Fermi National Accelerator Laboratory

T
L J

FERMILAB-Pub-85/44-T
March, 1985

Rephase-Invariant Formulation of CP Violation
in the Kobayashi-Maskawa Framework

O.W. GREENBERG¥
Fermi National "Accelerator Laboratory
P. 0. Box 500, Batavia, IL 60510

ABSTRACT

I give a formulation of CP violation which is manifestly invariant
under rephasing the quark fields (or, equivalently, under rephasing the

states) in the Kobayashi- Maskawa (KM) framework.
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Recently, there has been a good deal of interest in the notion of
"maximal" CP violation in the framework of the KM matrix [1,2]. Work on
this question has been carried out using various parametrizations of the
KM matrix. What 1is M"maximal"™ in one parametrization need not be
"maximal" in é parametrization which differs from the first by rephasing
the quark fields. Further, the notion of "maximal™ CP vioclation is not
uniquely defined. It seems clear that we need a reparametrization (or
rephase) invariant formulation of CP violation in the KM framework to
properly assess the notion of M"maximal™ CP violation. Surprizingly,
such a formulation does not appear in the literature. My purpose in
this article is to give such a formulation.

The KM matrix appears in the Lagrangian of the standard model 1in

the terms,

.1.

~(g/v2) [U.Y" v D w:+13 YWy

L U wu] , (1)

L L

which give the coupling of the left-handed quark currents to the W's.

Here , Stands for left-handed projection, DE = (d, s, b)L,

UE = (u, c, t)L, and T is just used to the convert column vectors to row
vectors in generation space,
Since changing the phase of the quark field of each flavor

preserves the anticommutation relations, observables must be independent

of such rephasing. If

L R
DL > T DL and UL +> T UL ,

then
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vV - TRTVTL .

Here the T's are diagonal matrices whose elements have modulus one. For
the case of N generations, 2N-1 independent parameters are contained in
the two T's. It is clear that we can restrict V to SU(N), rather than
U(N); then the T's will have 2N-2 independent parameters.

Since the same Fermi field operators which appear in the Lagrangian
also make the quark states, rephasing the field operators in both the
Lagrangian and the states will leave all matrix elements unchanged;
however the fact that rays, not vectors, correspond to physical states
in quantum mechanics allows the states to be rephased independently of
the rephasing of the operators, and observable quantities must be
invariant under this rephasing. Thus we can require observables to be
invariant under either rephasing of the fields in the Lagrangian or
under rephasing of the quark fields in the states.

The determination of the KS and K; states as eigenstates of the
decay and mass operator M - ir/2 was first given by Lee, Oehme, and Yang

[3]. The result is

2 2+-1/2 0 =0
K> = [|p]” * [a]”] [p[K™> = q|K>] , (2)
L
ere b2 = M . 2 _ oy
waere p- = M., -1 F12/2 and ¢ = My, - 1 F12/27 Here 1 and 2 stand for
kK% and &°, respectively. (Note that K, and K| are not eigenstates of M

and of I separately.) Under the rephasing ]KO> > (exp i ¢)|KO>,

K05 > (exp-i ¢)|KO>, p > (exp~i ¢) p and g » (exp i ¢) q, so that Kg

and KL remain invariant. Thus the amplitudes
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+ -

00
<mom KS> and <Tom |KS>

0

are independent of the choice of phase of KO and K (and also of the

choice of phase of the d and s quarks), and the measured quantities
4+ -
< IKL>

N, =————— and n._ =
<w+n_|KS> 00

<w0vO|KL>

<WOWOIKS>

are also independent of these phase choices., The amplitudes a0’2 (from
which the final state strong interaction phase shifts have been removed)
for KO decay into two m states of isospin O or 2 do depend on the choice
of phase for |Ko>f Following Wolfenstein [4], we choose ao’2 to be real
if CP 1s conserved. Changing the phase of [KO> from this convention

results in

3,2 (exp i ¢) ag,2°

It is straightforward to calculate the n parameters in terms of p, q,

aO’ and as. The result is

p(v2 ag*as) - q(v2 a;+a;)

Ny = x %
p(¥2 ajytas) + q(v2 ag*a,)

e Re(v2 agtay) + i Im(v/2 aptas) :
= 3)
Re(v2 ag*ay) + 1 e Im(v/2 a0+a2)

and
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play,~2 a,) - q(a;~1/§ a;)

n —
00 * *
p(ao—/§'a2) + q(ao—/§ a,)
_ €n Re(ao—/ﬁ'az) + i Im(ao—/ﬁ'az) .
Re(ao-/ﬁ'az) +1ep Im(ao—/§'a2)
where
_p-gq
Em p+tq

is the parameter which gives the mixing of the CP eigenstates

|[K,> = L% &%
, V2
in [KS>,
L
/2 [[K,>%e, [K,> ]
L [€m|K1>+|K2>]

When CP is violated, IKS> need not be orthogonal,
L

2 Re Em
<K (K> = — ——— .
LIS 1+ ls Iz .
m

We now introduce the usual e parameter,

(%)

(5)

(6)

(7)

(8)
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<ﬂn,I=O[KL>

€=
<ﬂﬂ,I=O|KS>

%
_ pao —qao
B *
pa0+ qao
/& - i /2 - //* i /2 *
Yo m 1 Typr2 8y - vy m 1172 8 (9)
h /& . P . //* . ¥ P *
12 = 1 Typ/2 ag * vl = 1 Typ/2 3,
To good approximation,
®2
I'yo = 3 (10)
and
|Im M, |<<|Re My,|, |€|<<T, |ey|<<1, AT = - 2 Am, (11)

where AX = XS - X;,. With these approximations,

1+ i 2
€ =— Im 1ln M12 ao f (12)

The crucial quantity on which.e depends in both the exact and

approximate invariant formulas is M12 ag. If this is real, then ¢
vanishes.
Let us study M12 ag. The matrix element M12 comes from the box

graph (see Fig. 1). It has the form

M12 = (constf) de V. % A (13)

¥
XS Xy Vyd Vys ’
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where x and y run over the up quark generations, u, ¢, t. The explicit
form of A and of the constant are given in the review of Chau [5]. We

introduce the real eigenvalues, ca, and real eigenvectors, ha, of Axy'

n* = ¢* n® (14)
Xy 'y X
' 42 o (¢4
= ¢ h  h . (15
Xy g Xy )

The decay amplitudes have the form

%
a = (const.') V fo’2 v . (16)

0,2 Xs X xd
where, again, the explicit formulas for f and for the constant are given
in Chau. When we put these formulas together, we can express the result
as a sum of squares of traces:

M. a° = (const.'') ¥ c*{tr tvie®v 4 v O v oa 112, (17)

12 70 a d s

where the A, _ are projection operators onto the d or s generations of D
?

s
quarks, and H and F are h and f elevated to diagonal matrices.
Since we know that there is no CP violation in the KM framework for

12 ag is real in that case for any

two generations, we must show that M
V. (Of course, use of the usual rephasing argument shows that there is
no CP violation in the two generation case.) Direct substitution of an

arbitrary SU(2) matrix in our formula (17) indeed yields a real

quantity; however we would like to be able to show this without direct
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calculation. Since our formula involves the square of a trace, it

suffices to show that the trace is real. Let

Tyg = P v B v Ay v Oy agl o (18)
Complex conjugation yields
*
Tds B Tsd’
which holds for any number of generations. For the case of two

generations, the projection operators Ad and Ay have the special forms

. (19)

Introducing these expressions into T gives four terms: the terms with
both 1's or both 63'5 are symmetric under d,s interchange, and the terms
with one 1 and one 63 cancel in each T. Thus T is symmetric and real in
this case. For three or more generations, the projection operators will
have more than two terms when expressed in terms of the unit matrix and
the diagonal matrices which represent the commuting generators in the
fundamental representation. Those terms in which the same matrix occurs
for both projection operators will be real; those terms in which the
unit matrix occurs for one projection operator and a generator occurs
for the other will either be real or will cancel; the only possible
complex terms occur when different generators occur for the two

projection operators.
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The parameter e'/e can be expressed in terms of traces in an

analogous way. I find

[<em,I=2|K > <2m,I=2|Kg>

-

e 5 [<@mI=0]K > <2m,I=0[Kg> |

- -~

* *
pa -aqa P& +aqa

- (20)

*
p aO - qa, P ag +q ag

ol

. i * *
Again using T,, = aoz,l must express M12a§ and aja, as traces. The
result for M12 ag is the same as (17), except that 2 replaces 0 on F.

*
The result for aO a2 is

¥ T .0 T 2
- [RX]
ay a, (const. ) te[v F ¥ Ad vV F V As] . (21)

I have written the discussion 1in terms of the KO—KO system.

O_EO O_TO

d Pdr and T

Analogous considerations hold for the DO—EO, Bg—ég, B
systems.
Weak interaction processes which do not involve CP violation can

also be expressed 1in terms of traces. For example, the decay rate of

the neutron involves

2 t
v 4l = tr[v AV Ad] : (22)

Since the diagonal matrices H and F can be calculated in terms of

the diagonal matrices 1, A3, and A8 for the case of three generations,

or in terms of the diagonal matrices 1 and A , h < N, for the case of
n“-1 -

N generations, all observable quantities can be expressed in terms of



-10- FERMILAB-Pub-85/44~T

traces of strings of V's, VT'S and A's in which the same number of V's

and VT's occurs, the V's and VT

's are interleaved with A's, and there
are an even number of A's. For the case of two generations, there is
only one independent trace:

t3

tr[V o” V 03]

= 2(2 cos2 0o = 1), (23)

where GC is the Cabibbo angle. The quartic trace can be expressed in

terms of the quadratic one as follows:

tr[VT SV S 03] 3]}2 -2 . (24)

For three generations, the four independent invariants can, in

principle, be expressed in terms of

s er[vT A v AT, 1,5 = 3,8. (25)

For N generations, the (N—1)2 real THr's of (25), with 1i,j = 3,
8,...,N2—1, are the independent rephase-invariant parameters. However,
in practice, using these quantities is not the best way to determine the
CP-violating parameter. For that purpose, it would be better to use the

quantity which occurs in e. I conjecture that the (N-1)(N-2)/2 complex
TlljJ'S,
2

pid _ P31 vty ATy A9, 1,5 = 3,8,.. .85, (26)

with i < j, are related to the (N-1)(N-2)/2 invariant KM phases.
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This suggests a program of parametrization of all data in terms of
such traces. I plan to carry out this program in a later article. I
also plan to analyze the notion of M"maximal™ CP violation using the
insight gained from the rephase-invariant formulation given here. Where
an explicit parametrization of the KM matrix may be useful I suggest an
SU(N) parametrization, rather than the customary form using products of
SU(2) matrices.
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FIGURE CAPTION

Fig. 1: Box graph for M12,
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