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ABSTRACT 

These nine lectures deal at an elementary level with the strong Interaction 

between quarks and Its Impllcatlons for the structure of hadrons. Quarkontum 

systems are studied as a means for measuring the interquark interaction. This is 

presumably (part of) the answer a solution to QCO must yield, if it is indeed the 

correct theory of the strong interactions. Some elements of QCO are reviewed, and 

metaphors for QCO as a confining theory are introduced. The l/N expansion Is 

sumnarized as a way of guessing the consequences of QCO for hadron physics. Lattice 

gauge theory is developed as a means for going beyond perturbation theory in the 

solutlon of QCO. The correspondence between statistical mechanics, quantum 

mechanics, and fleld theory is made, and simple spln systems are formulated on the 

lattice. The lattice analog of local gauge invariance 1s developed, and analytic 

methods for solving lattice gauge theory are considered. The strong-coupling 

expansion indicates the existence of a confining phase, and the renormalization 

group provides a means for recovering the consequences of continuum field theory. 

Flnally, Monte Carlo simulations of lattice theorles give evidence for the phase 

structure of gauge theories, yield an estimate for the string tension characterizing 

the lnterquark force, and provide an approximate descrlptlon of the quarkonlum 

potential in encouragingly good agreement with what is known from experiment. 

LECTURE 1: A FIRST LOOK AT QUARKONIUM 

The strongly interactlng particles we study in the laboratory are composite 

systems of quarks bound together by the color force described by the gauge theory 

called quantum chromodynamics (QCO). In these lectures we shall look at some of the 

basic elements of QCO as it relates to the problem of hadron structure. Our 

concerns will be with general features: quark confinement and the properties of the 

force between quarks, rather than with the details of hadron spectroscopy and 

interactions. An introduction to the literature on hadron physics can be found in 

the Bibliography to these lecture notes. 

Operated by Universities Research Association Inc. under contract with the United States Department 01 Energy 



Within the restricted scope of these lectures, we shall try to answer the two 

questions, 

. What does experiment say about the interaction between quarks? 

. What does QCD say about the interaction between quarks? 

and to compare theoretical expectation with experimental observation. Two specific 

items to be established from experiment are the form of the interquark interaction 

and the flavor-independence of the force between quarks. The light hadrons (those 

composed of up, down, and strange quarks) give us information about the strong 

interaction at distances in excess of about 1 fm, where the strong interaction is 

indeed formidable. The region between 0.1 fm and 1 fm has been mapped in studies of 

the heavy quarkonium states, c5 or b6 bound states. In this intermediate regime, 

there is good evidence for the flavor-independence of the interaction. Distances 

shorter than 0.1 fm are for the present inaccessible to hadron spectroscopy. The 

next quarkonium family, the still unobserved tf bound states, will allow us to begin 

to probe this region in which, as we shall see, it should be possible to compute the 

interaction reliably using perturbative methods. 

Properties [l] of the $ and T states are sumnarized in Tables 1 and 2, and the 

level schemes are indicated in Figs. 1 and 2. Clearly these families of heavy 

mesons have the appearance of atomic spectra with, as we shall see, readily 

identified candidates for radial and orbital excitations. That the analogy with 

atomic physics could be pursued in detail was suggested before the mapping of the JI 

spectrum by Appelquist and Politzer [2]. They argued that for bound states in a 

Coulomb potential 

V(r) = -a/r 

the mean velocity of the constituents is 

(1.1) 

B-a . (1.2) 

According to asymptotic freedom [3], the strong coupling constant of QCD decreases 

as Q2+, or equivalently as r-rO, as 

aS(Q2) = 12x 

(33-2nf)log(Q2/A2) ' 
(I.31 

where nf is the number of active quark flavors and A is the QCD scale parameter. 

The Fourier transform of (4/3)(-4vas(Q2)/Q2) yields an asymptotic form for the 

interquark potential of 

V(r) - - 121 4 

(33-2nf)log(l/r2h2) ' 3r ' 
(1.4) 

r-a 

In a Coulomb potential, the scale of r is proportional to l/m; hence the relevant 

value of as is measured by log(A2/m2). We can therefore anticipate that as m+=, the 



running coupling constant -as(r) " decreases, so that the mean velocity of the bound 

constituents decreases. This leads to the expectation that quarkonium becomes a 

nonrelativistic problem for sufficiently heavy quark masses. 

Within the bound-state picture, it is straightforward to guess the rough order 

of levels. Suppose first that the constituents are scalar particles denoted o, with 

quantum numbers Jpc = Ott. For ('J(J) composites with angular momentum L, the 

bound-state quantum numbers are 

c = (-l)L , P = (-l)L , (1.51 

so the ground state is a single Ott level. The expected spectrum of ((IO) bound 

states is' shown schematically in Fig. 3. This is not what is observed for the $ and 

T families. 

If instead the heavy mesons are (ff) composites of spin-l/2 constituents f, the 

quantum numbers of a bound-state with orbital angular momentum L and spin S are 

c = (-l)L+s , P = (-l)L+l . (1.6) 

The ground state is therefore a hyperfine doublet of a lSo (O-+) level and a 3S1 

(l--) level. The expected level scheme shown in Fig. 4 reproduces what is seen in 

the $ and T families. 

Scaling the SchrUdinger Equation. Having identified the J, and T as quark-antiquark 

bound states and motivated the possibility that the nonrelativistic approximation 

may be a fruitful one, we now proceed to an analysis in the context of the 

SchrtJdinger equation. In three dimensions, the SchrUdinger equation is 

- $ V2P(r) + [V(r)-E]Y(r) = 0 . 

For the special case of a central potential, we may wr i. te the wave function as 

+(r) = R(r)YJrn(e,*) , (1.8) 

whereupon the Schrodinger equation separates. The rad :i, al wave function satisfies 

(1.7) 

-h2 d2t2.6 
( 2p dr2 r dr > [ R(r) - E-V(r)- d 

2pr2 I 

R(r) = 0 . (1.9) 

This may be placed in correspondence with the one-dimensional Schrudinger equation 

if we define the reduced radial wavefunction 

u(r) = rR(r) , (1.10) 

so that 



-u"(r) = &! 

h2 

E-V(r)- !&fk? u(r) 

2pr2 1 , 

with 

u(0) = 0 

u'(O) = R(0) = & P(0) for s-waves 

/ 
,-dr[u(r)12 = 1 . 

(1.11) 

(1.12) 

A number of relations will prove useful in general. First, for s-waves, we 

show that 

[‘p(O)12 = L ifi 
0 

. 
2x%2 dr 

(1.13) 

To do so, we multiply the s-wave Schrudinger equation 

-u"(r) = G[E-V(r)]u(r) 
h2 

by jrdr u'(r) and integrate by parts: 

(1.14) 

-[u’(r)121~ = $[E-V(r)ltu(rl121~ - $ /omdr[u(rl12 (- $) , (1.15) 

so that 

4nIY(0)12 = $ ($) . 

By similar arithmetic it is easy to prove the Virial Theorem 

E - (y) = (T) = (p) . 

For a power-law potential 

V(r) = Xrv , 

the Virial Theorem yields 

(1.16) 

(1.17) 

(1.18) 

(1.19) 

For simple potentials, including power-laws and other monotonic wells, rather 

far-reaching results can be derived using quite elementary techniques. This mode of 



analysis has been reviewed by Quigg and Rosner, [4] and exploited by many authors. 

I shall sumnarize here a few of the results with direct applications to experiment. 

for the special case of a power-law potential, the equation (1.11) can be 

divested of all its dimensionful parameters. To see this, we first introduce a 

scaled measure of length 

P = (M2/2~l~1)p r , (1.20) 

where the exponent p is to be chosen to eliminate dimensions from (1.11). The 

choice 

p = -1/(2+v) , 

when accompanied by the substitutions 

(1.21) 

E = ($) (&$‘c , (1.22) 

where E is dimensionless, and 

W(P) = u(r) 

accomplishes precisely this. The ensuing equation is 

W”(P) + C~-ssn(X)o”-F(~+l)/p21w(p) = 0 , 
which depends only upon pure numbers. 

(1.23) 

(1.24) 

Several consequences follow immediately from these manipulations. Lengths and 

quantities with the dimensions of lengths depend upon the constituent mass and 

coupling strength as 

L = (plxl)-1/(2+") _ (1.25) 

As a result, the particle density at the origin of coordinates behaves as 

IP( - L-3 = (p(,])3/(2+v) . (1.26) 

Level spacings have a similarly definite behavior, according to (1.21): 

AE cc ,,-v/(2+v),~~2/(2+v) . (1.27) 

The limiting behavior of the scaled SchrUdlnger equation as v-10 is easily studied. 

The "power-law" potential corresponding to this limit Is simply 

V(r) = C log(r) . (1.28) 

The scaling laws (1.25)-(1.27) contain many well-known results. Recall, for 

example, that in the Coulomb potential, for which ~-1, 

AE(v=-1) = pa2 = pIif . (1.29) 



Likewise, the conclusion that in a linear potential 

lm(o)121v,l = )1IXI 

can be derived at once using the identity 

IP( = J-& (g) . 

(1.30) 

(1.31) 

The scaling laws (1.25)-(1.27) have many applications in quarkonium physics. 

For the moment let us merely note that electric multipole matrix elements vary as 

(r'IEjIn)- Lj = (Pihl)-j/(2+v) , 

so that transition rates behave as 

T(Ej) .- k2jt1)(n'TEjjn)12 , 

(1.32) 

where k is the energy of the radiated photon, which is just a level spacing AE. 

Using (1.25) and (1.27) we then deduce that 

r(Ej) (c p-[2j(l+v)+vl/(2+v) lA,2(j+1)/(2+v) . (1.34) 

This has the interesting consequence that for fixed potential strength (XI. r(Ej) is 

a decreasing function of j as PL" for potentials less singular than the Coulomb 

potential. 

Using the Van Royen-Weisskopf formula [5] 

(1.35) 

for vector meson decay, one may easily show that for v>-1 (for which binding 

energies are asymptotically negligible compared with the quark mass) 

f'(Ej)/r(VO+e'e-) p ~-(2j-1)(~+1)/(2+~)lx120/(2+v) , (1.36) 

which implies the dominance of leptonic over radiative decays as p* for fixed 

potential strength 1x1. 

To investigate how observables depend upon the principal quantum number with 

some degree of generality it is convenient to adopt the semiclassical, or JWKB 

approximation. This turns out to be rather less of a compromise than one might at 

first surmise. Judiciously applied, the semiclassical approximation is in fact 

highly accurate for the sort of nonpathological potentials one hopes to encounter 

for quarkonium. This accuracy 1s documented in Ref. 4, where additional references 

may be found. 

The semiclassical results all follow from the quantization condition 



/ 

rC 
dr[Zp(E-V(r))]) = (n-t)nh , 

0 
(1.37) 

where n is the principal quantum number and the classical turning point rc is 

defined through V(rc)=E. Although it is both possible and useful to be more general, 

it is appropriate to retain the spirit of the preceding section and specialize to 

power-law potentials. For s-wave bound states of nonsingular potentials of the form 

(1.18), Eq. (1.37) can be integrated by elementary means to yield 

% 
.z (n-$)2"/(2+v) (1.38) 

where with an eye toward the intended applications I have suppressed the dependence 

on constituent mass and coupling strength given in (1.27). For singular potentials 

additional care is required near the origin. A simple modification of the usual 

procedure leads to 

En = (n-y(v))2v/(2+") , -2<v<o , (1.39) 

where 

7(v) = $y . 
4 1 v 

(1.40) 

Similar expressions may be obtained for orbitally-excited states. 

By evaluating the expectation value in Eq. (1.31) with JKWB wavefunctions, It 

is also straightforward to derive 

t 

(n-&)2(v-1)/(2+v) , v>o , (1.41a) 

l~,(W2 = 

(n-r(,))(“-2)/(2+v) , o>v>-2 . (1.41b) 

For a general nonsingular potential, one may readily show that 

Ip 
n 4,,2,,3 an ’ 

(1.42) 

Generalizations of these results to &CO have also been made, but we shall not 

require them here. Let us now see what can be learned by comparing these simple 

results with experimental information. 

Inferences. The strategy embodied in the preceding paragraphs has been pursued 

explicitly by several authors [4,6-g] and implicitly by many others. The conclusion 

to be drawn from the data is that a potential of the form 

V(r) = A t Br' (1.43) 

with ~10.1 gives a good representation of the J, and T spectra. This is based upon 

four distinct kinds of evidence. 



First, we may note by comparing Figs. 1 and 2 that the level spacings are quite 

similar in the $I and T families. Indeed, the observation that 

MT' - MT = M$O - Ma (1.44) 

provided an early motivation for the logarithmic potential [7]. A more detailed 

look at the intervals in given by Fig. 5, which indicates that 

AE(T) = 0.95 AE($) . (1.45) 

Assuming that the potential strength does not vary between the $ and T systems, this 

implies a small positive power for the effective potential. The precise value of 

the exponent depends upon the ratio of quark masses, which is imperfectly known. 

The principal-quantum-number dependence of observables within one quarkonium 

system is free from the assumption that the potential strength X is the same for 

different quark flavors. Effective powers may be inferred independently from the J, 

and T levels and compared for consistency. The level structures (E~-E~)/(E~-EI). 

etc. are characteristic of the potential shape. These ratios of intervals are the 

same for $ 

E3-E2 = 0.58 
E241 * 

and T 

y2 = 0.59 
E2-E1 T 

states, and are again compatible with v=O.l, as shown in Fig. 6. The ratio 

Eq-E3 
E2-El T 

= 0.39 ) 

displayed in Fig. 7, indicates a similar potential shape. 

The center-of-gravity of 3PJ levels, 

(MPPJ)) = [M(3PO)+3M(3Pl)+5M(3P2)]/9 

(1.46) 

(1.47) 

(1.48) 

(1.49) 

is free of L-S and tensor force fine structure contributions. for the 3PJ levels, 

the mean masses are 

= 3524.9 MeV/c2 

= 9903.3?3 MeV/c2 , 

(1.50) 

so that 

(1.51) 



and 

“(T’)-(M(.rb)) = o 21 
M(T')-M(T) ' 

As shown in Fig. 8, these imply respectively small positive and small negative 

powers. 

finally, the principal quantum number dependence of wavefunctions at the 

origin, or equivalently of the reduced leptonic widths 

r(V"+ete-) Y M2 T(V'+e+e-) 
V 

(1.53) 

is approximately given by 

IY,(O) I2 - l/(n-i) (1.54) 

for both $I and T, as shown in Figs. 9 and 10. This behavior again corresponds to an 

effective potential which is a small positive power. It was this observation for 

the r$ family that led Machacek and Tomozawa [lo] to investigate softer-than-linear 

confining potentials, including logarithmic forms. Taken together, these results on 

principal quantum number dependence would seem to exclude the bizarre possibility 

that the nearly equal spacing in the JI and T families results from a potential 

strength which varies approximately as 

x = ,v'* . (1.55) 

Martin [9] has shown that careful attention to hyperfine effects does not 

change the conclusions of this analysis, namely that the interquark potential 1s 

flavor-independent (as QCO would have it) and characterized by an effective 

power-law potential with a small positive exponent. This is also in agreement with 

the conclusions of all other analyses and fits: In the region of space between 

0.1 fm and 1 fm, the interaction between heavy quarks is flavor-independent, and 

roughly logarithmic in shape [11,12]. 

We may characterize the inferred potential shapes in two convenient 

expressions: as a logarithmic shape [6] 

V(r) = (0.71 GeV)tn(r/ro) , (1.56) 

for which level spacings AE are independent of the quark mass p, lengths scale as 

L=JG -+, and wavefunctions vary as (Yn(0)12 a l/(n-&); or as a power-law [9] 

V(r) = (5.82 GeV)(r/l GeV-1)0.104 - 6.377 GeV (1.57) 

The two forms are numerically indistinguishable for 



O.lfm<r<lfm . - - (1.58) 

Number of Narrow Levels. A semiclassical near-theorem relates the number of levels 

below flavor threshold to the mass of the constituents. This would seem to be a 

questlon ill-suited to a nonrelativistic approach because it is necessary to compute 

both quarkonium (QQ) masses and the mass of the lightest flavor (Q?j) state. The 

latter is unlikely to be governed by a potential theory description. However, a key 

simplifying observation was made by Eichten and Gottfried [13] who noted that the 

mass of the light quark-heavy quark state can be written as 

M(Qq) = M(Q) t M(q) t binding t hyperfine . (1.59) 

Although the binding energy may not be calculable, it is reasonable to suppose that 

it depends upon the reduced mass of the constituents, which tends to M(q) as M(Q)*. 

Thus the binding energy must become independent of the heavy quark mass. 

Furthermore, the hyperfine splitting of the O-+ and l-- (Q?j) levels must certainly 

vary as l/M(Q). It therefore vanishes as M(Q)*. Hence in the limit of infinite 

quark mass, the difference 

6(WQ)) * 2WQfi) - 2YQ) + 6, t (1.60) 

independent of the heavy-quark mass. 

In the regime in which a(M(Q))=a, is a good approximation, the number of levels 

below flavor threshold Is easily calculated [14]. Consider any confining potential. 

In semiclassical approximation the number of levels bound below E=ZM(Q)+6, is 

specified by the quantization condition 

I 

r6 
drCYQ)(6,-V(r))l* = (n-t)m , 

0 
(1.61) 

where to save writing the zero of energy has been set at 2M(Q). The classical 

turning point r6, defined through 

'lr6) = 6, (1.62) 

is independent of M(Q), so we have by inspection the result that 

(n-t) = JF10 (1.63) 

It is likely that the limit (1.60) is already approached within 10% in the 

charmonium system, in which two 3S1 levels lie below charm threshold. Thus there 

should be slightly less than four bound levels in the upsilon family, in agreement 

with the observation of three narrow vector states. The success of this prediction 



provides another verification of flavor independence, which was the principal 

assumption. 

It is interesting to see how the result (1.63) is realized in specific 

potentials. To make this plain, I show in Fig. 11 the evolution with constituent 

mass of the spectra of the potentials V(r)=-r-*, V(r)=&n r and V(r)?, for which 

,E--JL~/~, p", and P-T/~, respectively, according to (1.27). All the levels fall 

deeper into the wells as p is increased. For the potential V(r)=-r-*, singular at 

the origin, the levels spread apart as they sink into the well. For the linear 

potential, no such pit exists, but the levels are packed more densely as p 

increases. The logarithmic potential represents an intermediate case in which the 

level spacing is independent of the mass and levels drop into the well at a ccdnnon 

rate given by 

Ei(p') = Ei(p) - fm(v'/r) (1.64) 

In each case the rate of accumulation of levels below any specific value of the 

energy is given by (1.63). 

A corollary to the conclusion that the classical turning point of the last 

narrow level has become independent of quark mass is that the single-channel 

analysis cannot be extended past about 1 fm. Heavier (Qa) systems will extend our 

knowledge of the interaction to shorter distances, but are unlikely to address the 

nature of the confining potential. 

How many narrow levels of toponium are to be expected? For a top-quark mass of 

45 GeV/c', [15] scaling from +/mb or fit/m, gives lo-11 narrow 3Sl states. The 

full spectroscopy is much richer. For each s-wave, we expect a pair of hyperfine 

partners, the 'SO and 3Sl levels. Similarly there will be four fine- and 

hyperfine-partners for each ,c>l-wave, corresponding to 3~F+l, 3~J, 3t$-l. and 'Jb 

levels. If there are N radial excitations, there will be (N-l) sets of p-waves, 

(N-Z) sets of d-waves, etc. The total number of narrow states is thus [16]: 

N 

2N + 4 
c 

(N-8) = 2N2 (1.65) 

,l=l 
- ZOO-250 levels. 

To conclude this introduction to quarkonium physics, let us verify the 

consistency of the nonrelativistic approach. For a (QQ) bound state, the 

mean-squared velocity is 

(B~)+).pJ~~ , (1.66) 

where m is the quark mass and p-m/Z is the reduced mass. For a logarithmic 

potential of the form 



V(r) = C m(r) , 

the kinetic energy of any bound state is 

<T> = r.!?!! = C/2 G > dr 
, 

so that 

0 $ = c/h 5 350mMeV . 

(1.67) 

(1.68) 

(1.69) 

For the psion family, with mc = 1.5 GeV/c2, we find 

0 
B2 +=0.23 , (1.70) 

while for the upsilons, with mb = 5 GeV/c', we obtain 

0 
E2 T 3 0.07 . (1.71) 

At least the second of these appears comfortably nonrelativistic. For the 

charmonium states, we must be open to the possibility of significant relativistic 

corrections. 

LECTURE 2: MORE ON QUARKONIUM 

The (s?) System. Several authors have attempted to extend the successful description 

of the quarkonium spectrum to light mesons and baryons. This may be done either by 

abstracting the scaling laws from the $ and T states or by transplanting the 

quarkonium potential to what would seem a manifestly relativistic regime. As a 

stimulus to thought along these lines I present in Fig. 12 a highly speculative 

spectrum of (s?) states. Many of the assignments are uncertain, but the resemblance 

to the $ and T spectra is remarkable. For a strange-quark mass m, = 0.5 GeV/c', the 

mean-squared velocity is 

(2-l) 

Whether the spectrum in Fig. 12 (if correct!) shows that a nonrelativistic analysis 

has a wider-then-expected range of validity, or that a deeper principle of hadron 

dynamics awaits recognition, I do not know. 

Theorems. An excellent review of statements about bound-state properties which may 

be proved rigorously in nonrelativistic potential theory has been given by Grosse 

and Martin [17]. Many results have been deduced which pertain to the order of 

levels, inequalities for wavefunctions at the origin, bounds on quark mass 



differences and so forth. The value of such statements is not only that they are 

true, but also that they provide a context for computations based upon explicit 

potentials. It is of great value to understand what must be true for any reasonable 

potential, or for any potential of a particular class, in order to distinguish the 

consequences that may be peculiar to a specific model. I shall cite one example 

that bears directly upon experimental results. 

Consider a quarkonium potential which is monotonic, 

dV/dr 2 0 (2.2) 

and concave downward, 

d2V/dr2 < 0 . (2.3) 

The first property is motivated by simplicity, and the second by the expectation 

that the confining potential rises no faster than linearly. Both are satisfied by 

the effective power-law potentials just discussed. Then if rn>p are masses of the 

constituents of two QQ systems, one may prove [la] that 

1~,(0)12 2 (Wr)l~,(0)12 . (2.4) 

This result holds for the ground state under the assumptions stated, for all levels 

in power-law potentials (compare Eq. (1.26)), and for all levels in a general 

potential satisfying the assumptions, in WKB approximation [17]. It implies a lower 

bound on leptonic widths in the more massive system as, in the case at hand, 

2 M; 
r(Tn-+e+e-) z ~-~.n r(qn+ete-) . 

mc e2 M2 
c Trl 

(2.5) 

The lower bounds on upsilon leptonic widths are plotted in Fig. 13, together with 

the experimental measurements. A b-quark charge of Z/3 is seen to be incompatible 

with the bound. The conclusion that lebl = l/3 is substantiated by the measurements 

of R = a(e+e-+hadrons)/o(e+e-+'-). 

By extrapolating from the upsilons to higher masses one may bound from below 

the integrated cross section for the production of the ground state of the next 

quarkonium family in e+e- annihilations [19]. Using cross section measurements from 

PETRA [ZO] it is possible to exclude on this basis a tf resonance (charge Z/3 

quarks) below 46.78 GeV/c'. 

The String Picture of Hadrons. Suppose that the interactlon among quarks is so 

strong at large distances that a (qB) pair is always created when the quarks are 

widely separated, as depicted in Fig. 14. By analogy with the hadronic clusters 

typically inferred from experiments on multiple production, it is reasonable to 

expect that a quark is accompanied by an antiquark in a typical hadron of mass 



-1 GeV/c' at a separation of -1 fm. That would imply that between every quark and 

antiquark there is a linear energy density of order 

k = AE/Ar J 1 GeV/fm 

= 0.2 GeV2 :: 5/fm2 . (2.6) 

This picture is supported by the evidence for linear Regge trajectories of the 

light hadrons, which are displayed in Figs. 15 and 16. For the families of hadrons 

composed entirely of light quarks, the Regge trajectories are given by 

J(M') = "0 + ar'M2 , (2.7) 

with 

a' J 0.8-0.9(GeV/c2)-2 (2.8) 

The connection between linear energy density and the linear Regge trajectories is 

provided by the string model formulated by Nambu [21]. 

Consider a massless quark and antiquark connected by a string of length '0, 

which is characterized by an energy density per unit length k. The situation is 

sketched in Fig. 17. For a given value of the length r0, the largest achievable 

angular momentum L occurs when the ends of the string move with the velocity of 

light. In this circumstance, the speed at any point along the string will be 

e(r) = 2r/ro . (2.9) 

The total mass of the system is then 

/ 

r0/2 
M=2 drk[1-6(r)2]-) = krOx/2 9 

0 

while the orbital angular momentum of the string is 

/ 

ro/2 
M=2 

0 
drkrs(r)c[1-e(r)2]-* = kcr$n/8 , 

Using the fact (2.10) that t-6 = 4M2/k2x2, we find that 

L = M2/2nk , 

which corresponds to a linear Regge trajectory, with 

aa = 1/2nk 

This connection yields 

0.18 GeV2 0.9 GeVs2 

k= for (I' = 

0.20 GeV2 0.8 GeVs2 , 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 



consistent with our heuristic estimate of the energy density. Thus we see that a 

linear energy density implies linearly rising Regge trajectories, and that the 

connection makes quantitative sense. These results suggest that at separations of 

the order of 1 fm, we may characterize the interquark interaction by the linear 

potential 

V(r) =kr , (2.15) 

while recognizing that because of quark pair creation the situation is not one to 

which one-channel potential theory applies. 

Guessing the Interquark Potential. It is of interest to construct phenomenological 

potentials that incorporate in some approximation the expected behavior of 

perturbative QCO at short distances and reproduce the string picture at large 

distances. We shall consider two simple examples. The Cornell model [22] is a 

simple superposition of Coulomb and linear potentials, 

V(r) = -A/r t Br t C . 

A fit to the 9 and T spectra yields the parameters 

(2.16) 

A = 0.48 

8 = 0.183 GeV2 

1 

. (2.17) 

C = -0.25 GeV 

The slope 6 of the linear term is consistent with the string tension (2.14) inferred 

from the spectrum of light hadrons. The coefficient A, when interpreted [compare 

(1.4)] as 4a,/3, corresponds to a strong coupling constant 

5 = 0.36 , (2.18) 

which is perhaps bigger than one would like, if the Born approximation is to be 

reliable. A second form inspired by QCO is the Richardson potential [23], 

V(r) = /$3 eiQsr [- ~~27Q2,0g;~;,*2+l)l ’ (2.19) 

where the 1 In the argument of the logarithm serves to make the integral easily 

calculable. A fit to the data gives for the QCO scale parameter the value 

A = 400 MeV . (2.20) 

These two potentials are compared in Fig. 18 with the "data-inspired" 

potentials (1.56) and (1.57) discussed in the first lecture. In the region of space 

populated by the narrow $ and T states, the four curves are essentially 

indistinguishable. On the basis of this and other determinations to be discussed in 

Lecture 8, we may assert that the interquark potential has been measured in the 



interval 

O.lfm<r<lfm . - - (2.21) 

We have already remarked that scans at PETRA for narrow resonances produced in 

e+e- annihilation into hadrons have excluded toponium states below 46.78 

GeV/c' [20]. This implies that the top quark mass exceeds about 24 GeV/c2. In 

addition, the UA-1 collaboration at the CERN Collider has presented preliminary 

evidence [15] for the decay sequence 

w+ -3 tb 

L 

(2.22) 

be'v, 

with 

30 GeV/c2 < mt 5 60 GeV/c2 . (2.23) 

We saw in Lecture 1 that for a top quark in the middle of this range, we expect 10 

or 11 narrow 3Sl levels. Now we are in a position to ask in more detail what we 

should expect for the next quarkonium family, and what we might learn from 

it [24-261. 

Outside the region in which JI and T spectra have measured the interquark force, 

the four potentials differ significantly, as shown in Fig. 19. The 13Sl(tt) level 

will have a radius 

0 
r2 3 

tf 
z 0.06 fm , 

where distinctions can be made. As an example, consider the 25-15 interval, for 

which the expectations are displayed in Fig. 20. We see at once that extrapolation 

from the bfi to the tf system is risky for this quantity. Additional parameters are 

collected for the case of mt = 40 GeV/c2 in Table 3. The 25-15 splitting and the 1S 

leptonic width will be particularly revealing. 

Suppose that we take seriously the Richardson potential as the right form at 

short distances, because it ties on gracefully to QCO. Using this as a standard, we 

may ask whether QCO perturbation theory alone would suffice for the lS(tf) state. 

In other words, will the toponium system place us in the simple regime anticipated 

by Appelquist and Politzer [2]? The sketch in Fig. 21 shows that the answer is no: 

the long-range part of the QQ interaction is essential, even for the toponium ground 

state. 

To close our tour of quarkonium systems, I show in Fig. 22 the anticipated 

spectrum of (tf) bound states in the Richardson potential, for a top-quark mass of 

45 GeV/c2. 



LECTURE 3: ASYMPTOTIC FREEDOM, CONFINEMENT, AND THE l/N EXPANSION 

Asymptotic Freedom. The physical origin of the antiscreening of color charges that 

characterizes QCO is indicated by calculations of the effective charge in a variety 

of gauges, cited in the Bibliography. A less familiar, but quite evocative, 

description of how asymptotic freedom arises is provided by the magnetic moment 

interpretation (271. 

The interaction between charges in vacuum is described in momentum space by 

e$/q2. In the presence of matter, this is modified to e$/q2c(q), where e(q) is the 

dielectric constant or, more properly, the dielectric function. It is convenient to 

define the "running charge" by 

e2(q) q &c(q) . (3-I) 

The magnetic permeability of the medium can be defined through the relation 

sll=l . (3.2) 

In ordinary matter, or in the QED vacuum, the dielectric constant is greater than 

unity, 

E>l , 

so that the medium is "diamagnetic," with 

(3.3) 

p<l . (3.4) 

In contrast, the antiscreening of QCO corresponds in this language to paramagnetlsm 

(!J>l). 

We may write the q2-evolution of the magnetic permeability as 

P = 1 + 92xws2/q~) 3 (3.5) 

where g2-+e2 for electrodynamics. The generalization to arbitrary spin of a standard 

condensed-matter formula for magnetic susceptibility (derived In a uniform 

background magnetic field) is 

X’ e-i..- T,- [ [2S,)2- $1 . 

16n2 

+” bosons ) . 

-1, fermions 
(3.6) 

The first term (2S,)2 in the trace is the Pauli paramagnetism, which arises from the 

interaction of the intrinsic dipole moments (with gyromagnetic ratio g=2) with the 

background field. The term (-l/3) is the Landau diamagnetism, which arises from the 

quantlzation of orbital vacuum currents. 

Using (3.6) we can quickly recover some familiar results: 



(i) QED 

-1 x=F 

16n2 [ 1 l- f X(2 spin states) = - -L 

12x2 
, 

so that 

P(d) = 1 - 22 log(s2/q$ 
3r 

(ii) Scalar electrodynamics 

z-1 , 

4ar 2 

so that 

p(q2) = 1 - 0 log(q2/q$) 
12n 

(iil) Charged vectors 

1 x=- 

163' E 1 4- : x(2 spin states) = 

so that 

p(q2) = 1 + Lh log(q2& 
6n 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

where we have weighted (3.7) and (3.11) by the effective color-charge-squared for 

triplets (for nf quark flavors) and octets, respectively. The resulting evolution 

of the magnetic permeability is 

v(q*) = 1 + 333~*nf]log(q*/q$) , 

which shows the expected paramagnetic behavior. 

(3.14) 

A Metaphor for Confinement 1281. It is typical in field theories that the coupling 

constant depend upon the distance scale. As we have seen, this dependence can be 

expressed in terms of a dielectric constant E. We define 



c(rO) 3 1 , (3.15) 

and write 

g'(r) = g*(ro)/c(r) . (3.16) 

We assert that the implication of asymptotic freedom is that in QCD the effective 

color charge decreases at short distances and increases at large distances. In 

other words, the dielectric "constant" will obey 

c(r) > 1 , for r < r. , 

E(r) ( 1 , for r > r. . 

Indeed, to second order in the strong coupling we may write 

(3.17a) 

(3.17b) 

E(r) = 1+ 1 !!f?!X! 
[ 

-1 

2r 4n 
(ll-2nf/3)ln(r/rO)+O(g4)] (3.18) 

in QCD, where nf is the number of active quark flavors. 

Let us now consider an idealization based upon electrodynamics. In Quantum 

ElectroDynamics, we choose 

'vacuum 
= 1 1 (3.19) 

and can show [29] that physical media have c>l. The displacement field is 

D = E + 4rP , (3.20) 

and atoms are polarizable with P parallel to the applied field E, SO that IDIzIEI. 

Since the dielectric constant is defined through 

D = EE 

in these simple circumstances, we conclude that ~>l. For a thorough treatment, see 

Oolgov et al. [30]. 

Now let us consider, in contrast to the familiar situation, the possibllity of 

a dielectric medium with 

'medium =o , 

a perfect dia-electric, or at least 

(3.21) 

'medium <' ' 1 (3.22) 

a very effective dia-electric medium. We can easily show that if a test charge Is 

placed within the medium, a hole will develop around it. 

To see this, consider the arrangement depicted in Fig. 23a, a positive charge 

distribution P+ placed in the medium. Suppose that a hole is formed. Then because 

the dielectric constant of the medium is less than unity, the induced charge on the 

inner surface of the hole will also be positive. The test charge and the induced 



charge thus repel, and the hole is stable against collapse. In normal QED, the 

induced charge will be negative, as indicated in Fig. 23b, and will attract the test 

charge. The hole is thus unstable against collapse. 

The radius R of the hole can be estimated on the basis of energetics. Within 

the hole the electrical energy Win is finite and independent of the dielectric 

constant of the medium. The displacement field is radial and hence continuous 

across the spherical boundary. Thus it is given outside the hole by 

0 out(r>R) = G/r2 , (3.23) 

where Q is the total test charge. The induced charge density on the surface of the 

hole is 

'induced = (1-c)TD(R)T/4nr = (l-t)Q/4rcR2 , (3.24) 

which has the same sign as Q, as earlier asserted. Outside the hole, the electric 

field is determined by the total interior charge 

Q + (l-~)Q/c = Q/E , (3.25) 

so that 

E out(r>R) = AQ/Er2 . (3.26) 

The energy stored in electric fields outside the hole is then 

W out = 2 d3rDout(r).Eout(r) = )/mr2drQ2/,r4 = Q2/2cR . 
R 

(3.27) 

As the dielectric constant of the medium approaches zero, Wout becomes large 

compared to Win, so that the total electric energy 

W el *"intwout+"out 3 asE+O . (3.28) 

One must consider as well the energy required to hew such a hole out of the medium. 

For a hole of macroscopic size, it is reasonable to suppose that 

W ho,e = 4 nR3v t 4nR*s + . . . 
3 

, (3.29) 

where v and s are non-negative constants. The total energy of the system, 

w = we1 ' "hole 9 (3.30) 

can now be minimized with respect to R. In the regime where the volume term 

dominates Whole, the minimum occurs at 

R=($&Y+O , (3.31) 



for which 

W el s 2E ( > 
2 + (4rv)i , (3.32) 

and 

so that 

we; p ( ) (41v)i . 

(3.33) 

(3.34) 

Thus, in a very effective dia-electric medium, a test charge will induce a 

bubble or hole of finite radius. Notice, however, that in the limit of a perfect 

dia-electric medium 

W+m as E-+0 . (3.35) 

An isolated charge in a perfect did-electric thus has infinite energy. 

If instead of an isolated charge, we place a test dipole within the putative 

hole in the medium, we can again show that the minimum energy configuration occurs 

for a hole of finite radius about the test dipole. In this case, however, the field 

lines need not extend to infinity, so the hole radius remains finite as c+O, and so 

does the total energy of the system. The analogy between the exclusion of 

chromoelectric flux from the QCD vacuum and the exclusion of magnetic flux from a 

superconductor is now obvious. To separate the dipole charges to ?m requires an 

infinite amount of work, as shown in the previous example. This is the would-be 

analog of quark confinement. 

The l/N Expansion in Particle Physics (or, Why QCO May Be the Solution to the 

Hadron Spectrum). The search for small parameters which can play the part of 

expansion parameters is a central element of the process of approximation and model 

making that is theoretical physics. In many physical situations, extremes of energy 

or distance suggest highly accurate and readily improved approxlmation schemes. In 

classical electrodynamics the indispensable far-field approximation is applicable 

when the size of a radiator is negligible compared to the distance between the 

radiator and receiver. The Born approximation for the scattering of 

charged-particle beams from atomic electrons is trustworthy for beam energies 

greatly in excess of the atomic binding energy. In Quantum ChromoDynamics, a 

perturbative treatment (which is to say an expansion in powers of the strong 

coupling parameter u,(Q*)) is expected to be reliable when the invariant momentum 



transfer Q* is large compared to a characteristic mass scale denoted by A*. 

For the problem of hadron structure, no similar expansion is applicable. All 

of the relevant energies of the problem are on the order of the naturally occurring 

scale. In a typical hadron, the separation of the quarks is simply the hadronic 

size of approximately 1 fm-hardly a regime in which perturbative QCO is likely to 

make any sense. We may, of course, simply await the day when a very heavy 

quarkonium family is found, and then happily apply conventional perturbative 

measures. That insouciant course however leaves untouched the problem of the 

structure of all the hadrons now known, so other actions are called for. 

The strategy of the l/N expansion is a familiar one. When confronted with a 

problem we cannot solve, we invent a related problem that we can attack. If this is 

done adroitly, the new problem will not only be simpler but will also capture the 

physical essence of the original one. More specifically, the l/N expansion 

represents an attempt to introduce a parameter that permits a simplification of the 

calculation at hand. 

For QCO, this simplification is achieved [31] by generalizing the color gauge 

group from SU(3), to S.)(N), and considering the limit in which N becomes very large. 

Although Xl(N) is in general more complicated than SU(3), the hadron structure 

problem is simplified oy two observations: 

(i) At any order in the strong coupling constant, some classes of diagrams are 

found to be combinatorially negligible. 

(ii) The remaining diagrams have common consequences, in large-N perturbation 

theory. 

This technique does not entirely free us from the constraints of perturbative 

analysis. Since we shall find, by inspection, that entire classes of 

combinatorially favored diagrams have conmon features to all orders in the coupling 

constant, we shall have to assume that the content of the theory is accurately 

represented by the set of all diagrams. For QCO, the best evidence for the 

reliability of the l/N expansion is that SU(N), QCD seems to resemble the world we 

observe. 

The combinatorial analysis of SU(N), QCO is most transparent in terms of the 

double-line notation introduced for this purpose by 't Hooft [31], which is 

illustrated in Fig. 24. Several examples will suffice to make the main points. 

Consider first the lowest-order vacuum polarization contributions to the gluon 

propagator, the quark loop illustrated in Fig. 25a and the gluon loop pictured in 

Fig. 25b, in conventional notation. These are redrawn in the double-line notation 

in Fig. 25c, d. For an initial gluon of type ij, only a single color configuration 

is possible for the quark loop intermediate state: a quark of color 1 and an 

antiquark of color j. For the gluon loop, however, the index k is free to take on 

any value 1, 2, . . . . N. Thus the gluon loop diagram has a combinatoric factor N 

associated with it. This illustrates the general rule that gluon loops dominate 

over quark loops by a factor of N, as N+. 



The presence of the factor N would seem to imply that the gluon loop diagram 

diverges as b. This can be cured by choosing the coupling constant to be g/fl, 

with g fixed as H-*0. Then for any value of N, the contribution of the gluon loop 

goes as 

(!3/fi)*xN + g* , 

a smooth limit. 

That this device solves the divergence problem in general is indicated by an 

analysis of diagrams with more than one loop. The two-loop diagram depicted in 

Fig. 26 in (a) standard and (b) double-line notation is inmediately seen to be 

proportional to 

(g/fi)4xN2 + g4 

Similarly, the three-loop diagram of Fig. 27 obviously goes as 

(g/d+43 + g6 

The situation is different for nonplanar graphs, however. The simplest such 

graph is shown in Fig. 28. The double-line notation makes it apparent that this 

graph contains but a single, tangled color loop, and therefore goes as 

(g&.N -t g6/N* I 

and is therefore suppressed by l/N* compared to its planar counterpart at the same 

order in g*. It is generally the case that nonplanar graphs are reduced by l/N', as 

NW. 

These combinatorial arguments select planar graphs as an important subclass. 

To evaluate and sum all the graphs thus selected is no trivial task. Instead, we 

may identify their cmmion features and speculate that these survive confinement. It 

is possible in this way to establish the following results in the large-N limit: 

(I) Mesons are free, stable, and noninteracting. For each allowed combination 

of Jpc andyflavor quantum numbers, there are an infinite number of resonances. 

(ii) Zweig's rule is exact. Singlet-octet mixing (through virtual 

annihilations) and meson-glue mixing are suppressed. Mesons are pure (qa) states, 

with no quark-antiquark sea. 

(iii) Meson-meson bound states, which would include particles with exotic 

quantum numbers, are absent. 

(iv) Meson decay amplitudes are proportional to l/J, so mesons are narrow 

structures. 

(v) The meson-meson elastic scattering amplitude is proportional to l/N and is 

given, as in Regge theory, by an infinite number of one-meson exchange diagrams. 

(vi) Multibody decays of unstable mesons are dominated by resonant, quasi-two 

body channels whenever they are open. The partlal width of an intrinsically k-body 



final state goes as l/Nk-T. 

(vii) For each allowed Jpc there are inflnitely many glueball states, with 

widths of order l/N*. They are thus more stable than (qq) mesons, interact feebly 

with (q:) mesons, and mix only weakly with (q{) states. 

Until QCO is actually solved, we will not know how closely the N-W limit of 

SUN), resembles the case of interest, which is color W(3). The preceding list of 

large-N results does bear, however, a quite striking resemblance to what is observed 

in experiments. To the extent that the l/N expansion faithfully represents the 

consequences of QCO, much of the familiar phenomenology is explained, and many of 

the model approxjmations are justified. 

It is worthwhile to indicate diagranatically how some of these consequences 

arise. Two-body decay of a color-singlet into color-singlets is illustrated in 

Fig. 29. In fourth order, the amplitude is given by 

A = (g/m4.N3.(1/q3 (3.40) 

where the N3 is the combinatorial factor for three loops, and a factor of l/JN 

occurs for each color-singlet projection. The decay amplitude is therefore 

proportional to ~/JR. 

To the same order in the coupling constant, the propagator of a color singlet, 

indicated in Fig. 30, goes as 

(g/fl)4.N3. (l/d)' - g4 

independent of N. 

(3.41) 

Compared to the allowed decay, the disconnected quark line diagram of fig. 31 

is suppressed by an additional power of l/N. In this case the amplitude is 

A = (g/Jfi)4.N.(1/8) 0~ g4/N& . (3.42) 

As a final example, mixing between (qTj)-mesons and (q*q*)-exotics proceeds at 

fourth order by the diagrams of Fig. 32. The mixing amplitude goes as 

A = (g/&)4.N2.(1/&j2 = g4/N . (3.43) 

which vanishes in the large-N limit. 

This brief survey shows that the l/N analysis of SU(N), reproduces some of the 

features of meson spectroscopy. It is of clear interest to learn to what extent 

these results are indeed representative of QCO, the theory based on SU(3),. To the 

extent the correspondence can be made, the l/N analysis motivates the neglect of 

quark loops in lattice QCO. 



LECTURE 4: TOWARO LATTICE GAUGE THEORY 

In this lecture, we begin to formulate QCO on a lattice. Nonperturbative 

methods are called for on two accounts. Perturbation theory will not converge if 

coupling constants are large, and perturbation theory is not complete. It gives no 

hint of intrinsically nonperturbative phenomena such as barrier penetration, soliton 

solutions or (central to our purposes here) color confinement. There are also 

several reasons for introducing a space-time lattice. It provides an ultraviolet 

cutoff, allows us to bring the full arsenal of statistical-mechanical methods to 

bear on field theory, and gives a nonperturbative implementation of QCO. 

Our goal in this lecture will be to make precise the connection between quantum 

mechanics and statistical mechanics. To do so, we review the path-integral 

formulation of quantum mechanics developed by Feynman [32]. It is helpful to 

proceed by example; we consider the harmonic oscillator in l-dimension, for which 

the Lagrangian is 

li"= )(mi2-w2x2) (4.1) 

The amplitude for the transition from the initial space-time point (x,, ta) to the 

final point (xb, tb) is 

2 f c ,iS/h = 
/ 

px(t) 1 eiS[x(t)l/h , 

paths 

where the classical action is 

(4.3) 

To give meaning to (4.2) we must provide a sensible operational definition of the 

sum over paths. 

We first introduce a space-time lattice so various paths may be labelled 

simply. It is convenient to regard time as a discrete variable, and to choose a 

lattice with equal time slices 

ti+l - ti = E (4.4) 

as shown in Fig. 33. The expression (4.2) for the amplitude contains rapidly 

oscillating phases from the factor e iS/h. To tame these, we continue to imaginary 

time by writing 

t=-i7 , 

SO that 

(4.5) 

m(dx/dT)*tu2x2 1 . (4.6) 



The phase factor eis/' is therefore replaced by e -5,fl , where the Euclidean action is 

given by 

$= m(dx/dr)*tw*x* 
3 . 

(4.7) 

If the integral is replaced by a sum over discrete time slices, the Euclidean action 

becomes 

“=; 

cl 
(xi+l-xi 1 

2 t ,2x? 

2 7 . 
i 1 

(4.8) 

The similarity between the Schradinger problem and a one-dimensional 

statistical system is now evldent. The partition function 

2s 
c 

-BE 
e state 

1 (4.9) 

states 

with B=l/kT, is a sum over Boltzmann weights for all possible configurations of the 

system. We may compare this with the quantum mechanical transition amplitude 

Z =pzsebi/h = L dxIL dx2...[ dxW e-'/h . (4.10) 

We see at once the correspondences: 

Quantun Mechanics Statistical Mechanics 

Euclidean action ? Hamiltonian* 

f-4 l/8 - T 

The limit f&l picks out the classical trajectory, without quantum fluctuations, just 

as T-PO is a frozen point in statistical mechanics, free of thermal fluctuations. 

In the particular case of our example, there is a correspondence between the 

quantum mechanical problem of the harmonic oscillator and a statistical mechanics 

problem involving nearest-neighbor interactions. This is exhibited more clearly if 

we rewrite the partition function as 

z= dXiT(xi+l,xi) 1 1 (4.11) 

1 (xitl-xi)* + * 
T(xi+l,xi) = ev - z 

f [ 
w EXitl * + Ax; 

E 
2 2 It 

is the transfer matrix. To establish the equivalence with the Hamiltonian 

formulation of quantum mechanics, choose operators x and p such that 



XIX> = XIX> , 

with 

(4.13) 

<X’lX> = 6(x,-x) . 

The basis is assumed to be complete, so that 

I = dx lx><xi . 
/ 

The conjugate momentum operator p satisfies 

[e,xl = -ih , 

and so generates translations: 

-ipa/h 
e Ix> = Ixta> 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

Using these operators we construct the transfer operator 1 with matrix elements 

'x'lIlx> = T(x',x) , (4.18) 

which evidently corresponds to the time-evolution operator of quantum mechanics, and 

must therefore be related to the Hamiltonian. The partition function may be written 

in terms of the transfer operator as 

m 

z = 

m 
dx~~x~+llllx~> 

-m 1 

= 
/ 

<xblIl XN-l'dXN-l'XN-1l~i X,.,-2>. . . <xl ITlx,) (4.19) 

= <XblINIXa> , 

where N is the number of time slices and the last step follows from the completeness 

property (4.15). As a final preliminary to expressing T(x',x) in operator form, we 

note that 

<x'lexp(-q*/*)lx> = 
I 

dpdp'<x'lp'><p'lexp(-Ee*/Z)lp><p)x> 

1 =- 
2% / 

dpdp' e 
ip'x'/h e-cP2/2 -ipx/h 

e J(P'-P) 

1 =- 
2n / 

dp eip(x'-x)/h -up*/* 
e 

(4.20) 

= __ exp - 1x’-x)2 1 
J2wc r 

. 

*dl* 1 

The transfer operator satisfying (4.18) may therefore be written as 



I = exp(-c.2~z/4h)exp(-EQ2/2h)exp(-Ew2112/4h).constant . 

Using the operator identity 

(4.21) 

AB 
ee = exp{A + B + *[A,81 + . ..I , (4.22) 

we find that 

T = constant.ex 
PE 

-,(Q2+,2x2]/2fl + O(2) - 1 . (4.23) 

In the limit of vanishing lattice spacing E+O, the transfer operator approaches 

I + constant.exp(-EzJh) , (4.24) 

with 

a-f = * ($+,2,2) - (4.25) 

To see the equivalence of the transfer formalism to the SchrUdinger equation, 

consider the evolution of an arbitrary state $(x,r). We may write 

$(X',T') 3 <X'IqJ> = 
I 

dx Z(X',T',X,T)$(X.T) 

= 
/ 

dx<x'TITxXxT$>, . (4.26) 

For an infinitesimal time interval 

TI -T=E (~4.27) 

we haw 

$(X1,%') = 
/ 

dx<x'Iexp(-E~/~)Ix)<xI*>5 

zz 
/ 

dx<x'I(l-E~h)l~><xI*>~ 

= U(X',T) - p?'u(X',T) , 

so that 

p(x’, r’)-$(x’,r)J = fi au (X’,T) = -Jvw(x’>~) 
ar 

I 

(4.28) 

(4.29) 

which we recognize as the Euclidean form of the SchrUdinger equation. 

We may give a more general definition of the Hamiltonian as 

3yp, = (-h/E)ln T , (4.30) 

the coefficient of the term in In 1 linear in the lattice spacing E. As E-MI, xc -+ 

& In this picture, operators are independent of T, and all the r-dependence is 

carried by the state functions. 

Let us close with a few general observations. In statistical mechanics. 



thermodynamic properties are determined by the largest eigenvalue of the transfer 

matrix. In quantum mechanics, the corresponding eigenvector has the lowest 

eigenvalue of gp: it is the vacuum, or ground state, of the system. Notice that if 

we impose periodic boundary conditions and integrate over all initial positions, 

2 = (xbIINlxa)+ tr IN , (4.31) 

which emphasizes the importance of the largest eigenvalue. 

The path-integral and Hamiltonian formulations of quantum mechanics are 

equivalent. Roughly speaking, the path-integral approach is more efficient for 

scattering problems, and the Hamiltonian language is superior for bound-state 

problems. 

LECTURE 5: FIELD THEORY ON THE LATTICE 

In this lecture we shall make the connection between statistical mechanics and 

quantum field theory. The same general ideas that we have exploited in Lecture 4 

will apply here. Let us first recall the correspondence between quantum mechanics 

and field theory: 

Quantm Mechanics Quantun Field Theory 

position x dynamical variables u(x): field values at 
each point x in d-l 
dimensional space 

particle trajectory path space-time history of 
the field 

In seeking the precise correspondence between statistical mechanics and field 

theory we shall once again proceed by example, this time studying scalar field 

theory in d-dimensions, for which the Lagrangian is 

9’= /- dd-1, [ t<$ -*(vo)2 - $+2 - $1 . 

As before, the classical action is 

/ 

tb 
S= dt 

ta 

and the path integral can be defined as 

2 = 
c 

is/h 
e = [ao(x)]e~s[w'~ 

/ 
, 

paths 

and our task is to give a meaning to the path integral. 

(5.2) 

(5.3) 



To begin, we continue to imaginary time, 

t+-ir (5.4) 

We ~ this can be done. A demonstration that this is permissible was given 

order-by-order in perturbation theory for all Green's functions by Schwinger [33]. 

We next formulate the theory on an isotropic, Euclidean space-time lattice with 

lattice spacing a. This regularizes ultraviolet divergences because no wavelengths 

shorter than a (no momenta in excess of n/a) appear. The Euclidean action becomes 

(5.5) 

where n = (no; nl, n2...nd-T) labels lattice sites. 

i,, one lattice step along the r-direction. 

We denote by the "unit vector" 

The difference operator is defined as 

Apf(n) = f(t&,,) - f(n) . (5.6) 

We may rewrite the Euclidean action more compactly as 

b,o(n)12 + b[o(n)12 + u[+(n)14 9 
where 

(5.7) 

K = +,d-2 (5.8) 

is the nearest-neighbor coupling, and 

b = n2ad/2 3 

u = TX/ad/4 . (5.9) 

The path integral for the lattice theory is (hereafter we set ~1) 

Z= 
II/ 

(D d+(n)e 3 , 

n -aD 
(5.10) 

which corresponds to the partition function of a d-dimensional statistical mechanics 

problem, with boundary conditions on the path integral specifying $ on initial and 

final temporal slices. 

As we did in quantum mechanics, we define a transfer matrix to propagate the 

field o(n) in the time direction, from 0 on one time slice to 0' on the next: 



($'[11+> = exp K[$‘(n)-Hn)12 + 
. 

d-l 

+K 
2 C( 

[o*(n+~,)-$'(n)]2 + [e(n+;l,)-$(n)12) (5.11) 

p=l 

+ iCQ’(n)2+o(n)21 + iCe’(n)4+o(n)41 11 . 
To obtain an operator expression, define second-quantized conjugate fields a(n), 

E(n) satisfying 

Mn'), a(n)] = -ia,,,, . (5.12) 

Manipulations parallel to those of the quantum mechanical case yield 

I=e#-+~{K~ [~'(t~+$,)-a~(n)]~ + ba'(n)2 + ~@'(o)~ 11 
xexp [-K T 4nj2) (5.13) 

]a(n+i,)-a(n)]* + bk(n)2 + uk(n)4 11 1 

Just as for quantum mechanics, we can identify the lattice Hamiltonian operator J& 

by 

I=e 
-,ap,a 

(5.14) 

We are now in a position to relate field theory on a lattice to a statistical 

mechanics analog with greater precision. We will show the correspondence 

Statistfcal Mechanics WY 

Free energy density Vacuum energy density 

Correlation function Propagator 

l/Correlation length Mass gap 

We begin by expanding the transfer operator in a set of orthonormal eigenvectors 

with real energy elgenvalues El: 

I = Tt = 
c 

-E,a 
- li>e <iI . (5.15) 

i 

The partitfon function corresponds to 

2 = tr LNtl (5.16) 



for evolution through N+l time slices. The trace in (5.16) arises from identifying, 

and sumning over, the initial and final fields. 

In this basis, 

IN+1 = 
c 

]i>exp[-(N+l)Eia]<i( . (5.17) 

i 

Consider the limit of infinitely many time slices (N-*o), and suppose there is a 

unique (vacuum) state of minimum energy EU, corresponding to the largest eigenvalue 

of T: - 

Lim INtl + (U>e-EoAt<OT , (~5.18) 
N-b 

where At is the dtfference between final and initial times. In this limit, the path 

integral Is 

2=e 
-EOAt 

(5.19) 

This is to be compared with the connectlon in statistical mechanics between the 

partltion function and the free energy, 

2 = ,-BF = ,-F/kT . (5.20) 

The free energy can be expressed as the free energy density times the space-time 

volume, 

F E U - TS = fVAt . 
If in analogy we write the vacuum energy eigenvalue as 

(5.21) 

EC = o,,V , 

where WU is the energy density of the vacuum, we may identify 

Bf=WU , 

the desired connection. 

Next, we construct the field theory propagator in Minkowski space, 

(5.22) 

(5.23) 

A(t;x) = ‘OI9’P(t;x)P(O;O)Io> , (5.24) 

where the Heisenberg-picture field operators are related to the Schrddinger-picture 

operators by 

*(t;x) = e 
fast 

m(x)e 
-i&t 

(5.25) 

and Tdenotes "time-ordering." In terms of the Schrtldinger-picture fields, the 

propagator is 



A(t;x) = cOl$(x)e 
-ixst iEOt 

a(O)lO>e . (5.26) 

Now consider the correlation function in statistical mechanics, which is defined by 

C(n) = C(ng;n) = (l/Z) n Idg(nb,n'))(ng,n)"(O.O)e-~ . 

qj,n' 

We organize the sums over configurations so that for each time slice nb we integrate 

over all the spatial sites n'. Except for the initial and final time slices n,',=O and 

nb=no, the reorganized sums are identical to those appearing in the definition of 

the partition function 2. By the usual steps, we obtain the operator expression for 

J& correlation function, 

C(no,n) = 
trtIPa(n)lnoa(0)IL} 

tr {INtl} 

where P + no t L = Ntl. 

Now let P, no, L •) m so we may use (cf. (5.18)) 

IN = 10>e-EoAt<OJ 

We find 

C(no,n) = <OIk(n)e -nosasdp(0), O>enoEoa 

(5.28) 

(5.29) 

Comparing with the field theory propagator (5.26) we see that 

C(ng;nl - A(-inoa;na) . (5.30) 

This establishes the correspondence between the correlation function in statistical 

mechanics and the field theory propagator far imaginary times. 

For a statistical system not at a critical point, the correlation function 

falls exponentially: 

C(no;O) - exp[-lnol/cl for Ino1 >> c , (5.31) 

where E is the correlation length. Compute the imaginary-time propagator in the 

same approximation: 

A(-inga;O) = <ol&(o)e 
-&no.3 

a(O) fO>eEonoa 

= c (OIk(Q)e -&&a I~><fl~(O)lO>e Eonoa 

q t em [ -noa(Eo)] I<OIB(O)IL~ 
L 

P 

I2 

,,I2 , -9 exp 
nod>>1 1 

-nga(E1-E0) I<Olk(O)ll 
I 

(5.32) 



where II> is the particle state of smallest energy, the lightest particle state at 

zero momentum. If we identity the mass gap, or particle mass, as 

m = EI - EO , (5.33) 

we have 

A(-inOa;O) - exp -nOam 1<01~(0)11>1* . 
( ) 

(5.34) 

Consequently, so long as the matrix element <Ola(O)ll> is nonvanishing, we may 

identify the mass gap with the correlation length through l/E-am, or 

m = l/aC . (5.35) 

A nonzero mass corresponds to a finite correlation length, which is to say an 

uncritical statistical system. The correspondences between statistical mechanics, 

quantum mechanics, and quantum field theory reviewed in this lecture and the 

preceding one are sutnnarized in Fig. 34. 

LECTURE 6: GAUGE SYMMETRIES ON THE LATTICE 

In this lecture, we consider models with global or local discrete or continuous 

symnetries on the lattice. Our objectives are to learn how to formulate gauge 

invariant theories on the lattice, and to see how the methods of statistical 

mechanics lend themselves to the study of QCD. 

The Ising Model (341. A simple and informative spin system is the Ising Model of a 

ferromagnetic material in two dimensions. Consider a two-dimensional square lattice 

as shown in Fig. 35 with a spin a = rl on each site. In the absence of an applied 

magnetic field, the theory is determined by its nearest-neighbor interactlons. The 

configuration energy, or Euclidean action, is given by 

$01 = BE[U] = -B c LT,oj , (6.1) 

<ij> 

where Cij) denotes a sum over nearest-neighbor pairs, or "bonds," and the minus sign 

[which favors alignment of neighboring spins) is appropriate for a ferromagnetic 

substance. The model has a global up-down symmetry. That is, the configuration 

energy is unchanged if all spins are reversed. The partition function is 



8 Z Oiaj 
Z= e-~E[al = c e <iJ> 

confi$Ztions 
[aI 

(6.2) 

The Ising model in two dimensions is exactly solvable, nnost simply by transfer 

matrix methods. It displays a second-order phase transition - spontaneous 

magnetization - at a critical temperature 8,=0.4407, corresponding to the condition 

sinh(Zs,)=l. The behavior of the net magnetization M=<o> is sketched in Fig. 36. 

The sign of the spontaneous magnetization is random, which is to say unpredictable. 

This is characteristic of spontaneous symmetry breaking. 

It is quite illuminating to watch a Monte Carlo simulation of the Ising model. 

Some representative configurations are shown in Fig. 37. At zero temperature, the 

system is completely ordered, so that lMl=l, and the up-down symnetry is broken. As 

the temperature is raised, small bubbles of flipped spins arise. When the 

temperature exceeds the critical temperature, the bubbles expand and merge, so that 

M=O. The system is then disordered, and the up-down symnetry is restored. 

If we think of the lattice as a space-time lattice, the connection with field 

theory becomes apparent. Bubble formation corresponds, in the language of Feynman 

diagrams, to vacuum fluctuations. A domain boundary can be regarded as the world 

line of a (virtual) particle-antiparticle pair. 

2.9 Lattice Gauge Theory. A spin system with local up-down synsnetry was constructed 

by Wegner [35]. Consider a cubic lattice in d-dimensional space-time, as indicated 

in Fig. 38. Lattice sites are labelled by the coordinate n, and links are labelled 

by the site n and a lattice unit vector p leaving the site. An Ising spin o=?l is 

placed on each link. In the two-dimensional sketch of Fig. 38, the spins at site n 

are 

u(n,C) , a(n,i) , a(n,-S) , a(n,-G) . 
A local spin flip (or rotation), which is to say a gauge transformation 3(n) at 

site n changes these spins to 

-fl(n,i) , -o(n,i) , -a(n,-G) , -a(n,-3) . 

A nontrivial action invariant under local spin flips is given by the product of 

spins around elementary squares (plaquettes) of the lattice, 

s= 
c 

o(n,~)o(n+~,~)0(&+~,-~)o(n+~,-~) , 

n 
(5.3) 

as shown in Fig. 39. A plaquette involves two links at each lattice site. Under a 

local spin flip S(n), 



o(n,li) -+ -o(n,;) 

I 

, (6.4) 

o(n+G,-G) = o(n,$) + -o(n,G) = -0(&,-i) 

so S+S. The same invariance holds for any closed curve used to define the action. 

The plaquette is the most local definition one can devise. 

Using the freedom conferred by the local spinflip invariance, it is easy to 

show that the 7.2 theory in two dimensions is equivalent to the one-dimensional Ising 

model. We choose all the links (I( A t+y)=l, whereupon 

S+ 
c 

o(n,G)o(n+;+;,-^x) 

n (6.5) 

= 
c 

o(n,Ti)o(n+;,;O . 

n 

This theory has no phase transition: the spins are always disordered, with <o>=O, 

except at T=O. 

A Lattice Theory with Continuous Symmetry. A representative model with a global 

continuous symmetry is the planar spin model. On each site of a (two-dimensional) 

square lattice, we place a planar spin 

Z(n) = 
cos e(n) ( > sin e(n) . 

A nearest-neighbor action is 

S = -K 
c 

;(n).G(n+;) 

n,ff 

= -K 
c 

cos[e(n)-e(n+;)] . 

n,P 

With the finite-difference, or lattice-derivative, notation 

Ape(n) = e(n+;) - e(n) , 

we may write 

S = -K 
c 

cos[Ape(n) 1 , 
n,r 

which is manifestly invariant under a global phase rotation 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

e(n) + e(n) + (1 . (6.10) 

The generalization to a locally syrnnetric theory is easily made by following 



the example of Wegner's Z2 theory. We place angular variables characterizing planar 

spins on each link of a lattice, as shown in Fig. 40. The sum of angles around a 

plaquette, 

P, i e,(n) + e,(n,;i) + e-,(&G) + e-y(n+3) 
(6.11) 

= e,(n) - e,(n+i) f ey(r&) - e,(n) , 

is unchanged by local angular rotations 

BP(n) + e,(n) + e(n) . (6.12) 

Notice that the sum of angles around a directed plaquette is simply the discrete 

curl 

P, = A,ey - Aye, (6.13) 

or, in an arbitrary dfmension, 

&” = A,a,, - A,,ev . (6.14) 

The sum of angles along an open string is changed by angular rotations only by the 

phase changes at the endpoints. 

Now consider simultaneous gauge transformations 

ep(n) -) BP(n) + x(n) 

ep(n+G) + ep(n+k + x(14 1 . 

(6.15) 

The net change in e,,(n) is 

e,(n) + ep(n) + x(n) - x(4 

q ep(n) - $x(n) , 

while 

(6.16) 

3pv + 3pv . (6.17) 

This is a spatially discrete form of the local gauge invariance of electrodynamics: 

(6.18) 

This similarity suggests that we base a locally phase-invariant lattice action 

on the phase factor 

exp - 3 
[ h 

W,,A”] 

that leads to QED [36]. A possible form is to take the phase factor around the 

edges of a plaquette: 



'plaquette = K(U(l)U(2)U(3)U(4) + c.c.] , 

where 

U(j) = exP [ie Iside jdxyliV] 3 exp [ie,] 

(6.19) 

is an element of the group U(l), and the sides are labelled as shown in Fig. 41. We 

saw earlier that the sum of angles around a plaquette is the locally gauge- 

invariant quantity s,,,(n). Comparing with the nearest-neighbor action (6.9), we 

have 

Sp = -K COS(.Y,,) J -K l-3;,/*+... 1 . (6.21) 

The constant term is free of dynamics, so we redefine the plaquette action without 

it, as 

3 
. (6.22) 

We may write the lattice action in terms of a sum over plaquettes, as 

S = c K [l-cos(q,v(n)J] 

n,r,v 

C( 
2 

+ St... , 
2 ) 

In four dimensions, let z + jd4x/a4; the lattice action goes over to 

s=K 
/ 

32 
a4 

d4x y . 

If we identify [37] 

3;" = a*e F 
PV 

ev 
= eaA 

)I 

K = 1/2e* 

(6.23) 

(6.24) 

(6.25) 

then 

S -) & 
/ 

d4x F,,,FrV , (6.26) 

the Euclidean action of electrodynamics. This identification fixes the plaquette 

action as 

sp = 1 
2e2 [ 

-cos( 3& . 
3 (6.27) 



Implementing Non-Abelian Gauge Synxnetries on the Lattice. We consider as an example 

the group SU(2) on a four-dimensional hypercubic Euclidean lattice with lattice 

spacing a. On each link we place an SU(2) group element [38] 

U,,(n) = ev [iB,,Cnl] , (6.28) 

a 2x2 matrix, where the gauge field is 

B,(n) = y ?-tip(n) . (6.29) 

[The corresponding form for SU(N) is an NxN matrix. The gauge field z,, has N*-1 

components, and (q/2) is replaced by the normalized generators of SU(N).] Just for 

the Abelian case. each link carries a directional sense (n,;), and a backward lfnk 

carries 

Uvv(n+j) = U,l(n) . 

Under a local gauge transformation characterized by 

G[;(n)] = exp [*I 3 G(n) 

(6.30) 

(6.31) 

the link variables transform as 

U,,(n) -( G(n)$(n)G-'(n+;) . (6.32) 

This is the simplest local generaiization of a global gauge transformation 

(cf. (6.16)). As in the Abelian theory, a string of link variables transforms by a 

gauge rotation at each end. 

A product of link variables around a closed loop is locally gauge invariant. 

The most local color singlet on which to base a lattice action is the elementary 

Wilson loop [38] 

Tr(U~(n)U,(n+;)U_I,(RC;+;)U_y(Tr(;)) . 

Wilson's lattice action is 

(6.33) 

s = -(l/2$) c tr U,(n)U,(n+;)U-p(n+j+~)U-v(n+~) [ ] + h.c.) (6.34) 

We shall now show that in the classical continuum limit a-@ (the "naive continuum 

limit") this lattice action becomes the Euclidean action for Yang-Mills theory. 

We begin by making a Taylor expansion of the gauge fields around site n: 



B,(n+G) = B,(n) + aarE, + O(a*) , 

B-,(n+;+C) = -BP(&) 

rz - 
[ 

B~(n)+aayB,(n)+Ola2)] , 

B-,(n+;) = -B,(n) . 

The Wilson loop is then approximately 

UUUU 3 exp [iBv(n)] exp [i(B,(n)+aauB,(n))] 

xexp [-i(BP(n)+aavBP(n))] ex#-iB,(n)] . 

Using the operator identity 

xv 
ee = exp[X+Y+%[&Y]+...] , 

we find 

UUUU = exp [i(Bu+ B,+aaPBv)- $[B,,B,]] 

x exp 
[ 

-i(BP+B,+aa,B,,)-t[Bv,B,] 1 
= exp [ia(a~B,-ayB,)-[B,,6.1] . 

(6.35) 

(6.36) 

(6.37) 

(6.38) 

Recalling the definition (6.29) of the gauge field, we let 

(6.39) AP(n) = z.:,(n) , 

whereupon 

UUUU = exp [ia*g(a,,A,,-avAP+ig[AP,Av])] . (6.40) 

The expression in parentheses is minus the Yang-Mills field-strength tensor Guy, so 

we may write 

UUUU = exp 
E 

-ia2gGv,+ higher order in a 1 
Now take the classical continuum limit of smooth fields by considering 

(6.41) 

a*gG,,, (< 1 , (6.42) 

so that 



Tr(UUUU) = Tr (exp[-ia*gG,,,]) 

zz Tr 
( 

I-ia2gGV,-fa4g2Gt,+...) 

z Tr(1) - la4g2tr(G 
P" 

GVy) + . . . 

In this limit, the lattice action becomes 

S = (-l/29') c [Tr(UUUU) + h.c.] 
A. 

n,hv 

-1 I 
d4x a4g2 $v* 

& 

a2 a4 2 2 
.2 + O(a*) , 

(6.43) 

(6.44) 

where the (+h.c.) contributes the overall factor of 2. Simplifying the expression, 

we find 

S z* 
/ 

d4x&. 3" , (6.45) 

the Euclidean action of classical Yang-Mills theory. 

Observe that the final result has a Euclidean O(4) invariance, whereas the 

original lattice action had only a hypercubic symmetry. The O(4) symmetry breaking 

resides In terms that are higher order in the lattice spacing a, and do not affect 

the continuum limit. This emphasizes that the Wilson action is not a unique choice. 

Many possible lattice actions have the same continuum limit. For example, we may 

replace the elementary plaquettes by more complicated loops, or add other 

gauge-invariant quantities which vanish with additional powers of .a. All such 

lattice actions should have the same critical behavior, and reproduce the same 

continuum field theory - up to renormalization constants. The final classical 

continuum resuli involves the standard locally gauge invariant Yang-Mills field 

strength tensor G,,. This is guaranteed by the local gauge invariance of the lattice 

action. 

LECTURE 7: THE STRONG COUPLING EXPANSION AND CONFINEMENT 

An important attribute of lattice gauge theory is that we can easily study 

properties of the theory in the strong coupling limit g**. Recalling that the 

lattice action is schematically given by 

S-E 
c 

tr(UUUU) (7.1) 

P 



with s=l/g*, we are reminded that l/g2 is the analog of l/kT in statistical 

mechanics. The strong coupling expansion is therefore akin to the high temperature 

expansion. As we noted in our survey of the Ising model, the high-temperature phase 

characterizes a very disordered system. We shall see in the course of this lecture 

that there is a deep connection between disorder and confinement. 

Physical observables are given by the expectation values of gauge-invariant 

quantities on the lattice. An example is the Wilson loop, 

W(W) z(t{l$ U))=$/[dU]Tr(g ll)e-s , (7.2) 

where @? defines a closed path on the lattice. For g2* (B*), we may expand 

ees -1-8 
c 

tr(UUUU) + . . . (7.3) 

P 

To proceed further, we must be more precise about the integral l[dU] over the group 

volume at each link. For a U(1) gauge thee;{, this represents an integral over the 

phase angle on each link. If we write UI=e j, then 

/,,“I = [‘::? 1”z . . . [?Jj 
for a lattice of M links. Notice in particular that 

I 
2n 

de=1 
2r 

, 

0 
\ 

J’ 

n 
* ,ie = o . I 
2n 

0 

(7.4) 

(7.5) 

For the general case of SU(n), the invariant Haar measure has the properties 

/ 
[do] = 1 

I 
[dU]Utj = 0 (7.5) 

/ 
[dUIU,jukl + Z16.6 n lljk 

and 

j [d'Jlf('J) = j [d'Jlf(UoU) > 
for UO e SU(n). For the rotation group O(3), 

(7.7) 

j[dU] = jg . (7.8) 



With these rules for group integration, we can expand e-' in strong coupling, and 

evaluate integrals for the Wilson loops. 

As an example, let us calculate the leading behavior of <tr ilU)>. Consider a 
i? 

rectangular loop of dimension MxN in lattice units, as shown inFig. 42. For each 

link in the contour V, we must bring down at least one corresponding link from the 

expansion of e-' in order to avoid the zeroes from f[dU]Uij = 0. It is fruitful to 

think of each plaquette term atr(UUUU) as a tile on plaquette p. The first 

nonvanishing term in the strong coupling limit B-MI is obtained when the minimum 

surface enclosed by the contour VZ is tiled. The leading behavior of the Wilson 

loop is therefore 

W(V) = constantxs"'N 

= constantxe-M.NJn(l/B 1 . 

We see that the Wilson loop follows an area law 

W(W) I exp(-hn(l/E)xarea of loop) 

=e -aA 

(7.9) 

(7.10) 

The exponential falloff reflects the disordered character of the system. 

The Area Law and Confinement. We may measure the gauge interaction between two test 

charges representing a massive quark and antiquark in a color singlet state as 

follows: 

. Introduce test charges at Euclidean time T=O, and pull them apart a 

distance L. 

. Let them remain in fixed positions for a length of time T. 

. Bring them back together again at time T. 

The path traced out by the test charges is a rectangular Wilson loop of area 

A=LT , (7.11) 

and we have just seen that in the strong coupling limit, 

W(w) - ewuLT . (7.12) 

We identify this behavior with the evolution in Euclidean time of an energy 

eigenstate *eeET. Thus the system of two test charges separated by a distance L has 

an energy 

E=oL . (7.13) 

This result is suggestive of the string picture of hadrons. The energy of the 

string joining the quark and antiquark Is proportional to its length L. The strlng 

tension is 



0 = log(l/B) = log(g2) . (7.14) 

The quark-confining string suggested by the area law is made of "gauge glue." In 

this picture, the string tension is determined (through g*) by the color charges of 

the test quarks. We therefore expect the same string tension for mesons (3-p 

quark-antiquark systems) as for baryons (3-p quark-diquark systems). This provides 

an understanding of the equal slopes of meson and baron Regge trajectories evident 

in Figs. 15 and 16. 

Confinement in Abelian and Non-Abelian Gauge Theory. We have demonstrated that 

confinement occurs in the strong coupling limit of lattice gauge theory. However, 

in the strong coupling limit, confinement is a universal property of gauge theories, 

true for U(1) as well as SU(3). The experimental evidence that electrons are 

unconfined suggests that our understanding is incomplete. The resolution of this 

puzzle is that in U(1) gauge theory on the lattice a deconfining phase transition 

occurs at some finite value of g2 i ggr. For g2 ) s&., charge is confined, in 

agreement with the strong coupling result. For g* < gErr large Wilson loops obey a 

perimeter law instead of an area law: 

W(W) - e 
-2mP(%) + e-2mT 

, (7.15) 

so that the potential approaches a constant at large separations, 

V(R) + 2m , (7.16) 

where m is the self-energy in gauge fields around an isolated point source. This 

means that charges can be separated with only a finite cost in energy, 

characteristic of the QED phase. In contrast, we expect QCD to be a confining 

theory, with no phase transition at finite values of the coupling constant. We 

shall see at once that this different behavior is consistent with the asymptotic 

freedom of non-Abelian theories. In Lecture 9 we will review some numerlcal 

evidence for the deconfining phase transition in the U(1) lattice theory. 

The Renormalization Group, Confinement, and Asymptotic Freedom. To recover the 

consequences of continuum field theory, we must let the lattice spacing a-Ml while 

holding physical quantities fixed. Consider the case of the confining phase of pure 

gauge theory. For a given value of g, we identify the string tension o from the 

behavior of large Wilson loops, 

W(W) - esaA , 

Dimensional analysis shows that we may write the string tension as 

(7.17) 

o(g,a) = 2 i(g) 
a2 

(7.18) 



where i is the string tension in lattice units. We now require that o(g,a) remain 

fixed while we vary both g and a: 

a0 
aa 

aa+?!??Jqa=O 
ag aa 

(7.19) 

The change in g* necessary to keep fl fixed as a is varied is therefore 

a=-* . 
ad au/a!3 

(7.20) 

This required variation in g* is conventionally described by the dimensionless 

Callan-Symanzik beta function 

B(g*) = -a 

This function 

Critlcal values 

8P&) q 0 

?.g = - *i(g) 
aa as(g)/ag ' (7.21) 

is of fundamental importance to the phase structure of the theory. 

of the coupling g& are determined by zeroes of the beta function, 

(7.22) 

To go to the continuum limit, we let a+0 and continuously adjust g* accordingly. 

For g2 to remain finite in this limit, we must reach a point where an incremental 

change in ln(,l/a*) induces a negligible change in g*. 

The e-Function in Abelian and Non-Abelian Gauge Theory. In the strong-coupling limit 

of both Abelian and non-Abelian theories, the Wilson loop behaves as 

W( WI - constantxe-AEng2 , 

so the string tension in lattice units goes as 

(7.23) 

a(s) - In g2 , 

which means that the beta-function is 

(7.24) 

@(&I - -g*ln g* . 

In the limit of small lattice spacing a-HI, there are two possibilities: 

. If 6(g2>0, then g* increases as a-@; 

. If B(g*)<O, then g2 decreases as a-@. 

(7.25) 

The beta-function is negative in the strong-coupling regime. Therefore if we begln 

in the strong-coupling regime and try to go to the continuum limit by letting a-+0, 

it forces us toward the weak coupling reglme. This makes it difficult to base 

quantitative predictions about the continuum theory upon results derived from the 

strong coupling expansion. 



In the weak coupling limit, we may use perturbation theory either on the 

lattice or in the continuum, with a momentum-space cutoff if necessary. To any 

order in perturbation theory, there is no confinement [39] and consequently no 

string tension, so we cannot rely on the definition (7.21) of the beta function. We 

can, of course, still define a Callan-Symanzik function by holding fixed some 

"physical" quantity other than the string tension. Different definitions of s(g*) 

may differ in detail, but the sign of e(g*) and the location of its zeroes are 

universal. 

In the weak coupling limit, QCO is asymptotically free (a(g*)<O), but QED is 

not (e(g*)>O). Thus, the E-function for QED changes sign somewhere between strong 

coupling and weak coupling, while the a-function for QCO does not. The behavior of 

the a-function in the two cases is sketched in Fig. 43. The phase structure 

suggested by this analysis has been borne out by Monte Carlo data, and by analytic 

proofs. 

LECTURE 8: THE INVERSE BOUND-STATE PROBLEM FOR QUARKONIUM 

We interrupt our survey of lattice gauge theory to look one final time at what 

may be learned from the spectroscopy of heavy quark systems about the force between 

quarks. In Lectures 1 and 2 we reviewed some of the motivation for an interest In 

heavy-quark spectroscopy, and investigated a few of the ways in which elementary 

methods of quantum mechanics can be useful. In this lecture we shall approach 

similar issues using different techniques. We seek answers to the following 

questions: 

. How, and to what extent, does the spectrum of a quarkonium system 

measure the interquark potential7 

. Where do we know the potential, and what is its form? The elementary 

analyses suggested that a form 

V(r) = (710 MeV)log(r) (8.1) 

is a convenient sumnary for the $ and T states. 
. What information do we need to know the potential better? 

. What conclusions may we draw about the force between quarks? 

Our tool in this lecture will be the inverse scattering formalism. 

We are all familiar with the direct problem of scattering theory, which 

consists in calculating the S-matrix from the equation of motion and the 

interaction. In typical nonrelativistic applications the quantities to be computed 

are the bound-state positions and wavefunctions and the scattering amplitudes or 

phase shifts. 



The inverse problem of scattering theory is complementary: given the equation 

of motion and the S-matrix, deduce the interaction. This is not the place for a 

thorough treatment of the inverse scattering problem, which has an immense 

literature, nor even to give a complete derivation of the results we shall use. 

Instead, we shall present some examples to make plausible the utility of the inverse 

formalism. We shall next pass on to a statement of the quantum mechanical problem 

first for finite potentials and then for confining potentials. There follows a 

review of the methodology followed in applications to quarkonium, and a study of the 

associated phenomenology of the $ and T families. The lecture concludes with a 

sumnary of what has been learned and an outlook on future prospects. Two examples 

will illustrate the sort of information (and assumptions!) required to determine a 

potential. 

The Classical Inverse Problem. In classical mechanics, knowledge of the period of 

oscillation as a function of energy is sufficient to determine uniquely a syinnetric, 

monotonlc potential. Consider a one-dimensional potentlal well of the kind shown in 

Fig. 44. The energy of a particle moving In such a well is given by 

E = I$ + V(x) . (8.2) L 
Solving for 

j, = [2(~-Vq+ 

gives an expression for dt/dx which may be integrated to give the period 

(5.3) 

(5.4) 

0 /E-V * 

If we divide this equation by /a-E, where o Is for the moment a parameter satisfying 

T(E) = 4(F)' /""' & 

0 

q 2(h)* 

I 

E 
dV(dx/dV) 

O<VsEsa , (5.5) 

integrate over the energy 
c 

dE, and Interchange the order of integration, we find 

9 = 2(2m)$ {dV(dx,dV)[E 

1 

(8.6) 

= *r(*m)+ x(a) . 

Now replacing a+, we obtain an expression for the shape of the potential in terms 

of the period, 



/ 

v 

x(V) = 1 
Zn(*m)+ o 

*. 

If, for example, the period is independent of energy, we readily find that 

x(V) = 8 , (8.8) 

or, in other words, 

V(x) = x* . (8.9) 

This is a familiar result. 

The Semiclassical Inverse Problem. Very similar arithmetic leads to the 

reconstruction, in semiclassical approximation, of a symmetric, monotonic potentlal 

in one dimension. In this instance we begin with the quantization condition 

2 = (ntt)r . (8.10) 

Differentiating both sides with respect to the principal quantum number n, we have 

X 

(*id+ , dx;gnl = II 

which may be rewritten as 

=-I!!-- . 
aE/an 

(8.11) 

(8.12) 

This is quite similar in form to Eq. (8.4), and so we follow the same steps as 

before. Operating on the equation with jidE(.-E)-f and interchanging the order of 

integration, we find 

(8.13) 

The fdE on the left-hand side is a Beta function whose value is n. Consequently upon 

renaming U-N we are left with the result 

I 
V 

x(V) = dE 

0 [*P(V-E)li(aE/an) ' 

(8.14) 

Again it is worthwhile to examine an elementary case. Consider a constant 

level density 

aE/an = 2 , 

with mass 



2p=1 . (8.16) 

An elementary computation gives the well-known result 

x=m , 
or 

(8.17) 

(8.18) 

With these two examples to provide plausibility, we now turn to the general 

case in one-dimensional quantum mechanics. 

The Quantum Mechanical Inverse Problem. The general inverse problem in 

one-dimensional quantum mechanics as governed by the Schrtidinger equation is highly 

developed. A finite potential which binds N bound states is completely specified by 

2N bound-state parameters plus knowledge of the phase shift everywhere in the 

continuum [40]. The procedure, roughly speaking, is to write a dispersion relation 

for the Schrodinger wavefunction, for which one must specify the position and 

wavefunction normalization of each bound state (as poles and residues) and the 

reflection coefficient in the continuum (as a dispersion integral). Having such a 

representation of the wavefunction o(x) and knowing the (Schrbdinger) equation of 

motion, one may solve for the potential V(x). 

An interesting special case is that of a symnetric potential, for which the 

required bound-state information is reduced to N parameters - one for each bound 

state. A further simplification is obtained in the case of a smetric potential 

which IS also reflectionless, which is to say that an incident wave is completely 

transmitted, throughout the continuum. The simplest such potential is 

V(x) = -*r2 . 
cosh2rx 

For a particle of reduced mass (2P=l) it binds a single level at 

El = -,* 

(8.19) 

and has a vanishlng reflection coefficient everywhere in the continuum. For 

potentials of this class, the dispersion integral disappears, and we are left with 

an N-parameter algebraic equation for a potential which binds N levels. 

Consequently, a symnetric, reflectionless potential is completely specified by the 

set of binding energies of its levels. The inverse Schradinger problem for 

refleCtiOnlesS potentials has a deep and interesting connection with soliton 

solutions to the Korteweg-de Vries equation 1411. 

The extensive development of the inverse scattering formalism has been 

concentrated on finite potentials, i.e., those which bind a finite number of levels. 



What can be done for a confining potential? It is natural [42] to try to build up a 

confining potential by a sequence of reflectionless approximations. A 

reflectionless approximant V,(x) is constructed to reproduce the first N levels of 

the true potential V(x), and one hopes that in the limit of a large number of bound 

states, 

lim V,(x) + V(x) 
N-M 

(8.21) 

in some suitable sense. 

It is intuitively reasonable that this procedure should provide a faithful 

representation of the true potential. This expectation is supported by a number of 

numerical examples, some of which are shown in Figs. 45-47. In the case of 

confining potentials, we must supplement the bound-state information with a choice 

of the ionization point VN(?m) for each approximant. We have found (through 

numerical experiments as well as analytic studies) that the choice 

v,(-,) = +(EN+EN+l) (8.22) 

yields sensible approximations. It satisfies the obvious requirements 

EN 5 v,(-') 5 EN+1 , (8.23) 

and has the advantage of being easy to remember. In the limit as N+m, the details 

of this choice become unimportant. 

Take first the case of the harmonic oscillator potential 

V(x) = x2 , (8.24) 

which supports bound states at energies 

En = 2n+l , n = O,l,Z,... . (8.25) 

The first five reflectionless approximations to (8.24), with V,(?m) given by (8.22), 

are compared with the true potential in Fig. 45(a)-(e). The agreement is excellent 

in the region of x relevant to the specified energy levels. Successive 

approximations to the bound-state wave functions are plotted in Fig. 45(f)-(j). 

They are seen to converge rapidly toward the exact solutions shown in Fig. 45(k). 

As a second example, consider the linear potential 

V(x) = 1x1 3 (8.26) 

for which the bound-state energies are given by the zeros of Airy functions 

Ai'(-En) = 0 , n = 1,3,5,... 

Ai(-En) = 0 , n = 2,4,6,... . 
(8.27) 

This energy spectrum gives rise to the approximate potentials and wavefunctions 

displayed in Fig. 46. The agreement is again extremely encouraging. 



Finally, it is well to examine the pathological case of an infinitely deep 

square-well potential 

V(x) = 
1 

0, 1x1 < n/2 

-3 1x1 > n/2 
(8.28) 

which has bound states at 

En = n2 , n = 1,2,... . (8.29) 

The reconstructed potentials are shown in Fig. 47(a)-(e). The agreement between 

exact and approximate forms is rather less striking than for the two preceding 

examples. The manner in which the approximate wavefunctions plotted in 

fig. 47(f)-(j) are increasingly excluded from the forbidden region of space is 

noteworthy, however. 

These examples, which suggest the convergence of reflectionless approximatlons 

to nonpathological potentials, also indicate an acceptable rate of convergence. It 

has been possible to prove a number of limited statements about the fact of 

convergence [43-451, but nothing is known about the rate of convergence beyond what 

is indicated by the numerical experiments. In the numerical experiments reported 

here the potentials have been reconstructed from the binding energies of the levels 

of both odd and even parity. Alternatively, one may base the reconstruction on the 

states of either parity, in which case the binding energies must be supplemented 

with wave function information such as the value of slope of the wave function at 

the origin. Some of the proofs of convergence have been carried through for all 

three sets of input information. 

Determinations of the Quarkonium Potential. In a series of publications, [46-481 

Rosner, Thacker, and I have extended the inverse scattering formalism for 

reflectionless potentials to the reconstruction of central potentials in three space 

dimensions, and have derived approximate interquark potentials from the quarkonium 

data. In this section I will briefly summarize what we have done and what we think 

we have learned about the force between quarks. 

The reduced radial Schrodinger equation for s-waves, 

2 u"(r) + [E-V(r)]u(r) = 0 , (8.30) 

is identical in form to the one-dimensional Schrudinger equation. As a consequence, 

the one-dimensional inverse scattering formalism can be applied to the study of 

quarkonium systems. However, because of the boundary condition 

u(0) = 0 (8.31) 

imposed by the finiteness of the radial wave function at the origin, only the 



odd-parity levels in one dimension correspond to physical states. Therefore, in 

order to apply our one-dimensional formalism to the psions, we must regard the $ and 

+' as the second and fourth levels of a symmetric one-dimensional potential V(r) = 

V(-r). The even-parity levels which appear in the one-dimensional problem are 

interleaved with the physical psions, one below the $, one between the JI and $', and 

so on. 

To substitute in the reconstruction algorithm for the fictitious levels we 

require information about the slopes of'the odd-parity reduced radial wavefunctions, 

or equivalently, the values of the three-dimensional wavefunctions at the origin. 

These are related in principle to the measured leptonic decay widths through the 

connection 

lyn(0)12 = (1/16n~'e~).,.M~T(V,~'e-) . (8.32) 

With the parameter p=l, this is simply the Van Royen-Weisskopf formula [5] of 

nonrelativistic potential scattering. In a purely Coulombic quarkonium system, 

quantum chromodynamics yields a correction 

P= l- 
[ 

? to(&) J’ , 

where ~1~ is the strong coupling constant and 6 is the speed of the bound quark. 

Although the known quarkonium families are decidedly non-Coulombic, the belief that 

the strong coupling constant may be as large as crs=0.2-0.3 has led many authors to 

suspect that D may be appreciably greater than one. 

In the most recent analysis, [48] we use as inputs to the charmonium potential 

the masses and leptonic widths of $ and I+', and choose the "ionization point" as 

EO = V(?m) = 3.8 GeV . (8.34) 

Thls is halfway between the $I' and the first omitted fictitious (even-parity) level, 

estimated by 

E. = 3M($‘)+M(4.028[ 
4 

(8.35) 

To explore the effects of our ignorance of strong radiative corrections to the decay 

rate, we take as representative values of the multiplicative correction to the 

van Royen-Weisskopf formula p=l (which corresponds to no correction), and p=1.4 and 

2. We believe, but cannot prove, that p=2 represents a larger correction than is 

plausible, and intend that the extremes p=(1,2) bracket the true value. 

Although only s-wave InformatIon is used systematically in the 

inverse-scattering algorfthm, information about other partial waves may be used to 

discriminate among potentials constructed under varying assumptions for the quark 

mass. For each value of p, we select the value of the charmed quark mass mc which 



correctly reproduces the center of gravity of the 23P~ x states. The resulting 

potentials are shown in Fig. 48. For each potential we choose a value of the 

b-quark mass which reproduces the mass of the T ground state, and then compute the 

complete upsilon spectrum. The agreement with experiment is quite satisfying. 

The three charmonium potentials are compared in Fig. 49. In the range 

0.5 GeV-l c r s 5 GeV-l, the potentials vary approximately logarithmically with the 

interquark separation, as expected on the basis of the scaling arguments reviewed in 

the first lecture. The local fluctuations are artifacts of the reflectionless 

approximant technique. Also shown in Fig. 49 (was the short-dashed line) is the 

shape of the QCO-inspired potential of 8uchmUller and Tye 1231, which is typical of 

explicit potentials that provide a good representation of I$ and T data. In the 

region of space to which charmonium observables are sensitive, it provides a smooth 

interpolation of the inverse-scattering results. 

The method of constructing potentials from the upsilon family differs only 

slightly in detail. In this case we took as inputs the masses and leptonic widths 

of the 15-45 levels, and chose as ionization point the value 

E. _ 5M(4S)-M(3S) = 
4 

10.6 GeV . (8.36) 

Since the spectrum of p-wave states was not yet well established, we were not able 

to use the P-states to select the "best" value of the b-quark mass. We therefore 

chose mb for each p rather arbitrarily to be close to the value needed to reproduce 

the T(lS) mass in the corresponding charmonlum potential. Although this does not 

lead to appreciable ambiguity in our conclusions, it represents an indefiniteness 

that one would hope eventually to overcome. [Our expectations for the 3P(b6) center 

of gravity are in reasonable accord with the subsequent measurements.. The scale for 

the upsilons should be shifted upward by about 25 MeV, because of a recalibration of 

the CESR energy scale after this analysis was carried out.] The resulting potentials 

are shown in Fig. 50. For each of them we choose a value of the charmed quark mass 

m, which reproduces the mass of the $ ground state. Again, the agreement between 

prediction and observation is satisfactory. 

The three T potentials are compared in Fig. 51. They are essentially 

indistinguishable for interquark separations larger than 0.4 GeV-'. They also 

approximately coincide wlth other potentials that reproduce the data. Like the 

charmonium potentials of Fig. 41, the T potentials behave approximately 

logarlthmically in the interval 0.5 GeV-' < r 5 5 GeV-'. At distances smaller than 

0.4 GeV-l there is considerable variation among the potentials. This provides a 

measure of our current ignorance of the interaction between quarks at short 

distances. 

The potentials constructed from the 11 and T families are compared with one 

another for equal values of the parameter p in Fig. 52, where they have been 



superposed by requiring that the $(3097) levels coincide. The agreement in each 

case is excellent for r z 0.5 GeV-1 (0.1 fm), where both quarkonium systems provide 

information. The comparison provides direct evidence that the strong 

(quark-antiquark) interaction is flavor-independent in the range 0.1 fm ( r < 1 fm. 

This conclusion is supported by the quantitative agreement of predictions from JI 

potentials with T observables and of predictions from T potentials with rl 

observables. 

A number of refinements to this analysis can be envisaged. Knowledge of the 

positions of the 23PJ, 33PJ, and 43PJ levels in the upsilon family and improved 

measurements of the leptonic widths of all the 3s 1 quarkonium levels will make 

possible more precise determinations of the potential. Detailed studies of the El 

transition rates for the upsilon will test in a different manner the nonrelativistic 

picture of quarkonium. The fine structure of the 3P states and locations of the IP 

states hold important clues to the Lorentz structure of the interquark interaction. 

Outlook. The JI and T quarkonium systems have made accessible to us a considerable 

amount of new information about the force between quarks. What has been learned 

ranges from the qualitative insight that nonrelativistic methods are apt to a rather 

precise determination of the interquark potential at distances between about 0.1 fm 

and 1 fm. Some of the analysis techniques which lead to a determination of the 

potential have been reviewed in these lectures. There are other important issues 

that we have not touched on here. Among them are the general problem of flne 

structure and the spacetime form of the interaction, and the quantitative 

application of perturbative QCD to quarkonium decay rates. Both of these seem ripe 

for significant development. In all areas we would benefit enormously from the 

observation and detailed study of one more quarkonium family below the mass of the 

ZO. 

LECTURE 9: MONTE CARLO SIMULATIONS OF LATTICE GAUGE THEORY 

The lattice formulation reduces the Feynman path formula for the gauge theory 

into a multiple ordinary integral. The high multidimensionality of the integrals 

makes conventional mesh techniques for the numerical evaluation of integrals 

completely impractical, however. A lattice of size Nd upon which periodic boundary 

conditions have been imposed carries dNd link variables. For a lo4 lattice, for 

example, there will be 4~10~ link variables. For the simplest gauge theory, Z2, the 

number of distinct configurations is 

240,000 = 1.6~10~~~~~ . (9.1) 



Comparison with the age of the Universe (6~10~~ sec.) quickly convinces us that it 

is hopeless to actually evaluate the path integral. We need instead to devise a 

reliable approximation method. 

The goal of the Monte Carlo approach is to provide a tractably small number of 

configurations which are typical of thermal equilibrium in the system under study. 

Monte Carlo techniques are used to evaluate path integrals by the method known as 

"importance sampling." We wish to evaluate expectation values and correlation 

functions of the form 

CC@)> = IldUIWkeS , 
J[dU]emS 

(9.2) 

a weighted average of (@} over all possible configurations of the link variables, 

each configuration being weighted by the Boltzmann factor e -', Instead of evaluating 

the sum over configurations directly, the Monte Carlo method generates a statistical 

ensemble of configurations and calculates the average of (6) over this ensemble. 

Generating an Ensemble. We may begin a Monte Carlo simulation with any particular 

configuration. Two simple conventional choices are 

. "Cold start," with the unit matrix Ui=I placed on each link, and 

. "Hot start," with the Ui chosen randomly from a uniform distribution 

in group space. 

These possibilities are represented for the two-dimensional Ising model in Fig. 53. 

For the cold (ordered) start, with all spins up, the initial value of the 

magnetization is lM(=l. For the random (hot) start, the magnetization approximately 

vanishes. In the example depicted, we see that M=-0.2, in the range of typical 

values (-l/N for an NxN lattice) to be expected. 

Having chosen a starting configuration, we cycle sequentially through the 

lattice, link by link, using some statistical algorithm to make pseudorandom changes 

in the link variables. Each "sweep" through the lattice produces a new 

configuration somewhat different from the preceding one. The algorithm for updating 

links must be constructed so that the probability of a configuration with action S 

is proportional to the Boltzmann weight ess. Two such algorithms are representative 

of those commonly in use. 

. Metropolis algorithm 1491: Starting with the old value of the link 

matrix 'old* construct an updated value Unew. Compute the actions 

Sold(Uoldt and Snew(Unew)- If Snew'Sold~ accept U,,,. If s new'Sold* 
select a random O<r<l. Accept U,,, if 

exp Snew-Sold >I > r 



. Heat bath algorithm I50,511: Starting with the old value of the link 

matrix Uold, coriztruct an updated value U,,, chosen statistically with 

a distribution e new. This is best illustrated by example in the Ising 

model. First compute the probability of a given site to have spin up: 

P(t) = 
e-Bs(+) 

e-BS(+)te-6S(-) ' 
(9.4) 

Then select a random number O<r<l. If P(+)>r, assign spin up; 

otherwise, assign spin down. 

Either the Metropolis algorithm or the heat bath algorithm will produce a 

statistically distributed ensemble of configurations. These configurations are 

highly correlated from sweep to sweep. Near a critical point, configurations must 

be separated by hundreds or even thousands of sweeps in order to ensure their 

statistical independence. 

The number of sweeps required to reach equilibrium from a hot or cold start 

depends on the lattice size, and on physical circumstances. The mean plaquette 

values <I-+tr(UUUU)) displayed in Fig. 54 show that for the pure SU(2) theory in 

four dimensions, which has no critical point, equilibrium is reached within 20-30 

sweeps. [Other, "long wavelength," quantities may equilibrate more slowly.] In 

contrast, the simulation of a system near a critical point exhibits a very slow 

convergence to equilibrium known as "critical slowing down." This is illustrated in 

Fig. 55 for the U(1) theory in four dimensions. 

The phenomenon of critical slowing down suggests a tool for searching out 

critical points. Thermally cycle the system. Since convergence is rapid away from 

critical points and slow close to critical points, regions of slow convergence will 

appear as hysteresis loops. This is illustrated for U(1) gauge theory in four 

dimensions in Fig. 56. Longer runs in the critical region result in the 

single-values mean plaquette energies shown in Fig. 57. Using these Monte Carlo 

data, Lautrup and Nauenberg [54] evaluated the specific heat p of the lattice U(1) 

theory as a function of the coupling strength 8 and the lattice size L. Their 

results, reproduced in Fig. 53, show that P has a maximum as a function of B which 

increases rapidly as a function of L, characteristic of a second order (or higher) 

phase transition. 

Corresponding studies of SU(2) and SU(3) gauge theories in four dlmensions do 

not display hysteresis loops. Typical results for SU(3) are shown in Fig. 59. This 

is representative of the evidence that QCD is a confining theory for all values of 

the coupling constant. 

Measuring the String Tension. We have seen in Lecture 7, in the derivation of the 

area law for Wilson loops, how the evaluation of a rectangular Wilson loop such as 

that shown in Fig. 60 leads to a determination of the string tension. Identifying 



<W(M,N)> - e-V(M).N (9.5) 
as e-E'T, we obtain the heavy quark potential as 

V(M) = i &n<W(M,N)> (9.6) 

for M fixed and large, as N-rm. Although conceptually clear, this procedure may not 

be practical, because <W(M<N)> becomes infinitesimal for large N, and because the 

results may be significantly distorted by a perimeter-law factor e -2m(M+N) . We may 

eliminate the dependence on the perimeter of the loop and overall constant factors 

by forming the combination 

R(" W) = <W(M,N)><W(M-l,N-l)> _ e-" , 
cW(M,N-l)><W(M-l,N)> 

, 

where the correspondence is expected to hold for large loops or strong couplings. 

The quantity 

x(M,N) = -&n R(M,N) + i (9.8) 

should therefore directly measure the string tension in lattice units, provided the 

area law dominates. 

Results from the simulation of SU(2) gauge theory on 84 and lo4 lattices are 

shown in Fig. 61. At strong coupling, the numerical results accurately reproduce 

our expectation that 

O(9) - Jn g2 . 

To analyze the behavior in the weak-coupling regime, we may exploit the fact that 

the string tension has dimensions of (mass)2, and so may be expressed as 

a(g,a) = c0nstant.A: , (9.9) 

where AL is a physical scale of the lattice theory. The requirement that AL remain 

fixed as the coupling g and lattice spacing a are varied to approach the continuum 

limit, i.e., the requirement that AL be a cutoff-independent physical mass scale 

dAL - 0 
ada- , 

as a-@, then prescribes the dependence of a upon g. Renormalization group analysis 

leads to a unique prescription for the g-dependence of AL, as follows. Write 

then the requirement (9.10) leads imnedlately to a first-order differential equation 



for f, 

f(9) + 8($) Tz = 0 dg ’ (9.12) 

where s(g2) is the Callan-Symanzik function defined in (7.21). 

of s(g2) in the weak-coupling limit is known from perturbative 

The leading behavior 

calculations [3,56] 

as 

B(9) = -Bog3 - 8195 , (9.13) 

with 

for SU(N). Direct integration of (9.12) then yields 

AL = 1 (~oq2)-B1'2B~ e-1'2BOg2(1+O(g2)) . 
a 

This means that in the weak-coupling regime, we anticipate 

i(g) = Constant.a'.A: 

e -1/Bog2 

(9.14) 

(9.15) 

(9.16) 

Precisely this trend is seen for large loops in Fig. 61. Making a fit of 

(9.16) to the Monte Carlo data determines the constant of proportionality between AL 

and the (square root of the) physical string tension as 

AL = (1.3 r 0.2)~10-~& . (9.17) 

For small loops, x(I,J) departs from the trend (9.16) in the weak-coupling regime, 

reflecting deviatlons from the area law. Thus we interpret the envelope of x(I,J) 

for all I and J, plotted as a function of the coupling strength as the true measure 

of a(g). 

We show in Fig. 62 the result of a Monte Carlo simulation for the physically 

interesting case of SU(3), on a 64 lattice. In this instance, a fit to the data 

yields 

AL = (6+l)~lO-~fi . (9.18) 

An auxiliary calculation [58] relates the lattice parameter hL to a conventional 

definition of the QCO scale parameter in the continuum: 



4no4ll= ‘! 57.5 AL (for SU(2)) 

83.5 AC (for SU(3)) ' 
(9.19) 

Assembling the pieces, we have 

4n 

t 

$fi for SU(2) 
om J +&i for SU(3) ' 

(9.20) 

With the observed value of the string tension (from the light hadron spectrum. 

cf. (2.12)) (I = 0.18 GeV2, we estimate 

A mom :: 225 MeV (9.21) 

in reasonable agreement with determinations from deeply inelastic scattering and 

other sources. Although the relationship we have found between observables is far 

from precise, it is quite suggestive and encouraging. 

Calculating the Interquark Potential, We need not be content with a computation Of 

the string tension, since we interpret the Wilson loop as 

W(R,T) - ew[-V(R)Tl , (9.22) 

at large times T. An extensive study has been carried out by Otto and Stack [5g] 

using the Caltech "Cosmic Cube," a hypercubic array of 64 Intel 8086 microprocessors 

equipped with 8087 coprocessors 1601. Their calculation required 2500 hours on this 

device, which is approximately equivalent to 8 VAX-11/780 superminicomputers for 

this problem. Having first verified that W(R,T) indeed behaves exponentially in T, 

the authors extract an interquark potential. As was the case in our discussion of 

the string tension, quantities emerge naturally in "lattice units." Until a scale 

is chosen - for example, by fixing a dimensionful quantity such as Amom or a - 

what is determined is a relationship between dimensionless quantities. Fig. 63 

shows the scaled lattice potential V/&i as a function of the scale lattice distance 

RJ?. 

Before comparing these results with the phenomenological potentials, let US 

note that the effects of internal (light) quark loops are neglected in this 

calculation, and we do not know how their inclusion will modify the results. 

Furthermore, because of our limited experience we do not yet know how to assign 

systematic errors to lattice calculations in a definitive manner. With those 

apologies, we compare in Fig. 64 the lattice potential with a logarithmic form 

representative of the shape of the phenomenological potentials in the interval 

O.lfm < R<lfm. Over a significant range, the lattice potential indeed follows 

the logarithmic reference curve. If the lattice potential is to reproduce the 

phenomenological potential quantitatively, we must choose 

&'a 0.3 GeV , (9.23) 



which at least resembles the true value of the string tension, 

fi = (0.4 - 0.45)GeV . 

Evidently the computation of the interquark potential on the lattice is in a 

highly preliminary state. Much work is needed to make possible a quantitatively 

reliable calculation. At the same time, this example shows us the way to more 

detailed studies, and provides considerable encouragement to carry them out. As we 

have seen in Lectures 1, 2, and 8, much has been achieved in the phenomenological 

determination of the interquark force. There, too, past work is mere prologue to 

what might be accomplished. 
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Table 1. The $ family (19) bound states. 

State Mass(MeV/c') rtot(keV) r,,(keV) 

Ihi0 

1351 

23P. 

23Pl 

23P2 

2351 

33Dl 

33s1 

?3Sl 

?3S1 

% 

rl/J 

x(3415) 

x(3510) 

x(3555) 

$' 

Y(3770) 

J1(4030) 

$(4160) 

*(4415) 

2981.1t6.0 

3096.9?1 

3415.Otl.O 

351O.OtO.6 

3555.8tO.6 

368621 

3770?3 

4028.7t2.8 

4157220 

4415?6 

63_t9 

215240 

25f3 MeV 

52ilO MeV 

78f20 MeV 

43?20 MeV 

4.60t0.39 

2.05fO.21 

0.257+0.046 

0.75fO.15 

0.77~0.23 

0.4920.13 

Table 2. The T family (b6) bound states. 

State Mass(MeV/c2) rtot(keV) ree(keV) 

13s1 

23P. 

23Pl 

23P2 

23s1 

33P. 

33P1 

33P2 

33s1 

43s1 

53s1 

63Sl 

T 9460.0t0.3 44.3f6.6 l.lOr0.12 

Xb(9870) 9872.9i5.8 

Xb(9895) 9894.5t3.5 

xb(9915) 9914.6t2.4 

T' 10023.4r0.3 29.6t4.7 0.507+0.051 

xb(10255) 10253.7i3.4 

xb( 10270) 10271.0+2.4 

T" 10355.5co.5 17.7t5.1 0.362+0.050 

T" ' 10573f4 14.4r5.2 MeV 0.240+0.053 

?T 10860 

?T 11030 



Table 3. To niun observables in phenunenological potentials, for mt = 40 &d/c2 
(8er Ref. 26). 

potential 

observable Power-law Richardson 

M(ZS)-M(1S) (MeV/c2) 520 958 

M(3S)-M(E) (MeV/c2) 303 372 

M(G)-M(3S) (MeV/c') 217 231 

M(2S)-<M(2P)> (MeV/c') 145 105 

M(3S)-<M(3P)> (MeV/c2) 107 66 

ree(PS)/ree(lS) 0.55 0.27 

r,,(3S)/re,(lS) 0.39 0.15 

ree(3S)/ree(2S) 0.71 0.56 

ree(lS) (kev) 1.3 6.5 

rtot(lS) (kev) 127 

rtot(2S) (kev) 66 

rtot( 3s) (kev) 56 

rtot(4s) (kev) 52 

Coulomb Los 

0.12 0.43 

0.04 0.27 

0.30 0.63 

35 1.6 

SIGNIFICANT CONTRIBUTION 

FROM t+b+X 
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CAPTIONS 

Fig. 1: The spectrum of charmonium (c.? bound states). 

Fig. 2: The upsilon spectrum (b6 bound states). 

Fig. 3: Schematic level scheme for (00) bound states. 

Fig. 4: Schematic level scheme for (ff) bound states. 

Fig. 5: Level spacings in the d, and T families. 

Fig. 6: Semiclassical (curve) and exact (small dots) ratios (E3-E2)/(E2-EI) for 

s-wave levels in potentials V(r)=Xr" (from Ref. 4). 

Fig. 7: Semiclassical (curve) ratios (E4-E3)/(E2-El) for s-wave levels in 

potentials V(r)=Xr". The datum is the value in the upsilon system. 

Fig. 8: The quantity (E2s-E2p)/(E2s-Els) for power-law potentials V(r)=Xr", 

-1svs2. The data points are the values in the $ and T systems. 

Fig. 9: Square of the wavefunction at the origin for the psions. Possible mixing 

between the Z3SI(3686) and 33DI(3770) levels has been neglected. (a) A 

best fit proportional to (n-$)p, with p = -0.83tO.11 (~=0.12?0.08), 

assuming the conventional 45 assignment for $(4415). (b) An alternative 5s 

assignment for $(4415), which corresponds to p = -0.79?0.10 (~=0.15+0.08). 

In plotting the data against (n-i), we have anticipated the result p>-1 

(do). 

Fig. 10: Same as Fig. 9 for the upsilons. The best fit is for p = -0.79tO.10 

(v=O.15+0.08). 

Fig. 11: Comparison of mass dependence of energy levels in three potentials: (a) 

V(r)=-r-f; (b) V(r)=ln r; (c) V(r)=r. (From Ref. 4.) 

Fig. 12: A possible spectrum of strangeonium (s?) levels. Identification of 

E(1418) and o(1634) as pure SZ states may be disputed. The dotted O-+ 

entry is impressionistic, having been invented from the e mass and the I-P 

splitting, appropriately resealed. 

Fig. 13: Lower bounds for leptonic decays of T and T’ (after Rosner, Quigg, and 

Thacker, Ref. 18), together with the data cited in Table 2. The bounds 

are computed from Eq. (2.5) using $I leptonic widths lo below the central 

values and mb/mc>3. 

Fig. 14: Attempting to separate a quark and antiquark results in the creation of a 



quark-antiquark pair from the vacuum, so that color is always neutralized 

locally. 

Fig. 15: Regge trajectories of the natural-parity mesons. Uncertain states are 

indicated by open circles. 

Fig. 16: Regge trajectories of the nucleon, A, A resonances. 

Fig. 17: A massless quark and antiquark connected by a linear string. 

Fig. 18: Phenomenological potentials for quarkonium systems. The rms radii of the 

observed e and T states are indicated. (After Eichten, Ref. 24.) 

Fig. 19: Extrapolations of the four phenomenological potentials to short distances. 

The rms radii of toponium ground states are indicated for top quark masses 

of 30 and 60 GeV/c'. (from Ref. 24). 

Fig. 20: The 25-15 interval as a function of quark mass in four phenomenological 

potentials (from Ref. 24). 

Fig. 21: Comparison of Richardson's potential (dashed curve) with the expectations 

of perturbative QCD (solid curves) for Apls = 0.1, 0.2, 0.3, 0.4 GeV (from 

Ref. 24). 

Fig. 22: The spectrum of (tf) states in Richardson's potential for mt = 45 GeV/c2 

(from Ref. 24). All states below threshold with Ls4 are shown explicitly. 

The maximum angular momentum for which at least one state lies below 

flavor threshold is Lmax=17. 

Fig. 23: Charge induced by a positive test charge placed at the center of a hole In 

a dielectric medium. (a) Dia-electric case Emedium < 1 hoped to resemble 

QCD. (b) Dielectric case zmedium > 1 of normal electrodynamics. 

Fig. 24: Double-line notation for quarks, gluons, and their interactions, useful 

for l/N, analyses. 

Fig. 25: Lowest order vacuum polarization contributions to the gluon propagator. 

(a) quark loop; (b) gluon loop; (c) quark loop in the double-line 

notation; (d) gluon loop in the double-line notation. 

Fig. 26: A two-loop diagram in (a) conventional and (b) double-line notation. 

Fig. 27: A three-loop diagram in (a) conventional and (b) double-line notation. 

Fig. 28: A nonplanar graph in (a) conventional and (b) double-line notation. 

Fig. 29: OZI-allowed decay of a meson, at order g4, in (a) conventional and 

(b) double-line notation. The crossed lines represent color singlet 

projections. 



Fig. 30: Propagation of a color-singlet meson, at order g 4, in (a) conventional and 

(b) double-line notation. 

Fig. 31: A mechanism for OZI-forbidden decay, at order g 4, in (a) conventional and 

(b) double-line notation. 

Fig. 32: Meson-exotic mixing, at order g 4, in (a) conventional and (b) double-line 

notation. 

Fig. 33: Discrete time lattice for the evaluation of the quantum mechanical sum 

over paths. 

Fig. 34: Links between quantum mechanics, field theory, and statistical physics. 

Fig. 35: The Ising lattice. 

Fig. 36: Spontaneous magnetization in the two-dimensional Ising model. 

Fig. 37: Representative configurations of the two-dimensional lsing model. 

(a) T=O; (b) O<T<T,; (c) T>T,. 

Fig. 38: Two-dimensional lattice for Z2 gauge theory. 

Fig. 39: An elementary plaquette for the Z2 gauge theory in two dimensions. 

Fig. 40: Link variables for the lattice U(1) theory. 

Fig. 41: Elementary plaquette for the lattice U(1) theory. 

Fig. 42: Contour for the derivation of the area law. 

Fig. 43: Callan-Symanzik beta functions for QED and QCD. 

Fig. 44: A symmetric, monotonic potential in one dimension. 

Fig. 45: Approximate reconstruction of the harmonic oscillator potential. (a)-(e): 

N=1,2,3,4,5 reflectionless approximations to the potential. The true 

potential is shown for comparison. (f)-(j): wave functions obtained in 

the N=1,2,3,4,5 reflectionless approximations; (k) exact wave functions 

(from Ref. 42). 

Fig. 46: Approximate reconstruction of the linear potential. See the caption to 

Fig. 45 (from Ref. 42). 

Fig. 47: Approximate reconstruction of the infinite square-well potential. See the 

caption to Fig. 45 (from Ref. 42). 



Fig. 48: Potentials constructed from the $ and a'. (a) ~=l, mc=l.l GeV/c*; 

(b) p=1.4, m,=1.4 GeV/c'; (c) p=2, m,=1.7 GeV/c2. Levels of the charmonium 

(T) system are plotted on the left (right). Solid lines denote the 3SI 

states; dashed lines indicate the mean mass of the 23P~ states. The 

right-hand scale (for the T's) is shifted by an amount 2(mb-mc) with 

respect to the left-hand (psion) scale (from Ref. 48). 

Fig. 49: Comparison of the charmonium potentials of Fig. 48. Dot-dashed line: p=l, 

m,=l. 1 GeV/c'; solid line: p=1.4, m,=1.4 GeV/c2; long-dashed line: p=2, 

m,=l.7 GeV/c2. The short-dashed line is the “asymptotic freedom" potential 

of Ref. 23 (from Ref. 48). 

Fig. 50: Potentials reconstructed from the T SpeCtrUm (a) ~4, mb=4.5 GeV/c*; 

(b) p=1.4, mb=4.75 GeV/c'; (c) p=2, mb=5 GeV/c'. Levels of the upsilon 

(chanonium) system are plotted on the right (left). Solid lines denote 

the 3s1 states; dashed lines indicate the mean mass of the 23PJ states. 

The left-hand scale (for the psions) is shifted by an amount Z(m,-mb) with 

respect to the right-hand (upsilon) scale (from Ref. 48). 

Fig. 51: Comparison of the upsilon potentlals of Fig. 50. Dot-dashed line: p=l, 

mb=4.5 GeV/c*; solid line: p=1.4, mb=4.75 GeV/c2; long-dashed line: p=2, 

mb=5 GeV/c'. The short-dashed line is the "asymptotic freedom" potential 

of Ref. 23 (from Ref. 48). 

Fig. 52: Comparison of potentials deduced from the jl and T families. The energy 

scale is appropriate for the JI spectrum. In each graph, the label on the 

left-hand ordinate refers to the potential constructed using T data (solld 

curve). The label on the right-hand ordinate refers to the potential 

constructed using psion data (dashed curve). (a) p=l; (b) p=1.4; (c) p=2 

(from Ref. 48). 

Fig. 53: -(a) Ordered and (b) random starts for the Ising model on a 5x5 lattice. 

Fig. 54: Approach to equilibrium for W(2) gauge theory on 44, 64, e4, and IO4 

lattices, with 8=2.3 (from Ref. 50). 

Fig. 55: Approach to equilibrium for U(1) gauge theory on a 64 lattice, with ~=1.0. 

The theory has a critical point at 8cr z1.012, for a lattice of infinite 

size (from Ref.52). 

Fig. 56: Hysteresis in thermal cycles of the mean plaquette for U(1) [SO(Z)] gauge 

theory on a 54 lattice (from Ref. 53). 

Fig. 57: .The U(1) mean plaquette energy as a function of B for a 54 lattice (from 

Ref. 54). 



Fig. 58: The normalized specific heat e of the U(1) theory as a function of 6 in 

the critlcal region for lattices of size 44, 54, and 64 (from Ref. 54). 

Fig. 59: The mean plaquette energy for SU(3) gauge theory on 44 and 64 lattices 

(from Ref. 52). 

Fig. 60: Wilson loop for the evaluation of the string tension. 

Fig. 61: The quantities x(1,1) for SU(2) gauge theory as a function of l/g2 (from 

Ref. 55). 

Fig. 62: The quantities x(1,1) for SU(3) gauge theory as a function of l/g2 (from 

Ref. 57). 

Fig. 63: The SU(3) heavy quark potential determined on a 123~16 lattice (from 

Ref. 59). The string tension is denoted by 6. 

Fig. 64: Comparison of a smooth curve drawn through the lattice potential of 

Fig. 63 with a logarithmic form (dashed line) (from Ref. 16). 
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