does not satisfy this Ward identity; it was this that
lead us to the labor of recomputing the self energies in the first

place.
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FIGURE CAPTIONS

Contributions to the gluon self-energy at one-loop order.
Sclid lines denote gluons; dotted lines, ghosts.

One-loop corrections to the three-gluon vertex.

One-loop corrections to the ghost—ghost—-gluon vertex.

Two contributions ~0(g4) to He(pz)- In Fig. (4.b), the cross
denctes a term for ghost wave function renormalization,

~O(g2/m), from AL.
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