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ABSTRACT

These nine lectures deal at an elementary level with the strong interaction
hetween quarks and fts tmplications for the structure of hadrons. Quarkonium
systems are studied as a means for measuring the fnterquark finteraction. This 1is
presumably {part of) the answer a solution to QCD must yield, if it is indeed the
correct theory of the strong interactions. Some elements of QCD are reviewed, and
metaphors for QCD as a confining theory are introduced., The 1/N expansion 1s
summarized as a way of guessing the consequences of QCD for hadron physics. Lattice
gauge theory 1s developed as a means for going beyond perturbation theory in the
solution of QCD. The correspondence between statistical mechanics, quantum
mechanics, and field theory is made, and simple spin systems are formuiated on the
lattice. The lattice analog of local gauge invariance is developed, and analytic
methods for solving lattice gauge theory are considered. The strong-coupling
expansion indicates the existence of a confining phase, and the renormalfzation
group provides a means for recovering the consequences of continuum field theory.
Finaily, Monte Carlo simulations of lattice theories give evidence for the phase
structure of gauge theories, yield an estimate for the string tension characterizing
the interquark force, and provide an approximate description of the quarkonfum
potential in encouragingly good agreement with what is known from experiment.

LECTURE 1: A FIRST LOOK AT QUARKONIUM

The strongly interacting particles we study in the laboratory are composite
systems of quarks bound together by the color force described by the gauée theory
called quantum chromodynamics (QCD)}. In these lectures we shall took at some of the
basic elements of QCD as it relates to the problem of hadron structure. Qur
concerns will be with general features: quark confinement and the properties of the
force between quarks, rather than with the details of hadron spectrescopy and
interactions. An introduction to the literature on hadron physics can be found in
the Bibliography to these lecture notes.
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Within the restricted scope of these lectures, we shall try to answer the two

questions,

. What does experiment say about the interaction between guarks?

- What does QCD say about the interaction between quarks?
and to compare theoretical expectation with experimental observation. Two specific‘
items to be established from experiment are the form of the interguark interaction
and the flavor-independence of the force between gquarks. The l1ight hadrons (those
composed of up, down, and strange quarks) give us information about the strong
interaction at distances 1in excess of about 1 fm, where the strong interaction is
indeed formidable. The region between 0.1 fm and 1 fm has been mapped in studies of
the heavy quarkonium states, ¢C or bB bound states. In this intermediate regime,
there is good evidence for the flavor-independence of the interaction. Distances
shorter than 0.1 fm are for the present inaccessible to hadron spectroscopy. The
next quarkonium family, the still unobserved tt bound states, will allow us to begin
to probe this region in which, as we shall see, it should be possible to compute the
interaction reliably using perturbative methods.

Properties [1] of the ¢ and T states are summarized in Tables 1 and 2, and the
Tevel schemes are indicated in Figs. 1 and 2. Clearly these families of heavy
mesons have the appearance of atomic spectra with, as we shall see, readily
identified candidates for radial and orbital excitations. That the analogy with
atomic physics could be pursued in detail was suggested before the mapping of the ¢

spectrum by Appelquist and Politzer [2]}. They argued that for bound states in a
Coulomb potential

V(r) = -a/r (1.1)
the mean velocity of the constituents is
B ~a . (1.2}

According to asymptotic freedom [3], the strong coupling constant of QCD decreases
as Qzam, or equivalently as r=0, as

a (Q%) = o, (1.3)
S (33-2ng}10g{Q°/A%)
where ng is the number of active quark flavors and A is the QCD scale parameter.

The Fourier transform of (4/3)(-4an(Q2)/02} yields an asymptotic form for the
interquark potential of

Vr) ~ - 12 .4 (1.4)
3
PO (33-2nc)log(1/réa) 3T

In a Coulomb potential, the scale of r is proportional to 1/m; hence the relevant
value of a, is measured by 1og(AZ/m2). We can therefore anticipate that as me, the



running coupling constant "e.(r)" decreases, so that the mean velocity of the bound
constituents decreases. This leads to the expectation that gquarkonium becomes a
nonrelativistic problem for sufficiently heavy quark masses.

Within the bound-state picture, it is straightforward to guess the rough order
of levels. Suppose first that the constituents are scalar particles denoted o, with
++

quantum numbers JPC = 0 For (a¢) composites with anguiar momentum L, the

bound-state quantum numbers are
c= (-1t p=(-13b (1.5)

s¢ the ground state 1is a singile ott level. The expected spectrum of (g¢) bound
states is shown schematically in Fig. 3. This is not what is observed for the ¢ and
T families.

If instead the heavy mesons are (f%) composites of spin-1/2 constituents f, the
gquantum numbers of a bound-state with orbital angular momentum L and spin S are

c=(-nt*s p= (-t . (1.6)

The ground state 1is therefore a hyperfine doublet of a 180 (O'+) tevel and a 351
{177) level. The expected level scheme shown in Fig. 4 reproduces what is seen in
the ¢ and T families.

Scaling the Schrddinger Equation. Having identified the % and T as quark-antiquark
bound states and motivated the possibility that the nonretativistic approximation
may be a fruitful one, we now proceed to an analysis in the context of the
Schridinger equation. In three dimensions, the Schridinger equation is

- nt vie(r) + [V(r)-E]¥(r) =0 . (1.7)
2n :

For the special case of a central potential, we may write the wave function as

o{r) = R(r)Y plee) (1.8)

whereupon the Schrtidinger equation separates. The radial wave function satisfies

02 fd 24 R(r) - | E-V(r)- L{2+1)n8 R{ry =0 . (1.9)
21 \ 4rl r dr 2ur?

This may be placed in correspondence with the one-dimensicnal Schrtdinger equation
if we define the reduced radial wavefunction

u(r) = rR{r) , {1.10}

so that



2
~u'(r) = 2u [E Vir)- ﬁi&illﬁ-]u(r) . (1.11)
ﬁ2 2ur
with
u(0) = 0
u'{0) = R{0) = /4= ¥(0} for s-waves (1.12)
“d 2=
rliu(r =
[, drute))
A number of relations will prove useful in general. First, for s-waves, we
show that
120} |° = > ( (1.13)
27k
To do so, we multiply the s-wave Schriidinger equation
~u"(r) = ZB[E-v(r)]u(r) (1.18)
B2
by {Pdr u'(r) and integrate by parts:
@ -] @
to 2" = Bevenpue 27 - & [ Tartuer? (- &) (1.15)
0wl 0 #’0 dr
so that
4x(%(0)1% = 2 < (1.16)

By similar arithmetic it is easy to prove the Virial Theorem

SOROREN

For a power-law potential

Vir) = ar¥ (1.

the Virial Theorem yields

<T> = <v> = E/(24v)
<v> = 2E/(2+v)

(1.

17)

18)

19)

For simple potenttals, including power-taws and other monotonic weils, rather
far-reaching results can be derived using quite elementary techniques. This mode of



analysis has been reviewed by Quigg and Rosner, [4] and exploited by many authors.
1 shall summarize here a few of the results with direct applications to experiment.

For the special case of a power-law potential, the equation (1.11) can be
divested of all 1its dimensionful parameters. To see this, we first introduce a
scaled measure of length

o= (M/2un)Pr (1.20)
where the exponent p is to be chasen to eliminate dimensions from (1.11}). The
choice

p = -1/(24v} (1.21)

when accompanied by the substitutions

2p
E = (gé) (ZPTiI) e (1.22)

where ¢ is dimensionless, and

wip) = u(r) (1.23)
accomplishes precisely this. The ensuing equation is
w'(p) + [e-sgn(r)o¥-2(2+1)/6%Iu(n) = 0 (1.24)

which depends only upon pure numbers.
Several consequences follow immediately from these manipulations. Lengths and

guantities with the dimensions of Tlengths depend upon the constituent mass and
coupiing strength as

L= (uinpy /e - (1.25)
As a result, the particle density at the origin of coordinates behaves as

19(0)42 ~ 173 = (uiap) /(&) (1.26)
Level spacings have a similarly definite behavior, according to (1.21}:

AE < F*v/(2+v)‘l|2/(2+v) ] (1.27)

The 1imiting behavior of the scaled Schrddinger equation as w30 is easily studied.
The "power-law" potential corresponding to this limit 1s simply

¥{r} = C log{r} . (1.28)

The scaling laws (1.25)-(1.27) contain many well-known results. Recall, for
exampte, that in the Coulomb potential, for which v=-1,

AE(v=-1) @ pa = w22 . (1.29)



Likewise, the conclusion that in a linear potential

monzl @ plXl (1.30)
v=l
can be derived at once using the identity

pr(0)12 = M. 9!) _ (1.31)
Z’Mz dr

The scaling laws (1.25)-{(1.27) have many applications 1in quarkonium physics.
For the moment let us merely note that electric multipole matrix elements vary as

(n'IEjln> ~ e eIz (1.32)

so that transition rates behave as

<n'}Ej|n> ¢

where k is the enerqy of the radiated photon, which is just a level spacing AE.
Using (1.25) and (1.27) we then deduce that

r(£j) ~ k&3t , (1.33)

[(Ef) « w (231 ]/(24v) 1y 2(341)/(24v) (1.34)

This has the interesting consequence that for fixed potential strength {x{, I'(Ej) is
a decreasing function of j as pio for potentials less singular than the Coulomb
potential.

Using the Van Royen-Weisskopf formula {5]
2
r(vOsete) = 1670C |w(o)|2<92> (1.35)
MG q |

for vector meson decay, cne may easily show that for -1 (for which binding
energies are asymptotically negligible compared with the quark mass)

r(E§)/r(V0sete™) « y~(23-1)(vH1)/(24v) |y 2(3-1)/(2+v) (1.36)

which 1implies the dominance of leptonic over radiative decays as pdo for fixed
potential strength |A{.

To investigate how observables depend upon the principal quantum number with
some degree of generality it 1is convenient to adopt the semiclassical, or JWKB
approximation. This turns out to be rather less of a compromise than one might at
first surmise. Judiciously applied, the semiclassical approximation is in fact
highly accurate for the sort of nonpathological potentials one hopes to encounter
for quarkonium. This accuracy is documented in Ref. 4, where additional references
may be found,

The semiclassical results all follow from the quantization condition



.
[ Certznevionit = nenym (1.37)
0

where n is the principal guantum number and the classical turning point r. is
defined through V(r.)=E. Although it is bath possible and useful to be more general,
it is appropriate to retain the spirit of the preceding section and specialize to
power-law potentials. For s-wave bound states of nonsingular potentials of the form

(1.18), Eg. (1.37) can be integrated by elementary means to yield

E, = (n-3)2¥/(2+v) (1.38)
where with an eye toward the intended applications I have suppressed the dependence
on constituent mass and coupling strength given in (1.27). For singular potentials

additional care is required near the origin. A simple modification of the usual
procedure leads to
E, = (n-y(v))2¥/ (&) “2¢u<0 (1.39)

where

y(v) = __;) . (1.40)

Similar expressions may be obtained for orbitally-excited states.
By evaluating the expectation value in Eq. {1.31) with JKWB wavefunctions, it
is also straightforward to derive

(n-2)2{v-1)7(2+v) wo o, (1.41a)
19,(0}12 «
(n-y(v))(v-2)/(2%v) D=2 . | (1.41b)

For a general nonsingular potential, one may readily show that

2 o (uEn)t a2y

¥,(0
*(0) Ax2p3 an

(1.42)
Generalizations of these results to t»0 have also been made, but we shall not
require them here. Let us now see what can be Tearned by comparing these simple
results with experimental information.

Inferences. The strategy embodied in the preceding paragraphs has been pursued
explicitly by several authors [4,6-9] and implicitly by many others. The conclusion
to be drawn from the data is that a potential of the form

V{ir) = A + Br¥ (1.843)

with v=0.1 gives a good representation of the ¢y and T spectra. This is based upon
four distinct kinds of evidence.



First, we may note by comparing Figs. 1 and 2 that the Tevel spacings are guite
similar in the v and T families. Indeed, the observation that

Mpo = Mpo= M0 - M, (1.44)

provided an early motivation for the logarithmic potential [7}. A more detatled
look at the intervals in given by Fig. 5, which indicates that

AE(T) = 0.95 AE(y) . (1.45)

Assuming that the potential strength does not vary between the ¢ and T systems, this
implies a small positive power for the effective potential. The precise value of
the exponent depends upon the ratio of quark masses, which is imperfectly known.

The principal-quantum-number dependence of observables within one quarkonium
system is free from the assumption that the potential strength X is the same for
different quark flavors. Effective powers may be inferred independently from the
and T levels and compared for consistency. The level structures (E;-tE5)/(Ey-Eq},
etc. are characteristic of the potential shape. These ratios of intervals are the

same for
£E4-E
“3 e l = 0.58 ' (1.46)
EZ‘EI W

and T
E--t
-3 72 ! = 0.59 (1.47)
Ex-E1 iy

states, and are again compatible with v=0.1, as shown in Fig. 6. The ratio

£4-E ‘
a~E3 ' =0.39 (1.48)
Ea-tp Iy

disptayed in Fig. 7, indicates a similar potential shape.
The center-of-gravity of 3PJ levels,

<M(3PJ)> = (M(3pg)+am(3p)+5m(3p,)]/9 (1.49)

is free of L.S and tensor force fine structure contributions. For the 3PJ levels,
the mean masses are

<M(xc)> = 3524.9 Mev/c?

(1.50)
<M(xb)> = 9903.3:3 MeV/c?
so that
M{w' ) ~(M({x.)
‘< ¢ > = 0.27 (1'51)

M(v')-M(o}



and

#)-(Mixp))
M{T')-M(T)

= (.21 {1.52)

As shown in Fig. 8, these imply respectively small positive and small negative
powers.

Finalty, the principal quantum number dependence of wavefunctions at the
origin, or equivalently of the reduced leptonic widths

r(Vsete™) = Ms r(vlsete™y (1.53)

is approximately given by
12,(0) 12 ~ 1/(n-4) (1.54)

for both ¢ and T, as shown in Figs. 9 and 10. This behavior again corresponds to an
effective potential which is a small positive power. It was this observation for
the 4 family that led Machacek and Tomozawa {10] to investigate softer-than-linear
confining potentials, including logarithmic forms. Taken together, these results on
principal quantum number dependence would seem to exclude the bizarre possibility
that the neariy equal spacing in the » and T families results from a potential
strength which varies approximately as

o« Ve (1.55)

Martin [9] has shown that careful attention to hyperfine effects does not
change the conclusions of this analysis, namely that the interquark potential is
flavor-independent (as QCD would have 1it) and characterized by an effective
power-law potential with a small positive exponent. This is also in agreement with
the conclusions of all other analyses and fits: In the region of space between
0.1 fm and 1 fm, the interaction between heavy quarks is flavor-independent, and
roughly togarithmic in shape [11,12].

We may characterize the inferred potential shapes in two convenient
expressions: as a logarithmic shape (6]

V(r) = (0.71 GeV)stn(r/ry) . (1.56)

for which level spacings AE are independent of the quark mass p, lengths scale as
L = p—é, and wavefunctions vary as l‘!n(O)l2 e« 1/{n-}}; or as a power-taw [9]

V(r) = (5.82 GeV)(r/1 Gev 1}0-104 _ g 377 ey . (1.57)

The two forms are numerically indistinguishable for



0.1 fm<r <1 fm . (1.58)

Number of Narrow Levels. A semiclassical near-theorem relates the number of levels
below flavor threshold to the mass of the constituents. This would seem to be a

question ill-suited to a nonrelativistic approach because it is necessary to compute
both quarkonium (GQ) masses and the mass of the lightest flavor (Q3) state. The
tatter is unlikely to be governed by a potential theory description. However, a key
simplifying observation was made by Eichten and Gottfried [13) who noted that the
mass of the light quark-heavy quark state can be written as

M(Qg) = M(Q) + M{q) + binding + hyperfine . (1.59)

Although the binding energy may not be calculablte, it is reasonable to suppose that
it depends upon the reduced mass of the constituents, which tends to M{q) as M(Q)w.
Thus the binding energy must become independent of the heavy quark mass.
Furthermore, the hyperfine splitting of the 0t and 17 {(Qq) tevels must certainly
vary as 1/M(Q). It therefore vanishes as M{Q)»». Hence in the 1imit of infinite
quark mass, the difference

s(M(Q)} = 2M(QQ) - 2M(Q) &, (1.60)

independent of the heavy-quark mass.

In the regime in which 6[M(Q)]=5dD is a good approximation, the number of levels
below flavor threshold is easily calculated [14]. Consider any confining potential.
In semiclassical approximation the number of levels bound below E=2M(Q)+s, Is
specified by the guantization condition

r

&
[ Carm@)evirn1t = (nepye (1.61)
0
where to save writing the zero of energy has been set at 2M(Q). The classical
turning point r,, defined through

Virg) = &4 (1.62)

is independent of M(Q), so we have by inspection the result that
(n-3) = YM(Q) (1.63)

It is Tikely that the 1imit (1.60) is already approached within 10% in the
charmonium system, in which two 381 levels lie pelow charm threshold. Thus there
should be stightly less than four bound levels in the upsilon family, 1in agreement
with the observation of three narrow vector states. The success of this prediction



provides another verification of flavor independence, which was the principal
assumption.

It is interesting to see how the result (1.63) 1is realized in specific
potentials. To make this plain, I show in Fig. 11 the evolution with constituent
mass of the spectra of the potentials V(r)=—r'%, Vir)=tn r and V¥(r)=r, for which
AE~p1/3, po, and p-1/3, respectively, according to {1.27). All the levels fall
deeper into the wells as p is increased. For the potential V(r)=-r'%, singular at
the origin, the 1levels spread apart as they sink into the well. For the linear
potential, no such pit exists, but the levels are packed more densely as p
increases. The logarithmic potential represents an intermediate case in which the

level spacing is independent of the mass and levels drop into the well at a common
rate given by

Es(n') = E5(n) - dan(u'/p) . (1.64)

In each case the rate of accumulation of levels below any specific value of the
energy is given by (1.63).

A corollary to the conclusion that the classical turning point of the 1last
narrow 1evel has become independent of quark mass is that the single-channel
analysis cannot he extended past about 1 fm. Heavier (05) systems will extend our
knowledge of the interaction to shorter distances, but are unlikely to address the
nature of the confining potential.

How many narrow levels of toponium are to be expected? For a top-gquark mass of
45 GeV/cz, [15] scaling from vm¢/my or vmy/m. gives 10-11 narrow 351 states. The
full spectroscopy is much richer. For each s-wave, we expect a pair of hyperfine
partners, the 150 and 351 levels. Similarly there will be four fine- and
hyperfine-partners for each p>l-wave, corresponding to 3LL+1’ 3x&, 3*%-1’ and I;L
levels, If there are N radial excitations, there will be (N-1} sets of p-waves,
(N-2) sets of d-waves, etc. The total number of narrow states is thus [16]:

N
N + 4 Z (N-2) = 2N% (1.65)
=1
~ 200-250 levels.
To conclude this introduction to quarkonium physics, let wus verify the
consistency of the nonrelativistic approach. For a (QQ) bound state, the
mean-squared velocity is

(- ()12

where m is the quark mass and u=m/2 1is the reduced mass. For a logarithmic
potential of the form



V{r} = C m(r} (1.67)

the kinetic energy of any bound state is

T = <£.9!> =c/2 (1.68)
dr
s0 that
<32> = C/2m ~ 350 Mev (1.69)
m

For the psion family, with m. = 1.5 Gev/c?, we find

<32>¢ £ 0.23 (1.70)
while for the upsilons, with m, = 5 GeV/cz, we obtain
(3% = 0.07 . (1.71)

At Jeast the second of these appears comfortably nonrelativistic. For the
charmonium states, we must be open to the possibility of significant relativistic
corrections.

LECTURE 2: MORE ON QUARKONIUM

The (sS) System. Several authors have attempted to extend the successful description
of the quarkonium spectrum to l1ight mesons and baryons. This may be done either by
abstracting the scaling laws from the ¢ and T states or by transplanting the
quarkonium potential to what would seem a manifestly relativistic regime. As a
stimutus to thought along these lines I present in Fig. 12 a highly speculative
spectrum of (sS) states. Many of the assignments are uncertain, but the resemblance
to the y and T spectra is remarkable. For a strange-quark mass m, = 0.5 GeV/cz, the
mean-squared velocity is

(%), = 0.7 (2.1)

Whether the spectrum in Fig. 12 (if correct!) shows that a nonrelativistic analysis
has a wider-then-expected range of validity, or that a deeper principle of hadron
dynamics awaits recegnition, [ do not know.

Theorems. An excellent review of statements about bound-state properties which may
be proved rigorously in nonrelativistic potential theory has been given by Grosse
and Martin [17]. Many results have been deduced which pertain to the order of
levels, 1inequaiities for wavefunctions at the origin, bounds on quark mass



differences and so forth. The value of such statements is not only that they are
true, but also that they provide a context for computations based upon explicit
potentials. It is of great value to understand what must be true far any reasonable
potential, or for any potential of a particular class, in order to distinguish the
consequences that may be peculiar to a specific model. I shall cite one example
that bears directly upon experimental results.

Consider a quarkonium potential which is monotonic,

dv/dr 2 0 (2.2)
and concave downward,
dvard <0 . (2.3)

The first property is motivated by simplicity, and the second by the expectation
that the confining potential rises no faster than linearly. Both are satisfied by
the effective power-law potentials just discussed. Then if m>u are masses of the
constituents of two QQ systems, one may prove {18] that

170(0)12 2 (m/u)iy,(0)1° . (2.4)

This result holds for the ground state under the assumptions stated, for all levels
in power-law potentials {compare Eq. {1.26)), and for ail levels in a general
potential satisfying the assumptions, in WKB approximation {17]. It implies a lower
bound on leptonic widths in the more massive system as, in the case at hand,

F(Tnﬁe+e') 2 e”) . (2.5)

The tower bounds on upsilon leptonic widths are plotted in Fiq. 13,) together with
the experimental measurements. A b-quark charge of 2/3 is seen to be incompatible
with the bound. The conclusion that |ey} = 1/3 is substantiated by the measurements
of R = a(e+e'+hadrons)/a(e+e'»p+‘).

By extrapolating from the upsilons to higher masses one may bound from below
the integrated cross section for the production of the ground state of the next
quarkonium family in e'e” annihilations [19]. Using cross section measurements from

PETRA [20]} it 1is possible to exclude on this basis a tt resonance (charge 2/3
quarks) below 46.78 Gev/c2.

The String Picture of Hadrons. Suppose that the interaction among quarks is so
strong at large distances that a {aqq) pair is always created when the quarks are
widely separated, as depicted in Fig. 14. By analogy with the hadronic clusters
typically inferred from experiments on multiple production, it {s reasonable to
expect that a quark is accompanied by an antiquark in a typical hadron of mass




~1 GeV/c2 at a separation of ~1 fm. That would imply that between every quark and
antiquark there is a linear energy density of order

k = AE/Ar = 1 GeV/fm
~ 0.2 Geve ~ 5/fm2 . (2.6)

This picture is supported by the evidence for linear Regge trajectories of the
light hadrons, which are displayed in Figs. 15 and 16. Ffor the famiiies of hadrons
composed entirely of light quarks, the Regge trajectories are given by

J(M2) = g + «'M2 (2.7)
with
o' = 0.8-0.9(Gev/c?)"2 | (2.8)

The connection between linear energy density and the linear Regge trajectories is
provided by the string model formulated by Nambu [21].

Consider a massless quark and antiquark connected by a string of length rgs
which is characterized by an energy density per unit length k. The situation is
sketched in Fig. 17. For a given value of the iength rg, the largest achievable
angular momentum L occurs when the ends of the string move with the velocity of
light. In this circumstance, the speed at any point along the string will be

B(r) = 2r/rg . (2.9)

The total mass of the system is then
r0/2
M= Zj. drk[l-a(r)21'% = krgn/2 R (2.10)
0

while the orbital anquiar momentum of the string is
ro/2

M = 21; drkre(rycl1-a(r)21"} = kerda/8 (2.11)
Using the fact (2.10) that r% = 4M2/k212, we find that

L= M/2ak (2.12)
which corresponds to a linear Regge trajectory, with

a' = 1/2nk . (2.13)
This connection yields

0.18 GevZ 0.9 Gev~2
Kk = for a' = (2.14)
0.20 GeVe 0.8 Gev~?



consistent with our heuristic estimate of the energy density. Thus we see that a
iinear energy density implies linearly rising Regge trajectories, and that the
connection makes quantitative sense. These results suggest that at separations of

the order of 1 fm, we may characterize the interquark interaction by the linear
potential

vir) = kr (2.15)

while recognizing that because of quark pair creation the situation is not one to
which one-channel potential theory appliies.

Guessing the Interquark Potential. It 1is of interest to construct phenomenological
potentials that 1incorporate in some approximation the expected behavior of
perturbative QCD at short distances and reproduce the string picture at large
distances. We shall consider two simple examples. The Cornell model [22] 1is a
simple superposition of Coulomb and linear potentials,

V(r) = -A/r + Br + C . (2.16)

A fit to the v and T spectra yields the parameters

0.48
0.183 Gev? i (2.17)
-0.25 GeV

The siope B of the linear term is consistent with the string tension (2.14) inferred
from the spectrum of light hadrons. The coefficient A, when interpreted [compare
(1.4)]) as 4e. /3, correspends to a strong coupling constant

ag = 0.36 | (2.18)

which is perhaps bigger than one would }ike, if the Born approximation is to be
reliable. A second form inspired by QCD is the Richardson potential [23],

V(r) = _d%Q_,iQ-r [- 4, 127 ] i (2.19)
(2x)3 3 27Q%10g(Q%/4%+1)

where the 1 in the argument of the logarithm serves to make the integral easily
calculable, A fit to the data gives for the QCD scale parameter the value

A = 400 MeV . (2.20)

These two potentials are compared in Fig. 18 with the “data-inspired"
potentials (1.56) and ({1.57) discussed in the first lecture. In the region of space
populated by the narrow ¢ and T states, the four curves are essentially
indistinguishable. On the basis of this and other determinations to be discussed in
Lecture 8, we may assert that the interquark potential has been measured in the



interval

0.1 fm<r<lfm . {2.21})

We have already remarked that scans at PETRA for narrow resonances produced 1in
e*e™ annihilation into  hadrons have excluded toponium states below 46.78
GeV/c2 [20]. This implies that the top quark mass exceeds about 24 GeV/cZ. In
addition, the UA-1 collaboration at the CERN Collider has presented preliminary
evidence [15] for the decay seguence

Wt o tb (2.22)
L—'be+ve
with
30 GeV/c? < my ¢ 60 Gev/c? . (2.23)

We saw 1in Lecture 1 that for a top quark in the middle of this range, we expect 10
or 11 narrow 351 levels. Now we are in a position to ask in more detail what we
should expect for the next quarkonium family, and what we might learn from
it {28-26].

Qutside the region in which y and T spectra have measured the interquark force,
the four potentials differ significantly, as shown in Fig. 19. The 1381(tf) level
will have a radius

<r2>% ~ 0.06 fm (2.24)
tt

where distinctions can be made. As an example, consider the 25-1S interval, for
which the expectations are displayed in Fig. 20. We see at once that- extrapolation
from the bb to the tE system is risky for this quantity. Additional parameters are
coilected for the case of my = 40 GeV/c2 in Table 3. The 25-1S spiitting and the 1S
leptonic width will be particularly revealing.

Suppose that we take seriously the Richardson potential as the right form at
short distances, because it ties on gracefuily to QCD. Using this as a standard, we
may ask whether QCD perturbation theory alone would suffice for the 1S(tE) state.
In other words, will the toponium system place us in the simple regime anticipated
by Appelquist and Politzer {2]? The sketch in Fig. 21 shows that the answer is no:
the long-range part of the QQ interaction is essential, even for the toponium ground
state.

To close our tour of quarkonium systems, ! show in Fig. 22 the anticipated

spectrum of (tt} bound states in the Richardson potential, for a top-quark mass of
45 Gev/c?.



LECTURE 3: ASYMPTOTIC FREEDOM, CONFINEMENT, AND THE 1/N EXPANSION

Asymptotic Freedom. The physical origin of the antiscreening of color charges that
characterizes QCD is indicated by calculations of the effective charge in a variety
of gauges, cited in the Bibliography. A less familiar, but quite evocative,

description of how asymptotic freedom arises is provided by the magnetic moment
interpretation [27].

The interaction between charges in vacuum is described in momentum space by
e%/qz. In the presence of matter, this is modified to e%/qzs(q), where ¢(q) is the
dielectric constant or, more properly, the dielectric function. [t is convenient to
define the "running charge" by

e?(q) = ef/e(q) . (3.1)
The magnetic permeability of the medium can be defined through the relation
ew =1 . (3.2)

In ordinary matter, or in the QED vacuum, the dielectric constant is greater than
unity,

e>1 (3.3)

s0 that the medium is "diamagnetic,” with
g <1 . {(3.4)

In contrast, the antiscreening of QCD corresponds in this language to paramagnetism
{(w>1l).
We may write the qz-evolution of the magnetic permeability as

w=1+g?

2

xlog(a?/af) (3.5)

where gzae for electrodynamics. The generalization to arbitrary spin of a standard
condensed-matter formuia for magnetic susceptibility (derived in a wuniform

background magnetic field) is

+1, bosons
x = L Tr [(232}2- l] . ( ) . (3.6)
16%¢ 3

-1, fermions

The first term (ZSZ)2 in the trace is the Pauli paramagnetism, which arises from the
interaction of the intrinsic dipole moments (with gyromagnetic ratio g=2) with the
background field. The term {-1/3) is the Landau diamagnetism, which arises from the
quantization of orbital vacuum currents.

Using {3.6) we can quickly recover some familiar results:



(7) QED

X = -1 [1- l] {2 spin states) = - 1 , {3.7)
16%° 3 1222
s0 that
w(a?) = 1 - -2 log(a®/ag) . (3.8)

{(i1) Scalar electrodynamics

=1 [_ 1] =_ 1 (3.9)
X N R .
16x2 3 48x2
so that
w(al) =1 - 2 log(a®/ag) - (3.10)
(ii1) Charged vectors
= 1 [ 1] . = 1 22
x = 4- L k(2 spin states) = . (——) , (3.11)
16:2 L 3 16s2 \ 3
so that
n(g?) =1+ l%% 1og(q2/q%} . (3.12)

(1v) QCD

5

where we have weighted (3.7) and (3.11) by the effective color-charge-squared for
triplets (for ng¢ quark flavors) and octets, respectively. The resulting evolution
of the magnetic permeability is

1N
(%)

r\:lw
wlb

f] ; (3.13)

mlt—-'

2y - o 242
wa?) =1+ = 33-2n¢ |rog(a?/af) (3.14)

which shows the expected paramagnetic behavior.

A Metaphor for Confinement [28]. It is typical in field theories that the coupling
constant depend upon the distance scale. As we have seen, this dependence can be
expressed in terms of a dielectric constant e¢. We define




e{rp} =1, (3.15)
and write
a?(r) = g¥(rgi/e(r) . (3.16)

We assert that the implication of asymptotic freedom is that in QCD the effective
color charge decreases at short distances and increases at large distances. In
other words, the dielectric "constant” will obey

e(r) > 1 forr < rqg , {3.17a)
e{r) <1 , for r > rg . (3.17b)

Indeed, to second order in the strong coupling we may write

-1
(11-2nf/3)1n(r/r0)+0(g4)] (3.18)

1 $rp)
dx

e{r) = [1+ =

in QCD, where g is the number of active quark flavors.

Let us now consider an idealization based upon electrodynamics. In Quantum
ElectroDynamics, we choose

€vacuum = 1 (3.19)

and can show [29] that physical media have ¢>1. The displacement field is
D=E+ 4P , (3.20)

and atoms are polarizable with P parallel to the applied field E, so that |D|2lE].
Since the dielectric constant is defined through

D= ¢E

in these simple circumstances, we conclude that ¢>1. For a thorough treatment, see
Dolgov et al. [30].

Now let us consider, in contrast to the familiar situation, the possibility of
a dielectric medium with

tmedium = 0 > (3.21)

a perfect dia-electric, or at least

®medium << 1 (3.22)

a very effective dia-electric medium. We can easily show that if a test charge is
placed within the medium, a hole will develop around it,

To see this, consider the arrangement depicted in Ftg. 23a, a positive charge
distribution s, placed in the medium. Suppose that a hole is formed. Then because
the dielectric constant of the medium is less than unity, the induced charge on the
inner surface of the hole will also be positive. The test charge and the induced



charge thus repel, and the hole is stable against <c¢ollapse. In normal QED, the
induced charge will be negative, as indicated in Fig. 23b, and will attract the test
charge. The nole is thus unstable against collapse.

The radius R of the hole can be estimated on the basis of energetics. Within
the hole the electrical energy W;, 1is finite and independent of the dielectric
constant of the medium. The displacement field 1is radial and hence continuous
across the spherical boundary. Thus it is given outside the hole by

Doyt (rR) = rQ/re (3.23)

where Q is the total test charge. The induced charge density on the surface of the
hole is

Sinduced = (1-€)IB(R)1/4xe = (1-¢)Q/4meR? (3.24)

which has the same sign as Q, as earlier asserted. Outside the hole, the electric
field is determined by the total intertor charge

G+ (1-e)Q/e = Q/e {3.25)
so that
Egut(OR) = FQ/er? . (3.26)

The energy stored in electric fields outside the hole is then

_ 1.3 . r° & _ 2
Wout = g;].d rBout(r}-Eguelr) = %j; rZd"QZ/er‘ = Q%/2eR . (3.27)

As the dielectric constant of the medium approaches zero, Wyt becomes large
compared to W;,, so that the total electric energy

Ne} = H1n + NOUt nd Nout ) as e » 0 . (3.28)

One must consider as well the enerqy required to hew such a hole out of the medium,
For a hole of macroscopic size, it 1s reasonable to suppose that

Wnole = % AR3v + 4nRes + L., (3.29)

where v and s are non-negative constants. The total energy of the system,
W=Way + Wpgte > (3.30)

can now be minimized with respect to R. In the regime where the volume term
dominates Nho]e’ the minimum occurs at



for which

2\2 i
ey = (L) (amv)t (3.32)
E
and
1 {Q%\¢ 3
W0t zg(g;) (dxv)t (3.33)
so that
2\¢
Wl (9. (4av)t . (3.34)
3 \2e

Thus, in a very effective dia-electric medium, a test charge will induce a
bubble or hole of finite radius. Notice, however, that in the 1imit of a perfect
dia-electric medium

W3 as e >0 . (3.35)

An isolated charge in a perfect dia-electric thus has infinite energy.

If instead of an isolated charge, we place a test dipole within the putative
hole in the medium, we can again show that the minimum energy configuration occurs
for a hole of finite radius about the test dipole. In this case, however, the field
lines need not extend to infinity, so the hole radius remains finite as ¢30, and so
does the total energy of the system. The analogy between the exclusion of
chromoelectric flux from the QCD vacuum and the exclusion of magnetic flux from a
superconductor is now obvious. To separate the dipole charges to 3o requires an
infinite amount of work, as shown in the previous example. This is the would-be
analog of quark confinement.

The 1/N Expansion in Particle Physics {or, Why QCD May Be the Solution to the
Hadron Spectrum). The search for small parameters which can play the part of
expansion parameters is a central element of the process of approximation and model
making that is theoretical physics. In many physical situations, extremes of energy
or distance suggest highly accurate and readily improved approximation schemes., In
classical electrodynamics the indispensable far-field approximation is applicable
when the size of a radfator is negligible compared to the distance between the

radiator and receiver. The Born approximation for the scattering of
charged-particle beams from atomic electrons is trustworthy for beam energies
greatly in excess of the atomic binding energy. In Quantum ChromoDynamics, a

perturbative treatment (which is to say an expansion in powers of the strong
coupling parameter as(Qz)) is expected to be reliable when the invariant momentum



transfer Q2 is large compared to a characteristic mass scale denoted by Az.

For the problem of hadron structure, no similar expansion is applicable. All
of the relevant energies of the problem are on the order of the naturally occurring
scale. In a typical hadron, the separation of the quarks fs simply the hadronic
size of approximately 1 fm—hardly a regime in which perturbative QCD ts likely to
make any sense. We may, of course, simply await the day when a very heavy
quarkonium family is found, and then happily apply conventional perturbative
measures. That insouciant course however leaves untouched the problem of the
structure of all the hadrons now known, so other actions are called for.

The strategy of the 1/N expansion is a familiar one. When confronted with a
problem we cannot solve, we invent a related problem that we can attack. [f this is
done adroitly, the new problem will not only be simpler but will also capture the
physical essence of the original one. More specifically, the 1/N expansion
represents an attempt to introduce a parameter that permits a simplification of the
calculation at hand.

For QCD, this simplification is achieved {31] by generalizing the color gauge
group from SU(3). to SU(N). and considering the 1imit in which N becomes very large.
Although SU{N) is in general more complicated than SU(3), the hadron structure
problem is simplified by two observatians:

(1) At any order in the strong coupling constant, some classes of diagrams are
found to be combinatorially negligible.

{i1) The remaining diagrams have common consequences, in large-N perturbation

theory,
This technigue does not entirely free us from the constraints of perturbative
analysis. Since we shall find, by inspection, that entire classes of
combinatorially favored diagrams have common features to all orders in the coupling
constant, we shall have to assume that the content of the theory is accurately
represented by the set of all diagrams. For QCD, the best evidence for the
reltability of the 1/N expansion is that SU(N). QCD seems to resemble the worid we
observe.

The combinatorial analysis of SU(N)C QCD ¥s most transparent in terms of the
double-line notation introduced for this purpose by ‘'t Hooft [31], which is
illustrated in Fig. 24. Several examples will suffice to make the main points.

Consider first the lowest-order vacuum polarization contributions to the gluon
propagator, the quark 1loop illustrated in Fig. 25a and the gluon loop pictured in
Fig. 25b, in conventional notation. These are redrawn in the double-line notation
in Fig. 25c, d. For an initial gluon of type ij, only a single calor configuration
is possible for the quark loop intermediate state: a quark of color 1 and an
antiquark of color J. For the gluon loop, however, the index k is free to take on
any vailue 1, 2, ..., N. Thus the gluon loop diagram has a combinatoric factor N
associated with it. This 1llustrates the general rule that gluon loops dominate
over quark loops by a factor of N, as No.



The presence of fthe factor N would seem to imply that the gluon 1loop diagram
diverges as N9=. This can be cured by choasing the coupling constant to be g//N,
with g fixed as N, Then for any value of N, the contribution of the gluon loop
goes as

(a/ M2 » g2, (3.36)

a smooth Himit,

That this device solves the divergence problem in general is indicated by an
analysis of diagrams with more than one loop. The two-lcop diagram depicted in
Fig. 26 in {a) standard and (b} double-line notation is 1immediately seen to be
prcportional to

(g//M) 3N 5 ¢, (3.37)
Similarly, the three-loop diagram of Fig. 27 obviously goes as

(g//MO8N3 5 & | (3.38)

The situation is different for nonplanar graphs, however. The simplest such
graph is shown in Fig. 28. The double-line notation makes it apparent that this
graph contains but a single, tangled color loop, and therefore goes as

(g//MB.N > b/ | (3.39)

and is therefore suppressed by 1/N2 compared to its planar counterpart at the same

order in gz. It is generally the case that nonplanar graphs are reduced by I/NZ, as

N-o,

These combinatorial arguments select planar graphs as an 1mportant subclass.
To evaluate and sum all the graphs thus selected is no trivial task. Instead, we
may identify their common features and speculate that these survive confinement. [t
is possible in this way to establish the following results in the targe-N 1imit:

(1) Mesons are free, stable, and noninteracting. For each allowed combination
of Jpc and’ fiavor quantum numbers, there are an infinite number of resonances.

(it) Zweig's rule s exact. Singlet-octet mixing ({through virtual
annihilations) and meson-glue mixing are suppressed. Mesons are pure (qG) states,
with no quark-antiquark sea.

{111} Meson-meson bound states, which would include particles with exotic
quantum numbers, are absent.

(iv) Meson decay amplitudes are proportional to 1//N, so mesons are narrow
structures.

(v) The meson-meson elastic scattering amplitude is proportional to 1/N and s
given, as in Regge theory, by an infinite number of one-meson exchange diagrams.

(vi) Multibody decays of unstable mesons are dominated by resonant, quasi-two
body channels whenever they are open. The partial width of an intrinsically k-body



final state goes as l/Nk'l.

{vii} For each allowed JPC there are infinitely many glueball states, with
widths of order 1/N2. They are thus more stable than (qd) mesons, interact feebly
with (gq) mesons, and mix only weakly with (qg) states.

Untit QCD is actually solved, we will not know how closely the Nao 1limit of
SU(N). resembles the case of interest, which is color SU{3). The preceding list of
large-N results does bear, however, a quite striking resemblance to what is observed
in experiments. To the extent that the 1/N expansion faithfully represents the
consequences of QCD, much of the familiar phenomenology is explained, and many of
the model approximations are justified.

[t is worthwhile to indicate diagrammaticalily how some of these consequences
arise.  Two-body decay of a color-singlet into color-singlets is illustrated in
Fig. 29. In fourth order, the amplitude is given by

A= (/MmN (1m3 (3.40)
where the N3 is the combinatorial factor for three 1loops, and a factor of 1/vN
occcurs for each color-singlet projection. The decay amplitude is therefore

proportional to 1//N.

To the same order in the coupling constant, the propagator of a color singlet,
indicated in Fig. 30, goes as

(g//MAn3 (1M - ¢, (3.41)

independent of N.
Compared to the allawed decay, the disconnected quark line diagram of Fig. 31
is suppressed by an additional power of 1/N. In this case the amplitude is

A= (g//M) N (1/M) « ANR . | (3.42)

As a final example, mixing between {qg)-mesons and (qzaz)-exotics proceeds at
fourth order by the diagrams of Fig. 32. The mixing amplitude goes as

A= (g/R)ING (1R « gfN . (3.43)

which vanishes in the large-N 1imit.

This brief survey shows that the 1/N analysis of SU(N). reproduces some of the
features of meson spectroscopy. It is of clear interest to learn to what extent
these results are indeed representative of QCO, the theory based on SU(3).. To the
extent the correspondence c¢an be made, the 1/N analysis motivates the neglect of
quark loops in Tattice QCD.



LECTURE 4: TOWARD LATTICE GAUGE THEORY

In this lecture, we begin to formulate QCD on a 1lattice. Nonperturbative
methods are called for on two accounts. Perturbation theory will not converge if
coupling constants are large, and perturbation theory is not complete. It gives no
hint of intrinsically nonperturbative phenomena such as barrier penetration, soliton
solutions or (central to our purposes here) color confinement. There are also
several reasons for introducing a space-time Tattice. It provides an ultraviolet
cutoff, allows us to bring the full arsenal of statistical-mechanical methods to
bear on field theory, and gives a nonperturbative implementation of QCD.

Our goal in this lecture will be to make precise the connection between quantum
mechanics and statistical mechanics. To do so, we review the path-integral
formulation of quantum mechanics developed by Feynman [32]. It is helpful to

proceed by example; we consider the harmonic oscillater in l-dimension, for which
the Lagrangian is

2= 3(mxl-ulx%y . (4.1)

The amplitude for the transition from the initial space-time point (Xgs ta) to the
final point (xb, tb) is

7 = :E: aiS/h ]-EZX(t)] eSIx(t)I/h (4.3)
paths

where the classical action is

s=f dte . (4.3)

To give meaning to (4.2) we must provide a sensible operational definition of the
sum over paths.

We first introduce a space-time lattice so various paths may be labelled

simply. It is convenient to regard time as a discrete variable, and to choose a
1attige with equal time sliices

t1+1 - ti = ¢ {4.4)

as shown in Fig. 33. The expression (4.2) for the amplitude contains rapidly
osciltating phases from the factor eI/ To tame these, we continue to imaginary
time by writing

t=-it (4.5)

so that

S e% fd‘l: [m(dx/dr)2+m2x2] . (4.6)



-

The phase factor eis‘/h is therefore replaced by e'S/h, where the Euclidean action is
given by

S = fdt %[m(dx/dt)zﬂuzxz] . (4.7)

If the integral is replaced by a sum over discrete time slices, the Euclidean action
becomes

P
S-c¢ (4172407 w2xel (4.8)
2 2 1

i E

The similarity between the Schrtdinger problem and a  one-dimensional
statistical system is now evident. The partition function

7 s E e'BEstate ] (4.9)

states
with 8=1/kT, is a sum over Boltzmann weights for all possible configurations of the
system. We may compare this with the guantum mechanical transition amplitude

rs @« @@ a0 -~
= E e—S/h - j dxl[ dx2"'j dXN e'S/f‘l . (4.10)
paths -o - -m

We see at once the correspondences:

Quantum Mechanics Statistical Mechanics
Euclidean action S Hamiltonian
h 1/8 ~ T

The Timit w0 picks cut the classical trajectory, without quantum fluctuations, Jjust
as T30 is a frozen point in statistical mechanics, free of thermal fluctuations.

In the particular case of our example, there is a correspondence between the
quantum mechanical problem of the harmonic oscillator and a statistical mechanics
problem involving nearest-neighbor interactions. This is exhibited more clearly if
we rewrite the partition function as

Z=‘/::H[dx1-T(x1-+1,x1-)] : (4.11)
i

where

2 2 2.2

2
(X547~%X5) wSex; weexs
T(x441,%§) = exp {— 5% [ 1+z UL 21+1 + > 1]} (4.12)

is the transfer matrix. To establish the equivalence with the Hamiltonian
formulation of quantum mechanics, choose operators x and p such that




x[x> = x{x> , _ (4.13)

with

'ix> = s(x'-x) . (4.14)
The basis is assumed to be compiete, so that

I = j.dx bx><x| . {4.15)
The conjugate momentum operator p satisfies

{p,x] = -in (4.16)

and so generates translations:

-ipa/h
e pa/ x> = [x+ta> . (4.17)

Using these operators we construct the transfer operator T with matrix elements
OCT x> = T{x',x) (4.18)

which evidently corresponds to the time-evolution operator of guantum mechanics, and

must therefore be related to the Hamiltonian. The partition function may be written
in terms of the transfer operator as

&
.= f I IGX1<XT+IIIIX1>
-Cl 'i

f (XbIII XN_1>dXN_1<XN_1'I! XN_2>. . (xl I_-['Xa> (4.19)

Gpthixgy

where N is the number of time slices and the last step follows from the completeness

property (4.15}. As a final preliminary to expressing T{x',x) in operator form, we
note that

<x [exp(-ep?/2} (x> fdpdp'<x'lp'><p'|exp(-692/2}tp><pix>

-4 1 1 2 3
i h - 2 -ipx/h
- E% j.dpdp‘ o PX / o P / o P / §(p'-p)
- 4,20)
2n

' 2
- 1 exp {_ X' =X }
v2re Zeh2

The transfer operator satisfying (4.18) may therefore be written as



T = exp(-cewx?/8h)exp(~ -ep?/2n) exp(-ewlx®/4n) -constant . (4.21)
Using the operator identity

AB
ee =exp{A+ B8+ +A,B] + ...} . (4.22)

we find that
T = constant-exp[-e(g2+m212]/2h + 0(52)] . (4.23)
In the Timit of vanishing lattice spacing 30, the transfer operator approaches
I = constant-exp(-e3¥¢/h) s {4.24)
with
= b(pP+alxl) . (4.25)
To see the equivalence of the transfer formalism to the Schrtudinger equation,
consider the evolution of an arbitrary state P{x,1). We may write
px',t') 3 <x'|¢> = j.dx L{x'yt' %, )p{x,1}
= fdm';1|x><x|¢.>T . (4.26)
For an infinitesimal time interval
-1 = ¢ (4.27)
we have
p(x',t') = fdx(x']exp(-egg’/h“x)(x[w)T
. fctmc';(1-eir’/h);x><x|¢,>t ' (4.28)

= ¢(x',t) - E.ﬁfw(x',t) .
so that

Bu(xtse)w(xt,1)] = L IR ZTUI R (4.29)

which we recognize as the Euclidean form of the Schrtdinger eguation.
We may give a more general definition of the Hamiltonian as

X = (-h/e)In T, (4.30)

the coefficient of the term in In T linear in the lattice spacing t. As =0, X,
. In this picture, operators are independent of t, and all the t-dependence is
carried by the state functions.

Let us close with a few general observations. In statistical mechanics,



thermodynamic properties are determined by the largest eigenvalue of the transfer
matrix. In quantum mechanics, the corresponding eigenvector has the lowest
eigenvalue of »: it is the vacuum, or ground state, of the system. Notice that if
we impose periodic boundary conditions and integrate over all initial positions,

7= <xb!IN}xa> I L (4.31)

which emphasizes the importance of the largest eigenvatlue.
The path-integral and Hamiltonian formulations of quantum mechanics are
equivalent.  Roughly speaking, the path-integra) approach is more efficient for

scattering problems, and the Hamiltonian language 1is superior for bound-state
probiems.

LECTURE 5: FIELD THEORY ON THE LATTICE

In this lecture we shall make the connection between statistical mechanics and
quantum field theory. The same general ideas that we have exploited in Lecture 4
will apply here. Let us first recall the correspondence between quantum mechanics
and field theory:

Quantum Mechanics Quantum Field Theory

position x dynamical variables p(x): field values at
each point x in d-1
dimensional space

particle trajectory path space-time history of
the field

In seeking the precise correspondence between statistical mechanics and field
theory we shall once again proceed by example, this time studying scalar fieild
theory in d-dimensions, for which the Lagrangian is

. 2 4
¥= j.dd*lx [%(QE) -3(78)% - 14%2 - l&liﬁ] . {5.1)
at 4
As befora, the classical action is
ty
S f dt (5.2)
ta
and the path integral can be defined as
iS/h iSfe(x)1/n
223 = [@epape N (5.3)
paths

and our task is to give a meaning to the path integral.



To begin, we continue to imaginary time,
t » -iq . (5.4)

We assume this can be done. A demonstration that this is permissible was given
order-by-order in perturbation theory for all Green's functions by Schwinger [33].
We next formulate the theory on an isotropic, Euclidean space-time ltattice with
lattice spacing a. This regularizes ultraviclet divergences because no wavelengths
shorter than a {no momenta in excess of n/a) appear. The Euclidean action becomes

R E ‘ [Aocb(n Z [Ak¢( n)12

latti l
s$tes n (5.5)

+ 1lle(n ] + %tmm‘*} ,

where n = {ng; Ny, Noe.ung 1) labels lattice sites. We denote by the “unit vector"

np one lattice step along the u-direction. The difference operator is defined as

a,f(n) = f(n+ap) - f(n) . (5.6)

We may rewrite the Euclidean action more compactly as

d-1
$=2 {K Y Da,e(m1? + ble(m)? + u[¢("’]4} ’ 0

n u=0

K = %ad-Z (5.8)
is the nearest-neighbor coupling, and

247 .
Ix1ad/a

=3
t]

(5.9)

=
n

The path integral for the lattice theory is (hereafter we set u=1)

=Hf°d¢(n)e'§ : (5.10)
L1/,

which corresponds to the partition function of a d-dimensional statistical mechanics
problem, with boundary conditions on the path integral specifying ¢ on initial and
final temporal siices.

As we did in guantum mechanics, we define a transfer matrix to propagate the
field ¢(n) in the time direction, from ¢ on one time slice to ¢' on the next:



G'1T1¢> = exp l- :E: {K[¢'(n)-¢(N)]2 +

n
-1
(to (mn,0-0 (M2 + [o(mi,)-6(m %) (5.11)
p=1

+
[N
Q.

- %[e'(n)zw(n}zl + gu'(n)“w(n)“‘]}]

To obtain an operator expression, define second-quantized conjugate fields ¢(n),
n{n) satisfying

(x(n"}, o(n)] = ~i55. . (5.12}

Manipulations parallel to those of the quantum mechanical case yield

c{ Z{ E o' (m+n )-8’ (n)]% + be' (n)2 + ug’ (n)“}]
xexp [-K x(n)Z]u (5.13)
2

d-1
exp [-% > {K Y Lo(nen,)-a(m)]2 + ba(m? + ug(n)“}]

n p=1
Just as for gquantum mechanics, we can identify the lattice Hamiltonian operator X
by

I=e : | (5.14)

We are now in a position to relate field theory on a lattice to a statistical
mechanics analog with greater precision. We will show the correspondence

Statistical Mechanics Quantum Field Theory
Free energy density Vacuum energy density
Correlation function Propagator
1/Correlation length Mass gap

We begin by expanding the transfer operator in a set of orthonormal eigenvectors
with real energy eigenvalues Ei:

.. _“Eja
= E fi>e i . {5.15)
i

The partition function corresponds to

7 =t TN (5.16)



for evolution through N+l time slices. The trace in (5.16) arises from identifying,
and summing over, the initial and final fields.
In this basis,

LS Z [1>exp[-(N+1)E;a]<it . (5.17)
3

Consider the 1limit of infinitely many time slices (N9=), and suppose there is a

unique (vacuum) state of minimum energy E,, corresponding to the largest eigenvalue
of T:

-EnAt
tim TN 5 yove 07 <o
Noxo

. (5.18)

where At is the difference between final and initial times. In this limit, the path
integral is

-Epat
= g 0

Z {5.19)

This is to be compared with the connection 1in statistical mechanics between the
partition function and the free energy,

7= eBF = ooF/KT (5.20)

The free energy can be expressed as the free energy density times the space-time
volume,

F=sU-TS = fyat . (5.21)
If in analogy we write the vacuum energy eigenvalue as

€y = wg¥ _ (5.22)
where wgy is the energy density of the vacuum, we may identify

Bf = wg (5.23)

the desired connection.
Next, we construct the field theory propagator in Minkowski space,

a(tyx) = Ojga(tix)e(0;0)10> (5.24)

where the Heisenberg-picture field operators are related to the Schrodinger-picture
operators by

1.1

iRt -
o(t;x) = e~ ° g(x)e S (5.25)

and I denotes “time-ordering.” In terms of the Schrddinger-picture fields, the
propagator is



-1t iEnt
A{t;x) = <01g(x)e &5 g(o)|0>e1 0 . (5.26)

Now consider the correlation function in statistical mechanics, which is defined by

C(n) = C(ngsm) = (1/2) H qu:(n{'),n'J¢(n0,n)¢(0,0)e's . (5.27)

né,n'

We organize the sums over configurations so that for each time slice ny we integrate
over all the spatial sites n'. Except for the initial and final time slices né=0 and
né=n0, the reorganized sums are identical to those appearing in the definition of

the partition function Z. By the usual steps, we obtain the operator expression for
the correlation function,

p i L
C(ng,n) = ST (T "e(0)T7 (5.28)
0 N+1
tr{l }

where P + ng + L = N+1.
Now let P, ng, L » @ so we may use (cf. (5.18))

-Enat
™ = jove 0% ¢o)

We find

-Nno¥e. @ naEna
C(ngsn) = <Otg(n)e 0“5 4(0)0%e 0O (5.29)
Comparing with the field theory propagator (5.26) we see that
C{ngin) ~ A(-ingasma) . (5.30)

This establishes the correspondence between the correlation function in statistical
mechanics and the field theory propagator for imaginary times.

For a statistical system not at a critical point, the correlation function
falls exponentially:

C(ng;0) ~ exp[~Ingi/E] for Ingl >> £ (5.31)

where § 1is the correlation length. Compute the imaginary-time propagator in the
same approximation:

- H.Nna EAnnpa
8(~inga;0) = <0je(0)e 5 0%4(0)10>e 00

-~ X.npna Ennna
z 0fe(0)e 5 0% 1><a19(0)(05e 00
% (5.32)

= :E: axp [-noa(EL-EO)] }(0|9(0)|1>52
L

2
n0a>>T exp ['"03(51"50)] 1<01e(0) 1> ,



where |1> is the particle state of smallest energy, the iightest particle state at
zero momentum. [f we identity the mass gap, or particle mass, as

m=E -E (5.33)
we have
8(-inga;0) ~ exp (-nOam) 1<016(0}(1>12 . (5.34)

Consequently, so long as the matrix element <Of¢(0)]1> 1is nonvanishing, we may
identify the mass gap with the correlation length through 1/Eesam, or

m=1/af . (5.35)

A nonzero mass corresponds to a finite correlation length, which is to say an
uncritical statistical system. The correspondences between statistical mechanics,
quantum mechanics, and quantum field theory reviewed in this lecture and the
preceding one are summarized in Fig. 34.

LECTURE 6: GAUGE SYMMETRIES ON THE LATTICE

In this lecture, we consider models with global or local discrete or continuous
symnetries on the Tlattice. Qur objectives are to learn how to formulate gauge
invariant theories on the lattice, and to see how the methods of statistical
mechanics lend themselves to the study of QCD.

The Ising Model [34]. A simple and informative spin system is the Ising Model of a
ferromagnetic material in two dimensions. Consider a two-dimensional square lattice
as shown in Fig. 35 with a spin ¢ = t1 on each site. In the absence of an applied
magnetic field, the theory is determined by its nearest-neighbor interactions. The
configuration energy, or Euclidean action, is given by

Slo] = BE[e) = -8 z o9y (6.1)
g
where <1j> denotes a sum over nearest-neighbor pairs, or "bonds,” and the minus sign
(which favors alignment of neighboring spins} is appropriate for a ferromagnetic
substance. The model has a global up-down symmetry. That is, the configuration
energy is unchanged if zi1 spins are reversed. The partition function is



8 Zua

7= E e BEld] = e <137 : (6.2)
confiaglgtions Le]

The Ising model in two dimensions is exactly solvable, most simply by transfer
matrix methods. [t displays a second-order phase transition — spontaneous
magnetization — at a critical temperature BC=O.4407, corresponding to the condition
sinh(ZBc)=1. The behavior of the net magnetization M=<g> is sketched in Fig. 36.
The sign of the spontaneous magnetization is random, which is to say unpredictabie.
This is characteristic of spontaneous symmetry breaking.

It is quite illuminating to watch a Monte Carlo simulation of the Ising model.
Some representative configurations are shown in Fig. 37. At zero temperature, the
system is completely ordered, so that |M{=1, and the up~down symmetry is broken. As
the temperature 1is raised, small bubbles of flipped spins arise. When the
temperature exceeds the critical temperature, the bubbles expand and merge, so that
M=0. The system is then disordered, and the up-down symmetry is restored.

If we think of the lattice as a space-time lattice, the connection with field
theory becomes apparent. Bubbie formation corresponds, in the language of Feynman
diagrams, to vacuum fluctuations. A domain boundary can be regarded as the world
1ine of a (virtual) particle-antiparticle pair.

22 Lattice Gauge Theory. A spin system with local up-down symmetry was constructed
by Wegner [35]. Consider a cubic lattice in d-dimensional space-time, as indicated
in Fig. 38. Lattice sites are labelled by the coordinate n, and links are labeiled
by the site m and a lattice unit vector §i Teaving the site. An Ising spin o=:1 is

placed on each 1ink. In the two-dimensional sketch of Fig. 38, the spins at site n
are

G(H,;) ’ G(l’l,;) s “(ns';) s °(ns';)

A local spin flip (or rotation), which is to say a gauge transformation F{n) at
site n changes these spins to

"G(II,;) s "U(I'l,_;') ’ 'a(“3';) ’ -0(",-9)

A nontrivial action invariant under local spin flips is given by the product of
spins around elementary squares {plaquettes) of the lattice,

S = Z a{n,X)a (M, y) o (nEXtY, -X)a(n+y,-y) (6.3)
n
as shown in Fig. 39. A plaquette involves two links at each lattice site. Under a
local spin flip #(n),



a{n,X) » -o(n,x) (6.4)

a(nHY,-y) = o(n,¥) + -a(n,y) = -o(n+y,-y)

so 535. The same invariance holds for any closed curve used to define the action.
The plaquette is the most local definition one can devise.

Using the freedom conferred by the local spinflip invariance, it 1s easy to
show that the 22 theory in two dimensions is equivalent to the one-dimensional Ising
model. We choose all the links of ,:§)=1, whereupon

S :E: a(n,;)o(n+;+;,-;)
n (6.5)

= Z a(n,X)o(n+y,X)

This theory has no phase transition: the spins are always disordered, with <o>=0,
except at T=0.

A Lattice Theory with Continuous Symmetry. A representative model with a global
continuous symmetry is the planar spin model. On each site of a (two-dimensional)
square tattice, we place a planar spin

- tos e(n}
s{n) = ‘ (6.6)
sin 8(n)
A nearest-neighbor action is
S = K Z s(n)-s(mp)
n,
R (6.7}
= -K :E: cos[e(n)-e(n+;)]
n,j
With the finite-difference, or lattice-derivative, notation
8,0(n) = o(n+y) - o(n) (6.8)

we may write
S =K :E: cos[Ape(n)] s {6.9)
n,u

which is manifestly invariant under a global phase rotation

o(n) » 6(n) +a . (6.10)

The generalization to a locally symmetric theory is easily made by following



the exampie of Wegner's 22 theory. We place anguiar variables characterizing planar
spins on each 1link of a lattice, as shown in Fig. 40. The sum of angles around a

plaquette,

P = 8,(n) + ey(n,x) + o_, (mxty) + a,y(n+y) (6.11)

= 8,(n) - e, (nty) + ey(n+x) - ey(n) s

is unchanged by local angular rotations

eu(n) - ep(n) + a(n) . (6.12)
Notice that the sum of angles around a directed plaquette 1is simply the discrete
curl

Ph = Axay - Ayex (6.13)

ar, in an arbitrary dimension,
Fuv T 88, 7 8,8, - (6.14)

The sum of angles along an open string is changed by angular rotations only by the
phase changes at the endpoints.
Now consider simultaneous gauge transformations

0,(m) > 8,(n) *+ x(n)

(6.15)
8, (M) > o (R} + x(mt)
The net change in ep(n) is
8,(M) > 0. (n) + x(n) - x(n+p) (6.16)
= ep(n) - Apx(n) ,
while
Fuv ? Fuv - (6.17)

This is a spatially discrete form of the local gauge invariance of electrodynamics:

- -
Au :l\}1 apx

(6.18)
Fl-l

v? va

This similarity suggests that we base a locally phase-invariant lattice action
oh the phase factor

- 1e M
exp [ h fdxpﬂ ]

that Teads to QED {36]. A possible form is to take the phase factor around the
edges of a plaquette:



Splaquette = KU(1)U(2)U(3)U(4) + c.c.] {6.19)

where

U(j) = exp [1e j'ide jdqu"] 2 exp [1ej] (6.20)

s

is an element of the group U(1), and the sides are labelled as shown in Fig. 41. We
saw earlier that the sum of angles around a plaquette is the locally gauge-

invariant quantity erv(n). Comparing with the nearest-neighbor action (6.9}, we
have

- . Y P
Sp = <K cos(F,) 5 K [1 3’pu/2+—°-] . (6.21)

The constant term is free of dynamics, so we redefine the plaquette action without
it, as

Sp = K [l-cos(3fpv)] . (6.22)

We may write the lattice action in terms of a sum over plaquettes, as

g = :E: K [1-cos(55v(n)>]

MopisV (6.23)

.;Z(t‘f;+ )

In four dimensions, let ¥ - [ddx/ad; the lattice action goes over to

s = K j'd4x45i2 . | (6.24)
a4 2
If we identify [37]

= L2
X = a‘e va

i3
o, = eaAp s (6.25})
K = 1/2¢°
then
S > fj.d4x L (6.26)

the Euclidean action of electrodynamics. This identification fixes the plaguette
action as

s, = Eiz [l-cos(xfhv)] . (6.27)



Implementing Non-Abelian Gauge Symmetries on the Lattice. We consider as an example
the group SU(2) on a four-dimensional hypercubic Euclidean lattice with lattice
spacing a. On each link we place an SU(2) group element [38]

U, (n) = exp [in(n)] , (6.28)

& 2x2 matrix, where the gauge field is
= 29 2, .
B,(n) 27 Kp(n) : (6.29)

Y
[The corresponding form for SU(N) is an NxN matrix. The gauge field Au has N8-1
components, and (?/2) is reptaced by the normalized generators of SU(N).] dJust for

the Abelian case, each link carries a directional sense (n,;), and a backward 1ink
carries

“liny . (6.30)

U_(ntu) = U0

Under a lecal gauge transformation characterized by

el 4

6[7(n)] = exp [:iz;éiﬂl] s G(n) (6.31)
the link variables transform as

U (n) » G(n)Up(n)G'l(n+;) . (6.32)

This is the simplest local generaiization of a global gauge transformation
(cf. (6.16)). As in the Abelian theory, a string of 1ink variables transforms by a
gauge rotation at each end.

A product of link variables around a closed loop is locally gauge invariant.
The most local color singlet on which to base a lattice action is the elementary
Wilson loop [38]

Tr{uu(n)Uv(n+;)u_u(n+ﬁ+3)u_v(n+3)} . (6.33)

Wilson's lattice action is

S = -(1/2¢%) :E: {tr [Uu(n)Uv(n+;)U_p(n+;+;)U_v(n+3)] + h.c.} . (6.34)
1 PR TR
We shall now show that in the classical continuum Timit a30 (the “naive continuum
limit") this lattice action becomes the Euclidean action for Yang-Mills theory.
We begin by making a Taylor expansion of the gauge fields around site n:



B (M)

ed

B,(m) + a2 B (n) + 0(a%)

u(mhey) = -8 (mhy) (6.35)
~ 2
- [Bu(n)+aav8u(n)+0(a )] .
B_,(mtv) = -B (n)
The Wilson loop is then approximately
LUUY = exp [1Bp(n)] exp [i(Bv(n)+aava(n))]
(6.36)
xexp [~i(Bp(n)+aavBu(n))] exp{-ti(n)]
Using the operator identity
XY
e e = exp[X+Y+i[X,¥Y]+...] (6.37)
we find
wwuu = exp [ 1(8,+ B,+a3,8,)- HE,.8,1]
« exp | -1(8,%8,+20,8,)-4(8,.8,1] (6.38)
~ exp [1a(aqu-ava}-[Bp,Bv]] .
Recalling the definition (6.29) of the gauge field, we let
A (n) = 2R 39
p(n) = 2" Wmos (6.39)
whereupon
UUUU = exp [1azg(apAv-avAp+1g[Au,Av])] : (6.40)
The expression in parentheses is minus the Yang-Mills field-strength tensor Guv, SO
we may write
UUUU = exp [-1a29Guv+ higher order in a] . (6.41)
Now take the classical continuum 1imit of smooth fields by considering
alq6 . << 1 6.42
g!_lv L] (' )

so that



Tr(UULY)

12

2
Tr (exp[—1a ngv])

r

22 4,262
Tr (1-12%g6,,,-ta%g%62 +. .. ) (6.43)

24

4 2
Tr{l) - 3a"g tr(Gva““) + ...

In this 1imit, the lattice action becomes

s = (-1/24%) :E: [Tr(UUUU) + h.c.]

PR TPRY

> *pv
1 [ a%? &6

2
2 +0(a%) (6.44)
22 ] 82 2

where the (+h.c.} contributes the overall factor of 2. Simplifying the expression,
we find

S = xf adxa .G (6.45)
& }1\) >

the Euciidean action of classical Yang-Mills theory.

Observe that the final result has a Euclidean 0(4) invariance, whereas the
original lattice action had only a hypercubic symmetry. The 0(4) symmetry breaking
resides in terms that are higher order in the lattice spacing a, and do not affect
the continuum 1imit. This emphasizes that the Wilson action is not a unique choice.
Many possible Tattice actions have the same continuum 1imit. For example, we may
replace the elementary plaguettes by more complicated loops, or add other
gauge-invariant quantities which vanish with additional powers of a. A1l such
lattice actions should have the same <critical behavior, and reproduce the same
continuum field theory — up to renormalization constants. The final classical
continuum result involves the standard locally gauge invariant Yang-Mills field

-+
strength tensor Gpv. This is guaranteed by the local gauge invariance of the lattice
action.

LECTURE 7: THE STRONG COUPLING EXPANSION AND CONFINEMENT

An important attribute of lattice gauge theory is that we can easily study
properties of the theory in the strong coupling limit gzam. Recalling that the
lattice action is schematically given by

S ~ B 2 tr(UUUU) (7.1)
P



with 3=1/gz, we are reminded that 1/92 is the analog of 1/kT 1in statisticatl
mechanics.  The strong coupling expansion is therefore akin to the high temperature
expansion. As we noted in our survey of the Ising model, the high-temperature phase
characterizes a very disordered system. We shall see in the course of this lecture
that there is a deep connection between disorder and confinement.

Physical observables are given by the expectation values of gauge-invariant
quantities on the lattice. An example is the Wilson loop,

ey

where @& defines a closed path on the lattice. For g24m (B}, we may expand

eSS . 1-3 z tr(UUU) + ... (7.3)
p
To proceed further, we must be more precise about the integral f] [dU] over the group
volume at each link. For a U{1) gauge theory, this represents an integral over the
phase angle on each link. If we write Uj—e J, then

21'da dee e ds
[du] = 1 2 ., M (7.8)
2n Zn 2n
0 0 0

for a lattice of M links. Notice in particular that

2
2
0

(7.5)

f[aU} =1
f[dU]UiJ =0 (7.6)
f[dU]UUUk] e
and
f[dU]f(U) = [[dU]f(UOU) : (7.7)

for Uy € SU(n). For the rotation group 0(3},

[(dU] = fg_f . (7.8)



With these rules for group integration, we can expand e™> in strong coupling, and
evaiuate integrals for the Wilson loops.

As an example, let us calculate the leading behavior of <tr(£y)>. Consider a
rectanguiar Joop of dimension MxN in lattice units, as shown in Fig. 42. For each
Tink in the contour ¥, we must bring down at least one coerresponding link from the
> in order to avoid the zeroes from f[dU]Uij = 0. It is fruitful to
think of each plaguette term pgtr{UUUU) as a tile on plaquette p. The first
nonvanishing term in the strong coupling limit g0 is obtained when the minimum
surface enclosed by the contour ¥ is tiled. The leading behavior of the Wilson
loop is therefore

expansion of e~

W(®) = constantxgM'N (7.9)
= constantxe M-NAn(1/g) .
We see that the Wilson Toop follows an area law
W(€ )} ~ exp(-an(1/8)xarea of loop)
—oA (7.10}

= e

The exponential falloff reflects the disordered character of the system.

The Area Law and Confinement. We may measure the gauge interaction between two test
charges representing a massive quark and antiquark in a color singlet state as
follows:
- Introduce test charges at Euclidean time T=0, and pull them apart a
distance L.

+ Let them remain in fixed positions for a length of time T.
- Bring them back together again at time 7. _
The path traced out by the test charges is a rectangular Wilson loop of area

A=LT |, {7.11)
and we have just seen that in the strong coupling limit,
We) ~etT | (7.12)

We 1dentify this behavior with the evolution in Euclidean time of an enerqy

eigenstate ~eET, Thus the system of two test charges separated by a distance L has
an energy

E=ol . (7.13)

This result is suggestive of the string picture of hadrons. The energy of the

string joining the quark and antiquark is proportional to its length L. The string
tension is



a = lag(l/g) = 1og(g2) . (7.14})

The quark-confining string suggested by the area law is made of “gauge glue.” In
this picture, the string tension is determined (through 92) by the coler charges of
the test quarks. We therefore expect the same string tension for mesons {3-3*
quark-antiquark systems) as for baryons (3-3* quark-diquark systems). This provides
an understanding of the equal slopes of meson and baron Regge trajectories evident
in Figs. 15 and 16.

Confinement in Abelian and Non-Abelian Gauge Theory. We have demonstrated that
confinement occurs in the strong coupling 1imit of lattice gauge theory. However,

in the strong coupling limit, confinement is a universal property of gauge theories,
true for U(1l) as well as SU(3). The experimental evidence that electrons are
unconfined suggests that our understanding is incomplete. The resolution of this
puzzie is that in U(1l) gauge theory on the lattice a deconfining phase transition
occurs at some finite value of gz = ggr. For 92 > ggr, charge is confined, in
agreement with the strong coupling result. For 92 < 9§r’ Targe Wilson loops obey a
perimeter law instead of an area law:

W) ~ e IE) e (7.15)

so that the potential approaches a constant at Jarge separations,
V(R) » 2m , (7.16)

where m is the self-energy in gauge fields around an isolated point source. This
means that charges can be separated with only a finite cost 1in energy,
characteristic of the QED phase. In contrast, we expect QCD to be a confining
theory, with no phase transition at finite values of the coupling constant. We
shall see at once that this different behavior is consistent with the asymptotic
freedom of non-Abelian theories. In Lecture 9 we will review some numerical
evidence for the deconfining phase transition in the U{1) lattice theory.

The Renormalization Group, Confinement, and Asymptotic Freedom. To recover the
consequences of continuum field theory, we must let the lattice spacing a0 while
holding physical quantities fixed. Consider the case of the confining phase of pure
gauge theory. For a given value of g, we identify the string tension ¢ from the
behavior of targe Wilson loops,

W(g) ~ e"9h | (7.17)

Dimensional analysis shows that we may write the string tension as

¢(g,a) = _rle ag) (7.18)
a



where ¢ is the string tension in lattice units. We now require that o(g,a} remain
fixed while we vary both g and a:

30 53 + 3939 5520 | (7.19)
da 3g Ja

The change in 92 necessary to keep o fixed as a is varted is therefore
99 - _ d¢/3a (7.20)
3a 30/3g

This required variation in g2 s conventionally described by the dimensionless
Callan-Symanzik beta function

8(ql) = -a 89 =_ 20(9) (7.21)
3a 38(g)/3g
This function is of fundamental importance to the phase structure of the theory.

Critical values of the coupling ggr are determined by zeroces of the beta function,

B(a%) =0 . (7.22)
To go to the continuum Timit, we let a90 and continuously adjust 92 accordingly.

For 92 to remain finite in this 1imit, we must reach a point where an incremental
change in ln(l/az) induces a negligible change in g2.

The g-Function in Abelian and Non-Abelian Gauge Theory. In the strong-coupling timit
of both Abelian and non-Abelian theories, the Wilson loop behaves as

5 .
W(€) ~ constantxe AMNY , (7.23)

so the string tension in lattice units goes as

8(g) ~ In g% (7.28)

which means that the beta-function is
B(gz) ~ —921n 92 ] {(7.25)

In the 1imit of small lattice spacing a30, there are two possibilities:

- If B(gz>0, then 92 increases as a-0;

< If B(gz)<0, then g2 decreases as a=0.
The beta-function is negative in the strong-coupling regime. Therefore if we begin
in the strong-coupling regime and try to go to the continuum limit by Jletting a-0,
it forces us toward the weak coupling regime. This makes it difficult to base
quantitative predictions about the continuum theory upon results derived from the
strong coupling expansion.



In the weak coupting limit, we may use perturbation theory either on the
lattice or in the continuum, with a momentum-space cutoff 1if necessary. To any
order in perturbation theory, there is no confinement [39] and consequently no
string tensfon, so we cannot rely on the definition (7.21) of the beta function. We
can, of course, stiil define a Callan-Symanzik function by holding fixed some
"physical” quantity other than the string tension. Oifferent definitions of B(gz)
may differ 1in detail, but the sign of B(gz) and the location of its zeroes are
universal.

In the weak coupling 1imit, QCD is asymptotically free (B(gz)<0), but QED is
not (8(92)>O). Thus, the a-function for QED changes sign somewhere between strong
coupling and weak coupling, while the g-function for QCD does not. The behavior of
the g-function in the two cases 1is sketched in Fig. 43. The phase structure

suggested by this analysis has been borne out by Monte Carlo data, and by analytic
proofs.

LECTURE 8: THE INVERSE BOUND-STATE PROBLEM FOR QUARKONIUM

We interrupt our survey of lattice gauge theory to look one final time at what
may be learned from the spectroscopy of heavy quark systems about the force between
quarks. In Lectures 1 and 2 we reviewed some of the motivation for an interest 1in
heavy-quark spectroscopy, and investigated a few of the ways in which elementary

methods of gquantum mechanics can be useful. In this lecture we shall approach
similar issues using different techniques. We seek answers to the following
questions:

- How, and to what extent, does the spectrum of a quarkonium system
measure the interquark potential?

- Where do we know the potential, and what is its form? The elementary
analyses suggested that a form

V(r) = (710 MeV)Tog(r) (8.1)

is a convenient summary for the y and T states.
- What information do we need to know the potential better?
- What conclusions may we draw about the force between quarks?
Our tool in this lecture will be the inverse scattering formalism.
We are ail familiar with the direct problem of scattering theory, which
consists  in calculating the S-matrix from the equation of motion and the
interaction. In typical nonrelativistic applications the quantities to be computed

are the bound-state positions and wavefunctions and the scattering amplitudes or
phase shifts.



The inverse problem of scattering theory is complementary: given the equation
of motion and the S-matrix, deduce the interactfon. This is not the place for a
thorough treatment of the inverse scattering problem, which has an immense
literature, nor even to give a complete derivation of the resuits we shall use.
Instead, we shall present some examples to make plausible the utility of the inverse
formalism. We shall next pass on to a statement of the quantum mechanical problem
first for finite potentials and then for confining potentials. There follows a
review of the methodology followed in applications to quarkonium, and a study of the
assoctated phenomenology of the ¢ and T families. The lecture concludes with a
summary of what has been learned and an outlook on future prospects. Two examples
will 11lustrate the sort of information (and assumptions!) required to determine a
potential.

The Classical Inverse Problem. In classical mechanics, knowledge of the period of
oscillation as a function of energy is sufficient to determine uniquely a symmetric,
monotanic potential. Consider a one-dimensicnal potential well of the kind shown in
Fig. 44. The energy of a particle moving in such a well is given by
mx’
£ = S + V{x} . (8.2)
Solving for
x = [2(E-V1]? (8.3)
m

gives an expression for dt/dx which may be integrated to give the period
x(E
O [ =
2 ' vE-V
0

2(2m)d [E dv (dx/dv)
o vE-V

T(E)

(8.4)

If we divide this equation by ve-E, where o is for the moment a parameter satisfying
O<VSEsa |, (8.5)

integrate over the energy 6“dE, and interchange the order of integration, we find

’ dE TEE 2(2m)%[adwax/dw, dE[ (E-V){a-E)]"% (8.6)
a-
0 0 v
\..——-'__-'v__‘-\_/

2n(em)? x(a)

Now replacing a9V, we obtain an expression for the shape of the potential in terms
of the period,



¥
x(v) = —1 f €t T(E) | (8.7)
2n(emt Jy  VE

If, for example, the period is independent of energy, we readily find that

x(V) « AV, (8.8}
or, in other words,

Vix) « x2 . {8.9)
This is a familiar result.
The Semiclassical [nverse Problem. Very similar arithmetic leads to the

reconstruction, in semiclassical approximation, of a symmetric, monotonic potential
in one dimension. In this instance we begin with the quantization condition

X0
2[ dx[Zu(En—V(x))F = (nth)x . (8.10)
0

Oifferentiating both sides with respect to the principal quantum number n, we have

X
dx(ak/3an) _
(u) L vE=V ¥

s (8.11)
which may be rewritten as
E
av(dx/dv [iﬂ_r= L . 8.12
_[ (dx/d¥) E-V 9E/3n ( )
V(0)=0

This 1is quite similar in form to Eq. (8.4}, and so we follow the same steps as
before. Operating on the equation with fng(u-E)_% and interchanging the order of
integration, we find

Q& [+ 14
de(dx/dV}f dE =1r[ dt . (8.13)
0 v (eE)HE-V Sy [2n(e-E)J}(2E/0n)

The fdE on the left-hand side is a Beta function whose value is w. Consequently upon
renaming o3V we are left with the result

v
X (V) =f dE (8.14)
0 [(2u(V-E}]%(aE/an)
Again it is worthwhile to examine an elementary case. Consider a constant
level density
at/an = 2, (8.15)

with mass



Zp =1 . {8.16)
An elementary computation gives the well-known result
x =N | (8.17)

ar

v=x2 . (8.18)

With these two examples to provide plausibility, we now turn to the general
case in one-dimensional quantum mechanics.

The Quantum Mechanical Inverse Problem. The general inverse problem in
one-dimensional quantum mechanics as governed by the Schrtdinger equation is highly
developed. A finite potential which binds N bound states is completely specified by
2N  bound-state parameters plus knowledge of the phase shift everywhere in the
continuum [40}. The procedure, roughly speaking, is to write a dispersion relation
for the Schrudinger wavefunction, for which one must specify the position and
wavefunction normalization of each bound state (as poles and residues) and the
reflection coefficient in the continuum (as a dispersion integral). Having such a
representation of the wavefunction ¢(x)} and knowing the (Schridinger) equation of
motion, one may solve for the potential V(x).

An interesting special case is that of a symmetric potential, for which the
required bound-state information is reduced to N parameters — one for each bound
state. A further simplification is obtained in the case of a symmetric potential
which s ailso reflectionless, which is to say that an incident wave is completely
transmitted, throughout the continuum. The simplest such potential is

2
Vix) = —&° | (8.19)
COShzrx

For a particle of reduced mass (2u=1) it binds a single level at

£y = -«¢ (8.20)

and has a vanishing reflection coefficient everywhere in the continuum. For
potentials of this class, the dispersion integral disappears, and we are left with
an N-parameter algebraic equation for a potential which binds N  levels.
Consequently, a symmetric, reflectionless potential is completely specified by the
set of binding energies of its levels. The inverse Schrodinger problem for
reflectionless potentials has a deep and interesting connection with soliton
solutions to the Korteweg-de Vries equation [41].

The extensive development of the inverse scattering formalism has been
concentrated on finite potentials, i.e., those which bind a finite number of levels.



What can be done for a confining potential? It is natural [42] to try to build up a
confining potential by a sequence of reflectionless approximations. A
reflectionless approximant Vpn{x} is constructed to reproduce the first N levels of
the true potential V(x), and one hopes that in the 1imit of a large number of bound
states,

&iﬂ Vy{x) = V(x) (8.21)

in some suitable sense.

It is intuitively reasonable that this procedure should provide a faithful
representation of the true potential. This expectation is supported by a number of
numerical examples, some of which are shown 1in Figs. 45-47. In the case of
confining potentials, we must supplement the bound-state information with a cheoice
of the ionization point Vy(z=} for each approximant. We have found (through
numerical experiments as well as analytic studies) that the choice

yields sensible approximations. It satisfies the obvious requirements
EN g VN(im) < EN+1 M (8-23)

and has the advantage of being easy to remember. In the limit as No=, the details
of this choice become unimportant.
Take first the case of the harmonic oscillator potential

Vix) = x2 (8.24)
which supports bound states at energies
E, = 2n+1 n=0,1,2,... . ' (8.25)

The first five reflectionless approximations to ({8.24), with Vy(t=) given by (8.22),
are compared with the true potential in Fig. 45{a)-{e). The agreement is excellent
in the region of x relevant to the specified energy Tlevels. Successive
approximations to the bound-state wave functions are plotted in Fig. 45(f)-(j]).
They are seen to converge rapidly toward the exact solutions shown in Fig. 45(k).

As a second example, consider the linear potential

Vix} = (x| . (8.26}

for which the bound-state energies are given by the zeros of Airy functions

A1 (-E,)
AY(-E,)

0 . n
8] . n

1,3,5,...

) a6 (8.27)

This energy spectrum gives rise to the approximate potentials and wavefunctions
displayed in Fig. 46. The agreement is again extremely encouraging.



Finally, it is well to examine the pathological case of an infinitely deep
square-well potential

0, ¢
V(x) = Xl < /2 (8.28)
@™, ix{ > n/2

which has bound states at

Ey = n , n=1,2,... . (8.29)
The reconstructed potentials are shown in Fig. 47(a)-{e). The agreement between
exact and approximate forms 1is rather less striking than for the two preceding
examples. The manner in which the approximate wavefunctions plotted in

Fig. 47(f)-{3) are increasingly excluded from the forbidden region of space is
noteworthy, however.

These examples, which suggest the convergence of reflectionless approximations
to nonpathological potentials, also indicate an acceptable rate of convergence. It
has been possible to prove a number of 1limited statements about the fact of
convergence {43-45], but nothing is known about the rate of convergence beyond what
is indicated by the numerical experiments. In the numerical experiments reported
here the potentials have been reconstructed from the binding energies of the levels
of both odd and even parity. Alternatively, one may base the reconstruction on the
states of either parity, 1in which case the binding energies must be supplemented
with wave function information such as the value of slope of the wave function at

the origin. Some of the proofs of convergence have been carried through for all
three sets of input information.

Determinations of the Quarkonium Potential. In a series of publications, [46-48]
Rosner, Thacker, and I have extended the inverse scattering formalism for
reflectionless potentials to the reconstruction of central potentials in three space
dimensions, and have derived approximate interquark potentials from the quarkonium
data. In this section I will briefly summarize what we have done and what we think
we have learned about the force between quarks.

The reduced radial Schridinger equation for s-waves,
El u'(r) + (E-¥(r)Ju(r) =0 , (8.30)
K

is identical in form to the one-dimensional Schrddinger equation. As a consequence,
the one-dimensional inverse scattering formalism can be applied to the study of
quarkonium systems. However, because of the boundary condition

u(0) = 0 (8.31)

imposed by the finiteness of the radtal wave function at the origin, only the



odd-parity levels in one dimension correspond to physical states. Therefore, in
order to apply our one-dimensional formalism to the psions, we must regard the y and
v' as the second and fourth Tevels of a symmetric one-dimensional potential ¥{r) =
V(-r). The even-parity Tevels which appear in the one-dimensional problem are
interleaved with the physical psions, one below the y, one between the ¢ and ¢', and
so on.

To substitute in the reconstruction algorithm for the fictitious levels we
require information about the slopes of the odd-parity reduced radial wavefunctions,
or equivalently, the values of the three-dimensional wavefunctions at the origin.

These are related in principle to the measured leptonic decay widths through the
connection

19,(0)12 = (1/167a2ed) -0 -MIF (Vvete™) . (8.32)

With the parameter p=1, this 1is simply the Van Royen-Weisskopf formula {5] of
nonrelativistic potential scattering. In a purely Coulombic quarkonium system,
quantum chromodynamics yields a correction

o = [1- EEEE +0(|32)]'1 . (8.33)
where oo 1is the strong coupling constant and B is the speed of the bound quark.
Although the known quarkonium families are decidedly non-Coulombic, the belief that
the strong coupling constant may be as large as @c=0.2-0.3 has led many authors to
suspect that p may be appreciably greater than one.

In the most recent analysis, {48] we use as inputs to the charmonium potential
the masses and leptonic widths of v and ¢', and choose the "ionization point" as

Eg = V(ze) = 3.8 GeV . | (8.34)

This is halfway between the 4' and the first omitted fictitious (even-parity) levetl,
estimated by

£ = 3M(b')+M(4.028)
0 4

(8.35)

To explore the effects of our ignorance of strong radiative corrections to the decay
rate, we take as representative values of the multiplicative correction to the
van Royen-Weisskopf formula p=1 (which corresponds to no correction}, and p=1.4 and
2. We believe, but cannot prove, that p=2 represents a larger correction than is
plausible, and intend that the extremes p=(1,2) bracket the true value.

Although only s-wave information 1is used systematically in the
inverse-scattering algorithm, information about other partial waves may be used to
discriminate among potentials constructed under varying assumptions for the quark

mass. For each value of p, we select the value of the charmed quark mass m. which



correctly reproduces the center of gravity of the 23PJ x Sstates. The resulting
potentials are shown in Fig. 48. Ffor each potential we choose a value of the
b-quark mass which reproduces the mass of the T ground state, and then compute the
complete upsilon spectrum. The agreement with experiment is guite satisfying.

The three charmonium potentials are compared in Fig. 49, In the range
0.5 Gev?l <rcs Gev‘l, the potentials vary approximately logarithmically with the
interquark separation, as expected on the basis of the scaling arguments reviewed in
the first Tlecture. The Tlocal fluctuations are artifacts of the reflectionless
approximant technique. Also shown in Fig. 49 (as the short-dashed line) is the
shape of the QCD-inspired potential of Buchmuller and Tye [23], which is typical of
explicit potentials that provide a good representation of ¢+ and T data. In the
region of space to which charmenium observables are sensitive, it provides a smooth
interpolation of the inverse-scattering results.

The method of constructing potentials from the wupsilon family differs only
slightly 1in detail. In this case we took as inputs the masses and leptonic widths
of the 15-45 levels, and chose as ionization point the value

Eg - M BIAB) < 10.6 Gev (8.36)

Since the spectrum of p-wave states was not yet well established, we were not able
to use the P-states to select the "best" value of the b-quark mass. We therefore
chose m, for each p rather arbitrarily to be close to the value needed to reproduce
the T(1S) mass in the corresponding charmonium potential. Although this does not
lead to appreciable ambiguity in our conclusions, it represents an indefiniteness
that one would hope eventually to overcome. [Our expectations for the 3P(bB) center
of gravity are in reasonable accord with the subsequent measurements. The scale for
the upsilons should be shifted upward by about 25 MeV, because of a recalibration of
the CESR energy scale after this analysis was carried out.] The resulting potentials
are shown in Fig. 50. For each of them we choose a value of the charmed quark mass
m. which reproduces the mass of the y ground state. Again, the agreement between
prediction and observation is satisfactory.

The three T potentials are compared in Fig. 51. They are essentially
indistinguishable for 1interquark separations larger than 0.4 Gev~l, They also
approximately coincide with other potentials that reproduce the data. Like the
charmonium  potentials of Fig. 41, the T potentials behave approximately
logartithmically in the interval 0.5 GeV™! < r < § Gev~l. At distances smaller than
0.4 Gev~! there 1is considerable variation among the potentials. This provides a
measure of our current ignorance of the interaction between quarks at short
distances.

The potentials constructed from the v and T families are compared with one
another for equal values of the parameter p in Fig. 52, where they have been



superposed by requiring that the (3097) levels coincide. The agreement in each
case is excellent for r > 0.5 Gev™! (0.1 fm}, where both quarkonium systems provide
information. The comparison provides direct evidence that the strong
(quark-antiquark) interaction is flavor-independent in the range 0.1 fm < r < 1 fm.
This conclusion is supported by the quantitative agreement of predictions from v
potentials with T observables and of predictions from T potentials with o
observables.

A number of refinements to this analysis can be envisaged. Knowiedge of the
positions of the 23PJ, 33PJ, and a3PJ levels in the upsilon family and improved
measurements of the leptonic widths of all the 381 quarkonium Jevels will make
possible more precise determinations of the potential. Detailed studies of the El
transition rates for the upsilon will test in a different manner the nonrelativistic
picture of guarkonium. The fine structure of the <P states and locations of the 1P
states hold important clues to the Lorentz structure of the interquark interaction.

Outlook. The ¢ and T quarkonium systems have made accessible to us a considerable
amount of new information about the force between guarks. What has been Tearned
ranges from the qualitative insight that nonrelativistic methods are apt to a rather
precise determination of the interquark potential at distances between about 0.1 fm
and 1 fm. Some of the analysis techniques which lead to a determination of the
potential have been reviewed in these lectures. There are other important {issues
that we have not touched on here. Among them are the general problem of fine
structure and the spacetime form of the interaction, and the quantitative
application of perturbative QCD to quarkonium decay rates. Both of these seem ripe
for significant development. In all areas we would benefit enormously from the

observation and detailed study of one more quarkonium family below the mass of the
0 A
LY.

LECTURE 9: MONTE CARLO SIMULATIONS OF LATTICE GAUGE THEORY

The lattice formulation reduces the Feynman path formula for the gauge theory
into a multiple ordinary integral. The high multidimensionality of the integrals
makes conventional mesh techniques for the numerical evaluation of integrals
completely 1impractical, however. A lattice of size Nd upon which perfodic boundary
conditions have been imposed carries aNd 1ink variables. For a 10% lattice, for

example, there will he 4x10% Tink variables. For the simplest gauge theory, 22, the
number of distinct configurations is



Comparison with the age of the Universe (6x1017 sec.) quickly convinces us that it
is hopeless to actually evaluate the path integral. We need instead to devise a
reliable approximation method.

The goal of the Monte Carlo approach is to provide a tractably small number of
configurations which are typical of thermal equilibrium in the system under study.
Monte Carlo techniques are used to evaluate path integrals by the method known as

"importance sampling." We wish to evaluate expectation values and correlation
functions of the form

op> = [[dUliore> (9.2)
flav]e™
a weighted average of {#} over all possible configurations of the link variables,
each configuration being weighted by the Boltzmann factor e™s, Instead of evaluating
the sum over configurations directly, the Monte Carlo method generates a statistical
ensemble of configurations and calculates the average of {#} over this ensemble.

Generating an Ensemble. We may begin a Monte Carlo simulation with any particular

configuration. Two simple conventional choices are

- "Cold start,” with the unit matrix U1=I placed on each link, and

- "Hot start," with the U; chosen randomly from a uniform distribution

in group space.

These passibilities are represented for the two-dimensional Ising model in Fig. 53.
For the cold {ordered) start, with all spins up, the initial value of the
magnetization is |[M|]=1. For the random (hot) start, the magnetization approximately
vanishes. In the example depicted, we see that M=-0.2, in the range of typical
values (~1/N for an NxN lattice) to be expected. ,

Having chosen a starting configuration, we cycle sequentially through the
lattice, link by link, using some statistical atgorithm to make pseudorandom changes
in the 1link variables. tach ‘“sweep" through the lattice produces a new
configuration somewhat different from the preceding one. The algorithm for updating
iinks must be constructed so that the probability of a configuration with action S
is proportional to the Boltzmann weight e™3. Two such algorithms are representative
of those commonly in use.

+ Metropolis algorithm {49]: Starting with the old value of the link
matrix Ug1gs COnstruct an updated value Une

" Compute the actions
So1d(Yo1a) and Spou(Upa,)- If Snew So1ds  accept Upe.. If Spo 08044,

select a random 0<r<l. Accept U, if

op | {SnewSora)] > r - (9.3)



- Heat bath algorithm [50,51]: Starting with the old value of the link
matrix U,q4, construct an updated value Unew Chosen statistically with
a distribution e "W, This is best i1lustrated by example in the Ising

model. First compute the probability of a given site to have spin up:

-BS(+
P(+) = e *) (9.4)
e B83(+) 4 o~BS(-)
Then select a random number O<r<l. I[f P{+)>r, assign spin up;

otherwise, assign spin down.

Either the Metropolis algorithm or the heat bath algorithm will produce a
statistically distributed ensemble of configurations. These configurations are
highly correlated from sweep to sweep. Near a critical point, configurations must
be separated by hundreds or even thousands of sweeps in order to ensure their
statistical independence.

The number of sweeps reguired to reach equiltibrium froma hot or cold start
depends on the lattice size, and on physical circumstances. The mean plaquette
values <1-4tr(UUUU)> displayed in Fig. 54 show that for the pure SU(2) theory in
four dimensions, which has no critical poeint, equilibrium is reached within 20-30
sweeps. [Other, "long wavelength,"” quantities may equilibrate more slowly.] In
contrast, the simulation of a system near a critical point exhibits a very sliow
convergence to equiiibrium known as "critical slowing down." This is {1lustrated in
Fig. 55 for the U{1) theory in four dimensions.

The phenomenon of critical slowing down suggests a tool for searching out
critical points. Thermally cycle the system. Since convergence is rapid away from
critical points and slow close to critical points, regions of slow convergence will
appear as hysteresis loops. This is 1{llustrated for U(1l)} gauge theary in four
dimensions in Fig. 56. Longer runs in the critical region result in the
single-values mean plaquette energies shown in Fig. 57. Using these Monte Carlo
data, Lautrup and Nauenberg [54] evaluated the specific heat p of the lattice 1)
theory as a function of the coupling strength g and the lattice size L. Their
results, reproduced in Fig. 53, show that p has a maximum as a function of 8 which
increases rapidly as a function of L, characteristic of a second order {or higher)
phase transition.

Corresponding studies of SU(2) and SU(3) gauge theories in four dimensions do
not display hysteresis loops. Typical results for SU({3} are shown in Fig. 59, This
is representative of the evidence that QCD is a confining theory for all values of
the coupling constant.

Measuring the String Tension. We have seen in Lecture 7, in the derivation of the

area law for Wilson loops, how the evaluation of a rectanguiar Wilson loop such as
that shown in Fig., 60 leads to a determination of the string tension. Identifying



W(M,N)> ~ e V(M)-N (9.5)

as e'E'T, we obtain the heavy quark potential as

V(M) = % ANCH{M,N}> (9.6)

for M fixed and large, as Nso. Although conceptually clear, this procedure may not
be practical, because <W(M<N)> becomes infinitesimal for large N, and because the
results may be significantly distorted by a perimeter-law factor e ZM(MHN)} e may

eliminate the dependence on the perimeter of the loop and overall constant factors
by forming the combination

R(M,N) = SHIM,N)>CWM-1,N-1)> _ -5

, (9.7)
CW(M,N-1)><H{M-1,N}>

where the correspondence is expected to hold for large loops or strong couplings.
The quantity

x(M,N) = =zn R(M,N} 3 o (9.8)

should therefore directly measure the string tension in lattice units, provided the
area law dominates,

Resuits from the simulation of SU(2) gauge theory on 8% and 10% 1attices are

shown in Fig. 61, At strong coupling, the numerical results accurately reproduce
our expectation that

2

a(g) ~ tn g (7.24)

To analyze the behavior in the weak-coupling regime, we may exploit the fact that
the string tension has dimensions of (mass)z, and so may be expressed as

g{g,a) = constant-AE s (9.9)

where A 1s a physical scale of the lattice theory. The requirement that A remain
fixed as the coupling g and lattice spacing a are varied to approach the continuum
1imit, i.e., the requirement that AL be a cutoff-independent physical mass scate

a—Lt=0 |, (9.10)

as a30, then prescribes the dependence of & upon g. Renormalization group analysis
leads to a unigue prescription for the g-dependence of Ay, as follows. MWrite

AL =1 -f(g) : (9.11)
a

then the requirement (9.10) leads immedtately to a first-order differential equation



for f,

f(g) +8(g?) & =0 (9.12)
dg
where B(gz) is the Callan-Symanzik function defined in (7.21). The leading behavior

of 3(92) in the weak-coupling 1imit is known from perturbative calculations (3,56]
as

-809° - 819> (9.13)

8{g)

with

g, = 11 i!_)
073 16x

(9.14)
g = 38 ( N )2
1773 2
16x
for SU(N}. Direct integration of (9.12) then yields
-81/288 ~1/28g°
s = L (aga?) VT T (1e0(?)) (9.15)
a

This means that in the weak-coupling regime, we anticipate

p = Constant-a%. A2

°(9) L (9.16)

2 2
-B1/B5 -1/8
= Constant»(aogz) 1770 o 09

Precisely this trend is seen for large loops in Fig. 61. Making a fit of
{9.16) to the Monte Carlo data determines the constant of proportionality between A
and the (square root of the) physical string tension as

AL = (1.3 £ 0.2)x107%/8 . (9.17)

For small loops, x(I,J) departs from the trend (9.16}) in the weak-coupling regime,
reflecting deviations from the area law. Thus we interpret the envelope of x(I,J)
for all I and J, plotted as a function of the coupling strength as the true measure
of a(qg).

We show in Fig. 62 the result of a Monte Carlo simulation for the physically

interesting case of SU(3), on a 64 lattice. In this instance, a fit to the data
yields

A = (Bs1)x1073F (9.18)

An auxiliary calculation [58] relates the lattice parameter AL to a conventional
definition of the QCD scale parameter in the continuum:



P 57.5 Ay (for SU(2)) (9.19)
am 83.5 AL (for SU(3))
Assembling the pieces, we have
i/a for SU{2)
% ] 9.20
Amom T for SU(3) ( )

With the observed value of the string tension {from the 1ight hadron spectrum,
cf. (2.12)) ¢ = 0.18 GeVZ, we estimate

Amom & 225 MeV (9.21)

in reasonable agreement with determinations from deeply inelastic scattering and
other sources. Although the relationship we have found between observables is far
from precise, it is quite suggestive and encouraging.

Caiculating the Interquark Potential, We need not be content with a computation of
the string tension, since we interpret the Wilson loop as

W(R,T) ~ exp[-V(R)T] , (9.22)

at large times T. An extensive study has been carried out by Otto and Stack [59]
using the Caltech "Cosmic Cube," a hypercubic array of 64 Intel 8086 microprocessors
equipped with 8087 coprocessors [60]. Their calculation required 2500 hours on this
device, which 1is approximately equivalent to 8 VAX-11/780 superminicomputers for
this problem. Having first verified that W{(R,T} indeed behaves exponentially in T,
the authors extract an interquark potential. As was the case in our discussion of
the string tension, quantities emerge naturally in "lattice units." Until a scale
is chosen — for example, by fixing a dimensionful quantity such as A, . or o —
what is determined is a relationship between dimensionless quantities. Fig. 63
shows the scaled lattice potential V/v/o as a function of the scale lattice distance
Rva.

Before comparing these resuits with the phenomenological potentials, let us
note that the effects of Iinternal (light) gquark 1Jloops are neglected in this
calculation, and we do not know how their inclusion will modify the results,
Furthermore, because of our Jlimited experience we do not yet know how to assign
systematic errors to lattice calculations in a definitive manner. With those
apologies, we compare in Fig. 64 the Jlattice potential with a logarithmic form
representative of the shape of the phenomenological potentials in the interval
0.1 fm < R <1 fm. Over a significant range, the lattice potential indeed follows
the logarithmic reference curve. If the lattice potential 1is to reproduce the
phencmenglogical potential quantitatively, we must choose

/G~ 0.3 Gev (9.23)



which at least resembles the true value of the string tension,

Ja = (0.4 - 0.45)GeV

Evidently the computation of the interquark potential on the lattice is in a
highly preliminary state, Much work is needed to make possible a gquantitatively
reiiable calculation. At the same time, this example shows us the way to more
detailed studies, and provides considerable encouragement to carry them out. As we
have seen in Lectures 1, 2, and 8, much has been achieved in the phenomenological
determination of the interquark force. There, too, past work is mere prologue to
what might be accomplished.
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Table 1.

The ¢ family (c¢) bound states.

State Mass (MeV/c?) Tyor(kev) PoglkeV)
ils, ne 2981.146.0
135, /3 3096.9+1 63+9 4.60+0.39
2%, x{3415) 3415.0:1.0
23p, x(3510) 3510.0:0.6
2%p, x{3555) 3555.8+0.6
235, v 368611 21540 2.05:0.21
3%, 3(3770) 377043 25:3 Mev 0.257+0.046
335, $(4030) 4028.7:2.8 52+10 MeV 0.75:0.15
735, +(8160) 4157+20 78120 MeV 0.77:0.23
735, +(4415) 481516 43120 Mev 0.49:0.13

Tabte 2. The T family {(bb) bound states.

State Mass (MeV/c2) Peot(keV) Ceo(keV)
135, T 9460.020.3 44.3:6.6 1.10:0.12
23p, xp( 9870) 9872.9:5.8
23p, xp(9895) 9894.5:3.5
2%p, xp(9915) 9914.6:2.4
233, T 10023.440.3 29.624.7 0.507+0.051
3%,
33p, xp(10255)  10253.7:3.4
33, xp(10270)  10271.0:2.4
335, ™ 10355.5:0.5 17.7:5.1 0.362:0.050
43s, ™ 10573:4 14.4:5.2 MeV 0.240:0.053
533, 21 10860
635, T 11030




Tabie 3. {g?gnium obseryables in phenomenclogical potentials, for my = 40 GeV/c2

er Ref. 26

potential
observahle Power-1law Richardson
M{2S)-M{1S) (MeV/c?) 520 958
M{35)-M(25) (MeV/c?) 303 372
M(4S)-M(3S) (MeV/c?) 217 231
M(25)-<M(2P)> (MeV/c?) 145 105
M{3S)-<M(3P}> (MeV/c?) 107 66

Coulomb Log

Teal25)/Tae(1S) 0.55 0.27 0.12 0.43
Fog(35)/Tga(15) 0.39 0.15 0.04 0.27
Foe(35)/Tge(25) 0.71 0.56 0.30 0.63
Foe(1S) (keV) 1.3 6.5 35 1.6
Tiotl1S) (kev) 127
Tyot(25) (keV) 66 SIGNIFICANT CONTRIBUTION
Tiop(3S) (keV) 56 FROM £t b+ X

Tyotr (4S) (keV) 52




BIBLIOGRAPHY

Hadron Spectroscopy.

F.t. Close, An Introguction to Quarks and Partons, Academic Press, New York,
1979,

0.W. Greenberg, Ann. Rev. Nucl. Part. Sci. 2B, 327(1978).

C. Quigg, "Models for Hadrons," in Gawge 7Theories in High [Ltnergy Physics,
edited by M.K. Gaillard and R. Stora (Les Houches, 1981), North-Holland, Amsterdam,
1983, p.645,

J.L. Rosner, "Quark Models," in Jechnigues and Concepts of High fnergy Fhysics
(St. Croix, 1980), edited by T. Ferbel, Plenum, New York, 1981.

Particle Data Group, Rev. Mod. Phys. 56, S1{1984).

Quarkonium.

C. Quigg and J.L. Rosner, Phys. Rep. 56, 167(1979).
H. Grosse and A. Martin, Phys. Rep. 60, 341(1980).

R.N. Cahn (editor), e+e'.4nniﬁiiatfan: New Quarks and Leptons (Annual Reviews
Spectal Collections Program), Benjamin/Cummings, Menlo Park, California, 1985.

E. Eichten, “The Last Hurrah for Quarkonium Physics: The Top System,” in /he
Sixth Quark, Proceedings of the 1984 SLAC Summer Institute in Particle Physics,
edited by Patricia M. McDonough, Stanford Linear Accelerator Center Report SLAC-281,
January, 1985, p.1.

M.E. Peskin, "Aspects of the Dynamics of Heavy Quark Systems," in Qwmamics and
Spectroscopy at High Energy, Proceedings of the 1983 SLAC Summer Institute in
Particle Physics, edited by Patricia M. McDonough, Stanford Linear Accelerator
Report SLAC-267, p.151.

Asymptotic Freedom (The effective color charge in QCD).

J. Frenkel and J.C. Taylor, Nucl. Phys. B109, 439(1976); B117, 546E(1976).

J.D. Bjorken, "Elements of Quantum Chromodynamics,” in Quantum Chromodynamics,
Proceedings of the 1979 SLAC Summer Institute in Particle Physics, edited by Anne
Mosher, Stanford Linear Accelerator Center Report SLAC-224, January, 1980, p.219.

5.0. Drell, in A4 Festschrift for Maurice Goldhaber, Trans. NY Acad. Sci. Series
I1, 40, 76(1980).

V.N. Gribov, SLAC-Trans-176(1977).
A. Duncan, Phys. Rev. D13, 2866(1976).



C. Quiqq, Gauge Theories of the Strong, Weak, and £lectromagnetic Interactions,
Benjamin/Cummings, Reading, Massachusetts, 1983, §8.3.

Path-Integral Formulation of Quantum Mechanics.

R.P. Feynman, Rev. Mod. Phys. 20, 367(1948).

R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path [ntegrais, McGraw-Hill,
New York, 1965,

Lattice Gauge Theories.

K.G. Wilson, Phys. Rev. D10, 2445(1974).

R.C. Brower, "Discrete Quantum Chromodynamics," in Gauge 7heories in High
Enerqy  Physics  (Les Houches, 1981), edited by M.K. Gaillard and R. Stora,
North-Holland, Amsterdam, 1983, p.555.

M. Creutz, Quarks, Gluons, and fattices, Cambridge University Press, Cambridge
and New York, 1983.

C. Rebbi (editor), lattice Gauge Theories and Monte Carlo Simulations, World
Scientific, Singapore, 1983.

A. Hasenfratz and P. Hasenfratz, "lLattice Gauge Theories,” Florida State
University preprint FSU-SCRI-85-2.

J.-M. Orouffe and C. Itzykson, Phys. Rep. 38C, 133(1978).
J.B. Kogut, Rev. Mod. Phys. 51, 659(1979); 55, 775(1983).
L.P. Kadanoff, Rev. Mod. Phys. 49, 267(1977}).

FOOTNOTES AND REFERENCES

1. Particle Data Group, Rev. Mod. Phys. 56, $1(1984).
2. T. Appelquist and H.D. Politzer, Phys. Rev. Lett. 34, 43(1975).

3. 0.J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343(1973);
H.D. Politzer, ibid., p.1346.

yo.
o

. Quigg and J.L. Rosner, Phys. Rep. 56, 167{1979).

wn
=)

- Van Royen and V.F. Weisskopf, Nuovo Cimento 50, 617(1967); 51, 583(1967).
6. C. Quigg and J.L. Rosner, Phys. Lett. 71B, 153(1977).
7. C. Quigg and J.L. Rosner, Comments Nucl. Part. Phys. 8, 11(1978).



10.
11.
12.
13.
14,
15.

16.

17.
18.

19.
20.

21,
22.
23.

24.
25.
26.
27.

28.

[gr]

. Quigg, in Proceedings of the 1979 [nternational Symposrum on Lepton and
Photon  Interactions at High CEnergies, edited by T.B.W. Kirk and
H.D.I. Abarbanel, Fermilab, Batavia, 1980, p.239;

J.L. Rosner, in Partic/es and Fields-1979, edited by B. Margolis and D.G.
Stairs, American Institute of Physics, New York, p.325; in Jechnigques and
Loncepts of High Enerqy Physics, edited by T. Ferbel, Plenum, New York,
1981, p.1.

A. Martin, Phys. Lett. 93B, 338(1980).

M. Machacek and Y. Tomozawa, Ann. Phys. (NY) 110, 407(1978).

W. Buchmuller and S.-H.H. Tye, Phys. Rev. D28, 132(1981).

C. Quigg and J.L. Rosner, Phys. Rev. 023, 2625(1981).

E. Eichten and K. Gottfried, Phys. Lett. 66B, 286(1977).

C. Quigg and J.L. Rosner, Phys. Lett. 72B, 462(1978).

For suggestions that the top-quark mass lies in this range, see Phys., Lett.
1478, 493(1984).

There could in fact be additional orbitally excited states below the flavor
threshold. For estimates 1in specific potentials, see E. Eichten in /e
STxth Quark, Proceedings of the 1984 SLAC Summer Institute 1in Particle
Physics, edited by Patricia M. McDonough, SLAC-281, p.1. Note that his
estimates do not count fine- and hyperfine-structure partners as distinct
states.

H. Grosse and A. Martin, Phys. Rep. 60, 341(1980).

J.L. Rosner, C. Quigg, and H.B. Thacker, Phys. Lett. 74B, 350 (1978},
C.N. Leung and J.L. Rosner, J. Math. Phys. 20, 1435(1979).

See, for example, Fig. 10 of C. Quigg, Ref. 8.

For a summary see S. Konamiya, in Proceedings of the 1985 SLAC Surmer
Institute (to be published). '

Y. Nambu, Phys. Rev. D10, 4262(1974).
E. tichten, et al., Phys. Rev. D17, 3090(1979); D21, 203(1980).

J. Richardson, Phys. Lett. 828, 272(1979). For an extension of this mode} see
W. Buchmuller and S.~H.H. Tye, Phys. Rev. D24, 132(1981).

E. tichten, Ref. 16.

P. Moxhay, J.L. Rosner, and C. Quigg, Phys. Rev. 023, 2638(1981).

P. Moxhay and J.L. Rosner, Phys. Rev. D31, 1762(1985).

.K. Nielsen, Am. J. Phys. 49, 1171(1981);

.J. Hughes, Phys. Lett 978, 246(1980); Nucl. Phys. B186, 376(1981};

. Johnson, in Asymptotic Realms of Physics, edited by A. Guth, K. Huang, and
R.L. Jaffe, MIT Press, Cambridge, Mass., 1983.

M0 =2

.B. Kogut and L. Susskind, Phys. Rev. D9, 3501(1974);
0. Lee, Particle Physics and Introduction to Freld Theory,  Harwood
Academic, Chur, London, New York, 1981, c.17.

-



29.

30.

31.
32.

33.

34,

35.
36.

37.

38.
39.

40.

41.

42.
43.
44,
45.
46.
47.
48.

4q.

50.

L.D. Landau and E.M, Lifshitz, Flectrodynamics of Continuous Medra, Addison
-Wesley, Reading, Mass., 1960, §14.

0.V. Dolgov, D.A. Kirzhnits, and E.G. Maksimov, Rev. Mod. Phys. 53, 81
(1981).

G. ‘'t Hooft, Nucl. Phys. B72, 461{1974); B75, 461(19/4).

R.P. Feynman, Rev. Mod. Phys. 20, 367(1948);

R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals, McGraw
-Hi11, New York, 1965.

See also M. Creutz, Phys. Rev. D15, 1128(1977);

J.B. Kogut, Rev. Mod. Phys. 51, 659(1979).

J. Schwinger, Proc. Nat. Acad. Sci. 44, 956(1958).
See also J. Schwinger, Phys. Rev. 115, 721(195%9);
G.C.Wick, Phys. Rev. 96, 1124(195%4).

E. Ising, Z. Phys. 31, 253(1925)}. For an exhaustive treatment, see B.M. McCoy
and 1.7. Wu, 7»e Two-Oimensional [sing Mode/, Harvard University Press,
Cambridge, 1973.

F. Wegner, J. Math. Phys. 12, 2259(1971).

Compare the analysis of the Bohm-Aharanov effect in C. Quigg, Gauge 7heories
oFf the Strong, Weak, and fFlectromagnetic Interactions, Benjamin/Cummings,
Reading, Mass., 1983 §3.4.

The appearance of the coupling constant as written 1is justified by the
inclusion of matter on the lattice.

K.G. Wilson, Phys. Rev. D10, 2445(1974).

See, for exampie, T. Appelquist, J. Carazzone, H. Kluberg-Stern, and M. Roth,
Phys. Rev. Lett. 36, 768(1976); 36,1161E(1976).

A partial bibliography includes I.M. Gel'fand and B.M. Levitan, Am. Math.
Soc. Trans. 1, 253(1959);
I. Kay and H.E. Moses, J. Appl. Phys. 27, 1503(19%6).

C.S. Gardner, J.M. Greene, M.D. Kruskal, and R.M. Miura, Phys. Rev. Lett. 19,
1095(1967); Comm. Pure Appl. Math. 27, 97(1974).

I

.B. Thacker, €. Quiqg, and J.L. Rasner, Phys. Rev. 018, 274(1978).
H. Grosse and A. Martin, Nucl. Phys. B148, 413(1979).

<

.F. Schonfeld, et al., Ann. Phys. {NY} 128, 1(1980}.
I. Sabba Stefanescu, Karisruhe preprint TKP-81-1.

H.B. Thacker, C. Quigg, and J.L. Rosner, Phys. Rev. D18, 287(1978).

gy}

. Quigg, H.B. Thacker, and J.L. Rosner, Phys. Rev, D21, 234(1980}.

o

. Qutgg and J.L. Rosner, Phys. Rev. D23, 2625{1981).

=

. Metropolis, A.W. Rosenbluth, M.N. Rosenbiuth, A.H. Teller, and E. Teller,
J. Chem. Phys. 21, 1087(1953).

M. Creutz, Phys. Rev. D21, 2308(1980}.



51.

52.

53.
54.
55.
56.

57.
58.

59.
60.

= T mMm

= w

J=-3c;z:

R.

H.

. Pietarinen, Nucl. Phys. B190 [FS3], 349(1981);
. Marinari and N. Cabibbo, Phys. Lett. 119B, 387(1982).

. Creutz, Quarks, Gluons, and Llattices, Cambridge University Press,

Cambridge and New York, 1983.

Creutz, Phys. Rev. Lett. 43, 553 (1979}.

- Lautrup and M. Nauenberg, Phys. Lett. 958, 63(1980).

Creutz, Phys. Rev. Lett. 45, 313(1980).

. Caswell, Phys. Rev. Lett. 33, 244(1973);
R T. Jones, Nucl. Phys. B75, 531(1974).

Creutz and K.J.M. Moriarty, Phys. Rev. D26, 2166(1982}.

Hasenfratz and P. Hasenfratz, Phys. Lett. 938, 165(1980); Nucl. Phys.
B193, 210(1981);

Dashen and D. Gross, Phys. Rev. 023, 2340(1981);

Kawai, R. Nakayama, and K. Seo, Nucl Phys. B189, 40(1981).

For the connect1cn between A and AHS’ see W. Ceimaster and R.J. Gonsalves,

S.
E.

Phys. Rev. D20, 1420(19793"
Otto and J. Stack, Phys. Rev. Lett. 52, 2328(1984); 53, 1028£(1984).
Brooks, IIl, et al., Phys. Rev. Lett. 52, 2324(1984).



Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fiqg.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

10:

11:

12:

13:

14:

CAPTIONS

The spectrum of charmonium (cC bound states).
The upsilon spectrum (bB bound states).
Schematic level scheme for (¢o) bound states.
Schematic level scheme for (ff) bound states.
Level spacings in the ¢ and T families.

Semiclassical {(curve) and exact (small dots) ratios (E-E5}/(E,-Ep) for
s-wave levels in potentials V{r}=ir" (from Ref. 4).

Semiclassical  (curve) ratios (E4-E3)/(Ep-Eq) for s-wave levels in
potentials V{r)=arV. The datum is the value in the upsilon system.

The quantity (Esc-Eop)/(Epg-Eyg) for power-law potentials V(r)=arY,
-1<v<2. The data points are the values in the ¢ and T systems.

Square of the wavefunction at the origin for the psions. Possible mixing
between the 25, (3686) and 3°D,{3770) levels has been neglected. {a) A
best fit proporticnal to (n-3)P, with p = -0.83+0.11 (v=0.12:0.08),
assuming the conventional 4S5 assignment for ¢(4415). (b) An alternative 55
assignment for ¢{4415%), which corresponds to p = -0.79:0.10 {v=0.15+0.08).
In plotting the data against (n-i), we have anticipated the result p>-1
{(v>0).

Same as fig. 9 for the upsilons. The best fit is for p = -0.79:0.10
{v=0.15+0.08).

Comparison of mass dependence of energy levels in three potentials: (a)
Viry=-r"¥; (b) V(r)=in r; (c) V(r)=r. (From Ref. 4.)

A possible spectrum of strangeonium (sS) levels. Identification of
£(1418) and ¢(1634) as pure s$5 states may be disputed. The dotted o=t
entry is impressionistic, having been invented from the ¢ mass and the »-p
splitting, appropriately rescaled.

Lower bounds for leptonic decays of T and T' (after Rosner, Quigg, and
Thacker, Ref. 18), together with the data cited in Table 2. The bounds

are computed from Eq. (2.5) using ¢ leptonic widths lo below the central
values and my/m.23.

Attempting to separate a quark and antiquark results in the creation of a
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16:

17

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

quark-antiquark pair from the vacuum, so that color is always neutralized
locally.

Regge trajectories of the natural-parity mesons. Uncertain states are
indicated by open circles.

Regge trajectories of the nucleon, A, A resonances.
A masstiess quark and antiquark connected by a linear string.

Phenomenological potentials for quarkonium systems. The rms radii of the
observed v and T states are indicated. (After Eichten, Ref. 24.)

Extrapoiations of the four phenomenological potentials to short distances.
The rms radii of toponium ground states are indicated for top quark masses
of 30 and 60 GeV/cZ. (from Ref. 24).

The 2S-15 interval as a function of quark mass in four phenomenological
potentials {from Ref. 24).

Comparison of Richardson's potential {dashed curve) with the expectations
of perturbative QCD (solid curves) for Age = 0.1, 0.2, 0.3, 0.4 GeV (from
Ref. 24).

The spectrum of (tI) states in Richardson's potential for my = 45 Gev/c2
(from Ref. 24)}. A1l states below threshold with L4 are shown explicitly.
The maximum angular momentum for which at least one state lies below
flavor threshold is L., =17,

Charge induced by a positive test charge placed at the center of a hole in
a dielectric medium. (a) Dia-electric case epoqiym < 1 hoped to resemble

QCD. (b) Dielectric case ¢ > 1 of normal electrodynamics.

medium

Double-1ine notation for quarks, gluons, and their interactions, useful
for 1/N, analyses.

Lowest order vacuum polarization contributions to the gluon propagator.

(a) quark Tloop; (b) gluon 1loop; (c) quark 1loop in the double-1ine
notation; (d) gluon loop in the double-line notation.

A two-loop diagram in (a} conventional and {b) double-1ine notation.
A three-loop diagram in (a) conventional and (b) double-line notation.
A nonplanar graph in {(a) conventional and (b) doubie-line notation.

0Z]-allowed decay of a meson, at order 94, in {a} conventional and
(b) double-line notation. The crossed lines represent color singlet
projections.
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31:
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33:

34:

35;

36:
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38:

39:

40:

4]:

42:

43:

44:

45:

46:

a7

Propagation of a color-singlet meson, at order g4

(b) double-1ine notation.

, in (a} conventional and

A mechanism for 0ZI-forbidden decay, at order 94

(b) double-1ine notation.

, in (a) conventional and

4

Meson-exotic mixing, at order g', in (a) conventional and (b) double-line

notation.

Discrete time lattice for the evaluation of the quantum mechanical sum
over paths.

Links between quantum mechanics, field theory, and statistical physics.
The Ising Jattice.
Spontaneous magnetization in the two-dimensional Ising model.

Representative configurations of the two-dimensional Ising model.
(a) T=0; (b) OCI<T; (c) T>T..

Two-dimensional lattice for 22 gauge theory.

An etementary plaquette for the Z, gauge theory in two dimensions.
Link variables for the lattice U{1) theory.

Elementary plaquette for the lattice U{1) theory.

Contour for the derivation of the area law.

Callan-Symanzik beta functions for QED and QCD.

A symmetric, monotonic potential in one dimension.

Approximate reconstruction of the harmonic oscillator potential. (a)-(e):
N=1,2,3,4,5 reflectionless approximations to the potential. The true
potential is shown for comparison. (f}-{(j): wave functions obtained in
the N=1,2,3,4,5 reflectionless approximations; (k) exact wave functions
{(from Ref. 42).

Approximate reconstruction of the linear potential. See the caption to
Fig. 45 {from Ref. 42).

Approximate reconstruction of the infinite square-well potential. See the
caption to Fig. 45 (from Ref. 42).
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52:

53:

54:
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57:

Potentials constructed from the ¢ and ¢'. (a) p=1l, m.=1.1 GeV/cz;
(b) e=1.4, m.=1.4 GeV/cZ; (c) p=2, m=1.7 GeV/cz. Levels of the charmonium
(T} system are plotted on the left (right). Solid lines denote the 351
states; dashed 1lines indicate the mean mass of the 23PJ states. The
right-hand scale (for the T's) is shifted by an amount 2(my-m.} with
respect to the left-hand (psion) scale {from Ref. 48).

Comparison of the charmonium potentials of Fig. 48. Dot-dashed line: p=1,
m.=1.1 GeV/cZ; solid Tline: »=1.4, m.=1.4 GeV/cz; jong-dashed iine: p=2,
mC=1.7 GeV/cz. The short-dashed line is the “asymptotic freedom" potential
of Ref. 23 (from Ref. 48}).

Potentials reconstructed from the T spectrum (a) p=l, mb=4.5 GeV/cz;
(b) p=1.4, m,=4.75 GeV/c%; (c) p=2, m,=5 GeV/c%. Levels of the upsilon
{charmonium) system are plotted on the right (left). Solid 1ines denote
the 381 states; dashed 1ines indicate the mean mass of the 23PJ states.
The left-hand scale (for the psions} is shifted by an amount 2{m.-m,) with
respect to the right-hand (upsilon) scale {from Ref. 48).

Comparison of the upsilon potentials of Fig. 50. Dot-dashed 1line: p=1,

my=4.5 GeV/cZ; solid line: p=1.4, my=4.75 GeV/c%; long-dashed line: o=2,

mb=5 GeV/cz. The short-dashed line is the "asymptotic freedom" potential
of Ref. 23 {from Ref. 48).

Comparison of potentials deduced from the v and T families. The energy
scale s appropriate for the ¢ spectrum. In each graph, the label on the
left-hand ordinate refers to the potential constructed using T data (solid
curve). The label on the right-hand ordinate refers to the potential
constructed using psion data (dashed curve). (a) p=1; (b) e=1.4; (c) p=2
{from Ref. 48).

“(a) Ordered and {b) random starts for the Ising model on a 5x5 lattice.

Approach to equilibrium for SU(2) gauge theory on 4%, 6%, 8%, and 104
lattices, with =2.3 (from Ref. 50).

Approach to equilibrium for U(1l) gauge theory on a 64 lattice, with B=1.0.
The theory has a critical point at Bcr=1.012, for a lattice of infinite
size (from Ref.52).

Hysteresis in thermal cycles of the mean plaquette for U(1) [SO{2)] gauge
theory on a 54 Yattice {from Ref. 53).

“The U(1) mean plaquette energy as a function of g for a 54 lattice {from

Ref. 54).
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62:
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64:

The normalized specific heat p of the U(l) theory as a function of 8 1in
the critical region for lattices of size 44, 54, and 64 {from Ref. 54).

The wmean plaquette energy for SU(3) gauge theory on a4 and 6% lattices
{tfrom Ref. 52).

Wilson loop for the evaluation of the string tension.

The quantities x{(1,I) for SU(2) gauge theory as a function of 1/92 (from
Ref. 55}.

the quantities x{I,I} for SU(3) gauge theory as a function of 1/g2 {(from
Ref. 57).

The SU{3) heavy quark potential determined on a 123416  lattice (from
Ref. 59). The string tension is denoted by o.

Comparison of a smooth curve drawn through the lattice potential of
Fig. 63 with a logarithmic form (dashed line) {from Ref. 16).
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