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Abstract 

It is usually assumed that a massive relic species, which comes to dominate 
the mass density of the Universe and later decays, ‘heats up’ the Universe when 
the agi ? of the Universe 1: its lifetime. We show that if its decav follows the 
usual-exponential decay law, then the Universe is never reheated, iather it just 
cools more slowly. We calculate the evolution of the temperature and entropy, 
and find that to within numerical factors of order unity, the usual estimates for 
the entropy increase are found to be correct. Our results have implications for 
primordial nucleosynthesis in scenarios where a massive relic with lifetime N 
1O-2 - lo3 set is present, and for baryogenesis in the new inflationary Universe 
scenario. 
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I. Introduction 

In the standard, hot big bang cosmology (for a review see ref. l), the energy 

density contributed by a massive particle species (denoted by ‘X’) becomes negli- 

gible when the temperature falls below its 

& that species possesses a non-zero chemical potential (e.g. baryons), or it 

drops out of equilibrium and its abundance ‘freezes out.’ In the case of p # 0 or 

‘freeze out’, the relic X abundance relative to photons 2 remains approxi- 
I I n7 

mately constant, and $ grows as T’ (or R(t) = cosmic scale factor). Evcntu- 

ally, the energy density of the X particles dominates that of the photons--and the 

total energy density, if t < 10” sec. [The present energy densities of matter 

(baryons and other non-relativisitic (NR) matter) and radiation (3K background 

and VP backgrounds) are such that earlier than about 10” set after the bang 

prad > pmatter 1. If the relic X particles subsequently decay into light (i.e., rela- 

tivistic) particles which thermalize, then the entropy of the Universe and radia- 

tion content will be increased. 

The usual approximation made is to assume that the decays happen at time 

t N r, ( = lifetime of the X), over a short time interval (At << r,).2 In this 

case it is straightforward to compute the increase in entropy per comoving 

volume, and the increase in temperature. [In doing this simple calculation we 

will assume that at the time of decay, P,>>P~] Let the relic abundance of Xs be 

r= +(ft f a er reeze out and before decay), where s = 
2r?g.T3 

45 
is the entropy 

density and g, counts the effective number of relativistic degrees of freedom. The 

energy density in radiation is pr = 
7+ !z. 

I I 
- 

30 
T4 and the energy density in Xs is 



-3- 

px = (rm,)s. The entropy per comoving volume is S = sR3. In the simultaneous 

decay approximation (SDA) it follows immediately from energy conservation (at 

the decay epoch t = I-‘) that: 

1 

T bel,,re N 0.65g.’ ) 
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(lc) 

(14 

where ‘before’ refers to just before the decays (t N r;), ‘after’ refers to just after 

the decays (t N r:), and I E r;’ is the X decay rate. Here and throughout we 

use units in which 6 = kn = c = 1, and Newton’s constant G = m,?2, where 

mpl = 1.22 x 10’gGeV. 

In brief, what we find is that when one takes into account the fact that the 

decays are not simultaneous, but instead follow an exponential decay law 

dT 
( dN, = - N, I dt ), the temperature of the Universe never increases, i.e., dt IS 

always < 0. What happens instead is that the temperature falls more slowly, 

-3 
TaRT rather than R-’ (see Fig. I), due to the entropy release from decays. 

Up to numerical factors of order unity, the ‘reheat temperature’, more precisely 

the temperature just after the entropy release (t N I-‘), and the entropy increase 

are given by Eqn.(l). In the next section, we carefully set up the problem of 
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decaying relic particles and solve ii; in this section we also briefly discuss some 

applications of our results. In Section llI we summarize our results and discuss 

some possible implications. 

II. Entropy Release by Decaying Relics in the Standard Cosmology 

A. Equations for decaying particles 

With some loss of generality, we make the following physically reasonable 

assumptions: 

(1) At all times the microscopic entropy of the Universe is dominated by 

relativistic particles. 

(2) The entropy released by the decaying X particles is rapidly (At << H-t 

N expansion time) thermalized. 

(3) We restrict the problem to Friedmann-Robertson-Walker (FRW) cosmo- 

logical models (i.e. the standard cosmology). 

The first assumption implies that S (Z the entropy per comoving volume) 

can be expressed as 

S = R(t)3 s(T) (2) 

where s(T) is the entropy density, 

s(T) = 9 

The quantity g,(T) as usual counts the effective number of relativistic degrees of 

freedom: 
-- 

g.= ck%+ Bose I I ; FgigF (4) 
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where the sum runs over a,ll species with m<<T which are in thermal equili- 

brium. Note that the energy density in relativistic particles (Z p,) and tcmpera- 

ture (= T) are related to s and S by, 

p, = $ Ts(T) 
I I 

(W 

W) 

-1 1 
T=a7ss3 

-1 1 
a -i- s3 

= 
R 

(54 

where a G 
2+k. 

45’ 
[ It should be recognized that Eqns.(3b, 4) are rigorously 

valid only at temperatures for which there are no particle species with mass FV 

temperature. At temperatures T for which there is one (or more) particle species 

with m x T we will use the entropy density, s = ( G ‘I, to define g,(T), via 

Eqn.(3b). In practice this technical point creates no difficulties.] 

Choose an initial epoch to such that: (1) to << I-’ (i.e., X particles have not 

yet begun to decay); (2) the X particles are NR, i.e., To << mx, and their abun- 

dance is ‘frozen out’ (no X particles are being created or destroyed, i.e., constant 

number per comoving volume). Now specify their initial abundance by the ratio 

of their number density to the entropy density (E r), 

Using the fact that the number density of photons n7 = -- l I 2 2(3) Ts and 
r? 
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Eqn.(3b) for s(T), it follows that 

1r4 g, 
s = 45d3) n7 I-l 
2: 1.80g,n, 

I I : ] ~~ N- 1.80g.r (8) 

(74 

(7b) 

The energy density in X particles at this epoch is just 

pxo = mATd 

The evoiution of px is governed by 

p, = -3Hp, - rpx 

(9) 

(10) 
li where H = -, R = cosmic scale factor, and overdot signifies time derivative. 
R 

~The first term on the rhs of Eqn.(lO) represents the dilution of px due to the 

expansion of the Universe, while the second represents the decays. Eqn.(lO) can 

be written in a more suggestive form, 

d ( R3p, 1 
dt 

= -r( R3p, ) 

where the basic physics is clear: the number of Xs per comoving volume 

I 
R3px 

N, = - 
m, I follows an exponential decay law. The solution to Eqn.(lO) is 

just 

R I I 
-3 

Px = Pm - 
Ro 

,-l-t (11) 

-. 

The change in entropy per comoving volume is given by 
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where dQ (= the heat added per comoving volume) is due to the decays, 

dQ = rR3p, dt 

Thus the evolution of the entropy per comoving volume is given by 

rR3P, 
S=- 

T 

1 -1 
= a3 rR4p, S3 

Eqn.( 12) can be integrated (at least formally): 

< 4 
ST = SOT + I I 4 pxo Rt j a”[ 7 ] e-rt’ drt’ 

’ R(t’) 

to 

(12) 

where the subscript ‘zero’ denotes the value of that quantity at the initial epoch 

(t = to). 

The evolution of the cosmic scale factor R(t) is governed by the usual Fried- 

mann equation, 

H2-[;jz=[F](P”c Pr+ PO) (14) 

where p. is the effective energy density of everything besides relativistic particles 

in thermal equilibrium and Xs. For example, the other forms of energy density 

might be vacuum energy ( +po = constant ), a stable, NR particle species 

( +po cy Re3 ), a relativistic particle species which is decoupled, e.g., neutrinos 

when T ( 2MeV ( +po Q R-’ ), or the ‘effective energy density’ of the curvature 

which we left out of Eqn(l4) ( 3 p. a f Rm2 ). 

- 

(13) 

The relevant equations then are 
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I I R Je-rt Px=Pxo - 
Ro 

Hz= F I I ( Px + Pr + PO 1 

I 
e -n drt’ 

(154 

1 
J 

(15b) 

(Kc) 

-1 4 -- 
supplemented by pr = 0.75a 3 S3Rm4. These equations can be cast in a more 

useful form by introducing the following dimensionless variables: 

x = rt 

xH = r( ,~,,, It 

R ZE- 
Ro 

Eqns.(l5a-15c) can then be written as 

f x = z-3eex 

4 4 
SF = so5 1+ + I I a af z(x’ ) neP’ dx’ 

(164 

(16b) 
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2’ 
I I 

1 
- = x$( f, + fr + f, )” 
3 (W 

where prime denotes -&. Since by choice xe = &,<<l, we have set the lower 

limit in the integral in Eqn.( 16b) equal to zero. 

Eqn.(lGb) has an obvious interpretation in terms of the evolution of the 

-1 4 -- 
energy density in radiation. Recall that pr = 0.75a 3 S 3R-4 and suppose that 

-1 
a(T) = constant; then multiplying (16b) by 0.75a Re4 leads to an equation for 

6%: 

Pr = &F4 f [~=~~~(x’)e-x’dx~]~-4 T (17) 

The first term on the rhs of Eqn.(l7) is just the ‘original’ energy density in radia- 

tion, redshifted (Y R-4; the second term is the energy density in radiation due to 

the X decays. 

Now let’s discuss the qualitative behavior of the solutions to Eqns.(lGb-17). 

First consider the early epoch x ( 1; suppose that z(x) = 
I 1 
2 ” (note: n = i if 

the Universe is radiation-dominated; n = $ if it is matter-dominated). Using 

1 ” 
the approximations a F 2: constant and e-’ % 1, together with z = x , 

I I x0 

Eqns.(16b-17) can be easily integrated, 

(184 

Pr 25 P,,x4 + Pxoz-3 t1 J n) 
I I 

(18b) 



Referring to the first and second terms on the rhs of Eqn.(lga,b) as the ‘old 

entropy’ (‘old radiation’) and the ‘new entropy’ (‘new radiation’) respectively, we 

3(1 + n) 3(1 + II) 
can see that the ‘new entropy’ term increases (Y (x or t) 4 cr R 4n while 

the ‘new radiation’ term increases a R 
-3 ++- 3 

1 cz R-’ for n = -; (I R-l 
2 

for 

n = $). F or x < 1, p,,zm3 is just the energy density in X particles; according to 

Eqn.(l8), the energy density in radiation ‘dumped in’ by decays is just the frac- 

tion (1 y n) of the energy density in X particles. 

An important epoch occurs when the ‘old’ and ‘new’ parts of the rhs of 

Eqn.(l8a,b) become comparable; denote this epoch by x= and z= = 2(x=). Phy- 

sically this corresponds to the time after which most of the entropy and radiation 

content are due to the X decays. In terms of x,, pr,, and pxo, x, and z, are given 

by: 

+ [ “~o+nPqh 

z,= [ “:.p~Pro]ei 

(194 

(19b) 

where we have assumed that x, ( x, < 1. If - 
PXO 

is suffkiently large, then 

Eqn.(lSa) gives a value for x, > 1, meaning that px never dominates pr and X 

decays never produce a significant amount of entropy (i.e., relative to the initial 

entropy). 

For x>>l the integral in Eqn.(lGb) converges because of the eex’ in the 

integrand. Physically this corresponds to the entropy per comoving volume 

reaching its asymptotic value after a!1 the decays have occurred. The ratio of the 
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final entropy per comoving volume to the initial value is 

3 
a 

00 1 
I = 1 a’z(x)e-“dx 

0 

(20) 

I I 
” 

Ifz= 5 
X0 

for x near 1, say 1O-3 < x < 10, when almost all of the decays 

occur, then I is very easy to evaluate, 

1 
1 = Z’xi”n! (224 

1 1 
-7 

where a IS a weighted average of a T (if a is not constant) in the interval near 

n 
x = 1. [ One would expect z = -& 

I I x0 
for x S 10 if the energy density of the 

original radiation, or the unspecified components represented by p. dominated 

the total energy density during the entire decay epoch. ] 

If, on the other hand, the energy density of the X particles and their decay 

products dominate the total energy density during the decay epoch, then z will 

2 
not be represented by a single power law; rather n will change from - to -!- as 

3 2 

the X particles decay and the entropy they release begins to dominate the energy 

density of the Universe. This is the case of greatest interest, since it correspocds 

to the situation where the entropy production is significant. Without loss of gen- 

erality we can choose to such, that in addition to x0 being <<l, px dominates the 

energy density. It is then straightforward to show that in this limit 

(Pm >> Pro + PO,) 

-2 1 
I = 1.09 XHT 3 P‘Jb) 
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where the 1.09 is the result of numerically integating Eqns.(lGa-c). [The details 

of this are given in the appendix.] 

Combining Eqn.(20) with either Eqn.(22a) or (22b) as appropriate, we have 

$= [l+ 2.651s (;;)+Ji 

I 

1 

N 1 + 1.98 
ZF rm, - 

I I 
3 

-$ (rm,)’ 
i 

Sf 

s, = 1 + 2.g5a 2 

b,lV 
5 

3 
i 

I . (23a) 

(Po>>Pr, Px) 

(23bl 

(P,>>P, 7 P,) 

(23~) 

1 
r 2.25Xi rmx 1 

(rm,,)’ 

(Px >> Pr , Pa) 
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for reference rm, 
1 = 0.353 [g&L]! Note in the first case, Eqn.( 23a), 

b,JY 
z 

” 

PO0 
T 

the result seems to depend upon the choice of initial epoch through the 1 

-2 
factor. However, z a x-” implies that p. a zT; for x<<l, pr u z-~. These two 

n . 
T 

facts imply that PO 1 is independent of x for x<l. Eqn.(23b,c) represent the 

Pr 
i 

cases of greatest interest: Eqn(23b) the case where the initial radiation always 

dominates the energy (small entropy production; note, Eqn.(23b) follows from 

Eqn.(23a) by setting n = $), and Eqn.(23c) the case where the X particles dom- 

inate the energy density during the decay epoch (large entropy production). Note 

that Eqn.(23c) is, up to numerical factors of order unity, identical to the usual 

estimate, Eqn.( Id). 

Let us end this section by summarizing our results. Consider the two cases 

where the entropy production is significant, i.e., Sf ~>>l: (a) the case where dur- 
0 

ing the decay epoch the energy density is dominated by the X and its decay pro 

ducts; (b) the case where during the decay epoch the energy density is dominated 

by something other than pr or px, i.e., p. dominates the energy density, and 

2 

From x = x, Case(a~ Assume that by t = t,, px>>p,; then z = -& 
I I 

5 

X0 

to x =x, the entropy per comoving volume and radiation energy density are 
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dominated by the ‘old’ or oLgina1 components. During this period the ‘new radi- 

-3 
ation’ energy density increases (Y R 2; Pi-R4 and S remain nearly constant. 

From x = x= to x N 1, the ‘new’ contributions to S and pr are dominant, and 

-3 1 -3 15 
J?r*RT a t-‘, T (I pr’ cz R8, and S a RF. For x > 1, S levels off at the 

value Sr [given by Eqn.(23c)], and pr begins to decrease a R-* (T o R-l). i’:ote 

that the temperature is alwavs decreasing, albeit, at a rate slower than the usual 

-2 
R-‘, for x,< x < 1. Using Eqn.(23c), and taking z(1) 2: xo3, it follows that 

the temperature when the entropy levels off (x 2: 1) is 

I 1 

-1 I 
1 

Tr N 2 g -c (rm,,) z 
(24) 

which only differs numerically from the usual estimate, Eqn.(lb), by factors of 

order unity, but which has a very different interpretation. The Universe is not 

heated up to this temperature at t N r-r, but rather has cooled down to this 

temperature. The entropy increase is 

Sf 
1 

-4 rm, 

-c = 2.25a 1 

(m,JY 
T 

1 
N_ 1.83g. i rm, 

1 

(m,F) 
F 

which differs from the ‘usual estimate’, i.e., Eqn.( Id), by only about 10%. 

Case(b) Assume that due to the unspecified source of energy density pO, 

I I 

” 
z= x 

X0 
during the decay period. From x = x, to x = x, the entropy per 

comoving volume and radiation energy density are dominated by the so-called 

‘old’ or original components, and S o constant, pr CK R-‘. The ‘new’ contribution 
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3fi 
to pr is increasing as R “. At x=x, the ‘new’ contributions to S and pr 

-3+ i. 
begin to dominate the ‘old’ or original contributions and pr Q R n, 

TaR 
++& 3(1 + II) 

, and So R 4” Note that unless n<$ (corresponding to p0 

decreasing as Rm6 or faster), the temperature is always decreasing. At x 2: 1, S 

levels off to the value given in Eqn.(23a), and subsequently S = constant and 

pr o R-‘. The temperature when the entropy levels off (x N 1) is 

T, N [f]+-1” n3”n!a ’ 0 

z 

1 ,3 

11 I 

- 
i is 

Pro 
p,“, (rm,)S(rmpdF (25) 

The evolution of pr and S for these two cases is shown in Figs. 1 and 2. 

B. Applications 

In the new inflationary Universe scenario there can be an epoch where the 

energy density of the Universe is dominated by coherent scalar field oscillations 3. 

The energy density in these scalar field oscillations behaves just like NR matter 

(a cold condensate of NR Higgs particles). Eventually these oscillations decay 

into radiation (i.e., relativistic particles). The decay of the coherent field oscilla- 

tions is equivalent to the decay of NR Higgs particles and is described by an 

equation which is identical to Eqn.(lO). The reheating of the inflationary 

Universe in this case is just the situation we have just consider.ed in case(a), 

namely pXO>>prO + poo. Thus ~the evolution of the radiation energy density is ss 

shown in Fig.1, and the radiation temperature at the time when the entropy lev- 

els off (usually referred to as the ‘reheat temperature’) is just given by Eqn.(24), 

TnH N i g’(I’m,,)+ 
I I 
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In the inflationary cosmology the baryon asymmetry of the Universe 

I 
ng - 
S 

N_ lo-” must be produced after inflation (any initial baryon asymmetry is I 
exponentially diluted by the tremendous entropy production associated with 

inflation). If the baryon asymmetry is produced in the standard way, the out-of- 

equilibrium decay of superheavy bosons produced in the reheating process4, then 

the time-temperature relationship for the Universe and the evolution of the 

entropy per comoving volume are both crucial for calculating the baryon asym- 

metry which evolves. In that regard, the results of this paper are of some impor- 

tance -- as the baryon asymmetry is being produced, the entropy per comoving 

volume is increasing and the time-temperature relationship is not the usual one. 

We are currently investigating these effects. 

An alternate to the standard method of baryogenesis is direct production of 

a baryon asymmetry by the decays of the Higgs particles themselves 5. Suppose 

that the decay of each Higgs particle on average produces a net baryon number 

of t. The quantity c is related to the C, CP violation in the decay of the Higgs 

particle. [ Note that the baryon number per decay t need not be directly pro- 

duced in the Higgs particle decay, but could just as well be the result of a chain 

of decays, e.g. Higgs particle -+ other particles -+ quarks and lcptons, with net 

baryon number 6. ] The baryon number-teentropy ratio (s T) produced this 

way depends upon t, the number density of Higgs particles (G nx), and the 

entropy produced. The baryon number produced per comoving volume is just 

%W where N,, is the initial (i.e., for x<<l) number of Higgs particles per 

comoving volume. In terms of r and S, (the initial entropy per comoving volume) 

The baryon asymmetry produced this way is just 



nB LNx, 
-=- 

S Sf 

- 17 - 

’ so = cr - I I Sf 
-I (mJ)$ 

= 0.44 zT 6 
m, 

where we have used Eqn.(23c) for - (in the limit of S,>>S,, which is clearly 
Sf 

the regime of interest for the inflationary Universe.) The usual estimate for 2 
S 

is5 

nB 0.75 6 T,, 
--N 

S 3 - 

N_ o,48 $ ~ (m,G 
m, 

which as it turns out is a remarkably accurate estimate. Of course, the baryon 

asymmetry directly produced by the decay of the Higgs field oscillations may sub- 

sequently be damped by baryon number nonconserving proceses (e.g. 2c+2 

scattering processes.) 

[Throughout this discussion of the reheating of the inflationary cosmology 

we have assumed the existence of an initial entropy per comoving volume (= S,). 

In the inflationary scenario this quantity is expected to be very small and highly 

model dependent. As is apparent, though, none of our results depend upon S, -- 

it is merely used as a fiducial. We could just as well have used N,, as our 

fiducial. ] 

Next consider the so-called decaying particle cosmology.’ This is a scenario 
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R 
in which until rather recently ( R 2 1O-2 or so) the energy density of t.he 

today 

Universe was dominated by unstable, NR relic X particles, which subsequently 

decay into parhicles which today are still relativistic and which make a consider- 

able contribution to the present energy density of the Universe. [ The purpose of 

this scenario is to solve ‘the R-problem’; i.e. to reconcile the inflationary predic- 

tion of R = 1 with the observational data Robs 2: 0.1 - 0.3, by producing a 

smooth component of energy density with R N 0.9 - 0.7, which by virtue of its 

uniformity would not have been detected. ] 

In this scenario the decay products do not thermalize because they :Lre 

effectively interactionless. The equations we have derived in this section are still 

-1 4 
3 

applicable though, when we realize that - a 3 S3 I I 
-- 

4 
is the energy density in rela- 

tivistic decay products times R’ (G R4p,, pr = energy density of the R decay 

products), and take S,, the fiducial, to be the entropy per comoving volume in 

n, photons. With this identification r = -; using the fact that s., = 3.60n,, it fol- 
s-I 

lows that r = 0.278~, (q, G 3 ). In th’ 1s scenario the energy density of the X 

and its decay products dominate the total energy density during the decay epoch 

so that for I we can use the expression in Eqn.(22b). Using our previous results 

we then find that after the decays (x > lo), 

4 -2 
z 31 2.82(rm,)‘(rmPl)~ (27a) 

-- 

Since both pr and p, CY Re4 (after the decay epoch), t remains constant; using 

the fact that the present fraction of critical density contributed by photons (G 

0.J is 
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Cl,h2 = 2.36~ 1O-5tl’r 

T 
where 0 = --?- and h= 

H, = ( the present value of the Hubble parameter ) 

2.m lOOkms~‘hIpc-’ 

it follows that 

R,h2 4 -2 
-= 5 T 

84 
1.21 x 10-5(qXm,) (rm,J 

= L40&$[ IOg:yrs If 

For a more detailed discussion of the decaying particle ~::smology see ref.G 

III. Concluding Remarks 

The conventional lore of the early Universe has it that a NR, relic species 

which comes to dominate the energy density of the Universe, and then subse- 

quently decays, ‘heats up’ the Universe when it decays. We have shown that if 

the decays of the species follow the usual exponential decay law this is not the 

case. Instead, due to the heating effect of the decays, Universe cools more slowly 

( T a R’, Instead of the usual T (I R-i ) and the entropy per comoving volume 

increases ( Q R’ ). Up t o numerical factors of order unity the usual estimate 

for the increase in entropy per comoving volume is found to be correct. What in 

the usual analysis is called the ‘reheat temperature’ is instead the temperature of 

the Universe when the entropy per comoving volume levels off (at the time t 1: 

r-l 1. 
If during the decay epoch the energy density of the Universe is dominated by 

I 
some other form of energy density and R increases more slowly than t v 

(corresponding to a source of energy density which decreases more rapidly than 

R-6), then the temperature of the Universe does increase during the decay epoch 
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(1-3n) 
(T-R ‘” for t < F-i, where R a t”). 

Our results may be of some importance when considering the effect of relic 

particle species which decay and release entropy around the epoch of primordial 

nucleosynthesis (temperatures 10 MeV - 0.1 MeV) -- the gravitino being such a 

particle2, and when considering baryogenesis in the new inflationary Universe 

scenario. In the former example, it is usually assumed that the Universe goes 

through primordial nucleosynthesis twice (before and after the decay epoch). As 

we have shown, it goes through the relevant temperature range for nuclcosyn- 

thesis only once, but with a different time-temperature relationship (with the NR 

particles present, H(T) > H,(T) = the expansion rate without the relic particles 

present). In addition, before the high energy particles produced by the decays 

thermalize, they may produce or destroy various nuclei which are being syn- 

thesized.’ In the case of baryogenesis, the Universe will evolve through the epoch 

of baryogenesis with a nonstandard timetemperature relationship, and the 

details of baryogenesis depend crucially upon this relationship. Both topics are 

currently under investigation. 
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m Cantions 

Figure 1: The evolution of pr and S as a function of the cosmic scale factor 

ZGLL.. 
RI 

m the case where the energy density of the X particles dominates 

the energy density of t,he Universe during the decay epoch. The line labeled 

‘old’ shows the energy density in the original radiation component; the line 

labeled ‘new’ shows t,he contribution to the radiation energy density from X 

3 
decays and is proportional to R-‘. From z = z, (when the ‘old’ and ‘new’ 

3 3 
contributions are equal) until x 2: 1, pr o R-?, implying that T Q RW8 -- 

decays do not heat the Universe, they just cause it to cool more slowly. 

From z = z, to x N 1 the entropy per comc;:,ing volume S increases pro- 

15 
portional to RT; at x N 1, S levels off. For x>>l, S N constant. and 

pr o Re4. Although the axes are labeled with arbitrary units, data for the 

curves was generated by numerically integrating Eqns.(lGa-c). 

Figure 2: Schematic representation of the evolution of pr and S as a func- 

R tion of z = - 
RO 

m the case where the energy density of the Universe is dom- 

2 
inated by an unspecified component (p, Q R “), such that R a t” during the 

decay epoch. The lines labeled ‘old’ and ‘new’ show the original radiation 

component and the contribution from X decays respectively. The ‘new’ 

-3 + 1 
component evolves a R “, and from z = z, onward dominates pr. 

(1-3n) 
From z = z= until x N 1, T o R 4” , i.e., only increases if n < 1. 

- 3 
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3(1 + II) 
From z = z= until the end of the decay epoch (x 2: 1) S ct P 4n After 

the decays (x>>l), S N constant and pr Q Rm4. 
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1 

Appendix: Evaluation of I = 7 z(x) aSemxdx 
0 

We are interested in the case where the X particles and the entropy pro- 

duced by their decays dominates the energy density of the IJniverse during the 

decay epoch (x0 5 x ( 10). In this limit we have: 

2’ 
1 

- = xg ( f, + f,,, )T 
3 

I$]‘= [$][,yri 

0 

] i afz(xt) e&dx’ 

I I 
I 4 

3 
-a 
4 

-5&,43-4 

fnew = 
I 

f%evrad = 
PXO PXO 

=a $4 a ,i,(,, ) e-X’,jx/ 

f x = zm3esx 

By using Eqns.(A2-A4), Eqn.(Al) for z(x) can be rewritten as: 

1 xl 

d a’z(x’) emX’dx’ 1; 

WI 

643) 

(A41 

2 

By introducing the new variable y G xH5 z the xH dependence in Eqn.(A5) can be 

eliminated: 

$v = [ y-3e-X + ,-4,; j aiy(x, ) e-X’dx’ 1; 

0 
646) 
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If we assume that during the decay epoch a m constant or that its dependence 

can be expressed as a m a(x), then it follows that the solution to Eqn.(AG) must 

be of the form: y = y(x), supplemented by two boundary conditions [ Eqn(A6) is 

a second order dilferential equation. ] The two boundary conditions can be taken 

to be 

2 2 
y(x,) = x,~ryz(xo) = XH3 

Y’ (x0) z’ (XrJ -c-z 
Yk,) z(x,) xG’ 

For x, < x<<l, the solution must be that of a matter-dominated cosmology: 

2 

Y&X ‘; the solution which has this behavior and satislies the boundary condi- 

tions discussed above is 

2 
3x 3. 

Y(X) = -y I I (A7) 

(recall that for y or z Q x’, x, = ?). 

The existence of the solution y(x) for x<<l which satisfies the appropriate 

boundary conditions, and the fact that Eqn.(AB) admits solutions which are 

independent of xn demonstrates that the solution we seek has the form: 

2 -- 
z(x) = xH 3y(x). The evaluation of the integral I is now straightforward: 

m 1 
I = I a’z(x)e-xdx 

0 
(A4 

= xH+ $ a’y(x)e-‘dx 

1 -2 
N_ 1.09 HFXH 3 
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the 1.09 comes from a direct numerical integration of Eqns.(Al-A4) (where a was 

assumed to be constant). As before Z is a weighted average of a during the decay 

epoch (x%1). Note -iat throughout this paper we have written z(x) as if it were 

only a function of x; this is somewhat misleading. As we have just shown, it is 

-2 
y(x) that is a function of a single variable, and z = z(xH, x) = xH3y(x). 

Sf 
[Note, by recognizing that s must be independent of our choice of the ini- 

0 
-2 

tial epoch, one could have argued that I must be (I xHT by insisting that the 

Sf expression for - ’ s m Eqn.(20) be independent of xH.] 
0 


