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Abstract

The gauge structure of anomalies and the related currents is
analvsed in detail. We construct the covariant forms for both the
currents and the anvomalies for general gauge theories in even-
dimensienal space-time. The results are then extended to delermine the
structnre of gravilational anomalies. These can always be interpreted as

anomalics for local Lorentz transformations
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1. Introduction

The gauge principle is used as the fundamental basis for present
theories of all known forces, from electromagnetism to gravitatijon.
Anomalies [1-5] result when gauge invariance cannot be maintained in
the quantum theory. A complete understanding of anomalies is essential
for the full application of these theories to physical problems.

The anomaly is usually defined as the gauge variation of the
connected vacuum functicnal in the presence of external gauge fields.
When an anomaly occurs, this variation does not vanish and the vacuum
functicnal is not gauge invariant. The gauge currents are no longer
covariantly conserved but have the anomalies as their divergence. As a
consequence of its definition the anomaly satisfles certain consistency
conditions {6] which restricts its functional form, For the non-singlet,
non-abelian, chiral anomaly, the consistency conditions imply that the
ancmaly cannot have a covariant expression. Similarly, the anomaly
implies that the non-singlet gauge currents cannot have covariant
transformation properties.

However, a number of authors [7-9] have recently presented explicit
calculations of the non singlet ancmaly and have obtained covariant
results. The same situation occurs for the case of gravitational
anomalies. In the work by Alvarez-Gaumé and Witten [10] they are
presented in covariant form, while the gravitational consistency
conditions would imply that they should have a non-covariant form,

In this paper, we clarify the situation by showing that both the
covariant and the non-covariant anomalies can be correct forms for the
covariant divergence of different currents. For the gravitaticnal

anomalies, the two forms correspond to different energy momentum tensors.
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Weo shall use the Leewm

‘'vonsistent" anomaly to refer to the covariant
divergence of the current J“ aobtained by varying the vacuum functional
with respect to the external gauge potential. The "covariant" anomaly
it ebtained by wmodifying the current by adding to it a lecal function
o1 the gauvge potential. The resulting current ju is determined so as
to be covariant under local gauge transformations, which implies that
its covariant divergence is alse covariant. The consistent anvrnaly has
fundamental significance, since it reflects directly the gauge
dependence of the vacuum functional, The related covariant anomaly,
un the orher hand, is distinguished by its simple gauge transformation
properties and the the covariant current may have significance when
used Lo construct gauge invariant couplings to other fields., As shown
in this paper, it is always possible to construct the covariant forms
ol the current aud of the anomaly from the knowledge of the consistent
anemaly,  Heoce the anomaly cancellation conditions are the same for
ecither form. We pote that our ahility to moedify the form of the
anuvmaly by changing the definition of the local currents is different
from the ambiguity in the form of the anomaly arising from the
addition of lecal functions of the gauge potential te the vacuum
tunctional [3].

Let us illustrate the situation by the case of non-abelian gauge
anomalies in two space-time dimensions, The consistent anomaly is

kmown to beFl

DF7P= c QPA,\ e (I.t)

where ¢ is a certain constant and a matrix notation has been used for
hoth the current and the gauge potential. The right hand side satisfles

. - . . H
the consistency condition [6] but is non-covariant. The current J° also

transtorms pon-vavariantly.  We now dofine 4 new current

JE = T + c Ay et (1.2)
Its covariant divergence is
.D,,.,.T‘Hzcg,,‘/q,\s "!'3,“(“&/\8#)

+c [An, M]eM = ¢ Fo €%

(1.3)

where

Fy = 3 A=A+ [An, A (1.4)

s

is the Yang-Mills field strength. The right hand side of (1.3) is ouow
covariant. The current J° may also be shown to be covariant, but it
carmot be obtained from the variation of a vacuum functiopnal with
respect to the gauge field Au. since the covariant anomaly does net
satisfy the consistency condition. Observe that the lincarized right
hand side of {1.3) is twice the right hand side of (1.1} (this factor
becomes ! + v/2 in w dimensions and may be considered as a Bose
symmetry factor for the linearized ancmaly). We emphasize the care
which is needed in interpreting the linearlzed calculations.

In this paper we discuss various aspects of the gaupe structuvre of
anomaties and their currents. In Chapter 2 we study the gauge depen-
dence of the currents and their anomalies and apply conventicnal methods
to construct the covariant currents and anomalies for four-dimensional
gauge theories, In Chapter 3 we discuss the structure of the consistent
ancomaly in arbitrary even space-time dimensions and give also the

explicit expressions for the covariant currents and the covariant
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apomaties,  This is done by using the cumpact notation ¢f exterior discussed o a subsequent
diflerential forms and the techniques described in Refs. [11-16])., The
necded results are collected and, in part, rederived in Appendix A.

Our results are generalized to include gravitational anomalies in
Chapter 4, A theory with spinor fields in curved space must be
formulated go that it is covariant under general cocrdinate transforma-
Lions (which we shall call Einstein transformations) as well as under
local Lorentz transformations. local Lorentez invariance of the
connected vavuum functjonal is usually assumed and the gravitatiounal
anumalies are taken to be anemalies of the Einstein transformations.

In Chapter 5 we shall formulate the consistency conditions for the
combined Einstein and Lorentz ancmalies [13] and we shall find the

form of these anomilies. We also show that the Einstein anomalies can
always be transformed into Lorentz anomalies (and vice versa) by adding
local corrections to the vacuum functional. Hence it is always possible
to define the vacuum functional so that all pravitational mwmalies are
indeed violations of local Lorentz invariance alone. This appears to

us a2 preferred cancenical form for the gravitational anomalies. The
treatment of gravitational anomalies in Chapters 4 and 5 relates their
structure te that of gauge anomalies.

Throughout this paper the anomalies will be expressed in terms of
syamet ric invariant polynomials which shall not be Further specified.
The pariLicular polynomial appropriate to each situationsldepends on
the spin of the particles propagating in the loops of the vacuum
functional and can be determined by an explicit perturbaticn calculation,
as done in the paper by Alvarez-Gaumé and Witten [10] for the
aravitational anomaly. The correct polynomial can alsc be determined

divectly from the appropriate index theorem. This approach will be

~6-

paper by Alvarez, Singer and Zumino.[17)
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The consistent anemaly js determined hy the gauge dependence of
the vacuun functional defined Lo presence of external gauge fields
Alﬁ(h). The vacoun functional WA] may be considered as a non-local

.

tnnet fon of these gauge fields. Under infinitesimal gauge transforma-

Lions the gauge potentials transform according to

T A = (DA = (3uh + [A, A )

A

nE =5, 7)),

2.1)

where 57 is rhe infinitesimal gauge parameter, The gauge dependence of

the vacuum Junctional defines the anomaly

\v/ a,
T WAl = |dx f_ﬁ—; TA

,‘ o
- ‘Px Jia (%) (Dr/\) (2'2)

= =[x D TH 00 A(X)

=[x A0 G (A)

. . ; m R .
whoere 00 (A) fs the uanomaly and the current J 4(x) 1is delined as the
Hi
twictional derivative of the vacuum Functionai,
The consistency condition fellows trom considering the commutator

b Lwo gaupe transtormations on the vacoum functional
~ = 2.3
(=T MW= T, WIA. @)

Using (2.2) this implies

AN

—f-

(A T AT, C)= [ [AATG, e

The consistent anomaly must obey this consistency condition (2.4).
The consistent anomaly also determines the pouge depeadence of the
sic . i H ; ;
basic noon-abelian current J a4+ WNaively, this current wauld be expecied
to transtorm covariantly under gauge transformations. The sffect of
the anomalies can be determined by cvaluating in two ways the
computater of a4 paupe variation and the variation which defines the

(8T - wlA] (25)
where & is Jdefined by
$A." = B, (2:¢)

and

SW[A]= |dx %ﬁ SAS = [T @B. (0. (27)

P

The commutator may be evaluated dircetly

‘537;'7:\31;: S[B,A] : (2.¢)

Applying this eperator to the vacuum funetional we obtain

(ST~ T3 JWA]

= [de §(5G JA- (T 7% ) B
(2.7)

H

dx TH. ([B,/\j)a .

This gives [umediately the paupe transformation properties of the
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ax(T T, ) B, ={ax([ 1, If‘])“ B+ x5 C)A" @)

The first term on the right hand side of (2,10} glves the usual
transformation property of the current while the second term is
dictated by the consistent anomaly. The basic current J“a will only be
covariant if the anomaly vanishes.

We shall now demonstrate the existence of a covariant non-abelian
current 3“3 and compute its covariant divergence. This result was
obtained independently by Paranjape and Goldstone {18} and can alse be
inferred from some work by Niemi and Semenoff[19]. In subsequent
chapters we shall generalize these results to gauge and gravitational
anomalies in higher dimensional space times.

To construct the covariant non-abelian current we must find a

local polynemial in the gauge potential, Xua(A), with an anomalous

gauge transformation property opposite to that of the basic current
PR k @ .
[ (X" )B = fax(I0 XD B, - [ax i 0 ) 1" o
The covariant current is then given by
¢ _qp ¢
J a=Jat X a {A) Y,
since {(2.10 and (2.11) imply
e "r”
’[; J a = [/\’ J o

1t is not obvious that an appropriate local expression x"a(A) can always

(2.12)

| (2.3)

be found.
in four dimensions, the consistent non-abelian anomaly for spin

one-hilfl fermions is well known [3-4):

~ 10—

Cra(x) I P A Y QF(A" ;},A,- +—1'-/'\,ArA,)}} (2.14)

24m*

where Tr is the trace over Fermi multiplets and »? is the gauge

coupling matrix. The equation (2.11) for X“, becomes
fd" X +([/\;XF])JB:“Q=‘ efs G, ) °
M'Hﬁ dxe™*" A" B, -
(2.6
Tof (W n2) F,

— }144R»B /qr /qc- - IR-‘ ;Aa_}qr l?’, - ;l‘a f{r )1‘ fq’_ .

From the three possible terms for the polynomial X we find the unique
a

result

Xﬂ . { E,uvfr'
27 4gme

T { A (AR +Ec A - AAA) L 2)

By applying a group transformation to (2.16) we can reproduce (2.15).
We may now compute the covariant anomaly Ea » by a direct

evaluation of the covarlant divergence of the current



Ei:¢ - ":I%» 3: (:cu - :[%$ )K:ftl

—o L MR R (2.17)

We observe that the covariant anomaly may be expressed solely in terms
uf o product of field strengths as expected by covariance. The
lincarized form of the consistent anomaly (2,14} and of the covariant
anomaly {2,17) are the same except that the covariant ancmaly Is fhree
times larger.

We emphasize the need for a complete speciiication of the structure
of the anomalous currents bhefore the gauge anomalies can be properly
interpreted.  The consistent anomaly is directly related to the gauge
dependence of the vacuum functional, 1t is appropriate for the study
of ancmaly cancellation between fermion multiplets but also for the
derivation of physical consequences of anomalous non-dynamical currents
such as the flaver chiral currents in QCD [6] [20,21]. The covariant
current, on the other hand, has a simple gauge structure and may have
physical significance when coupled to other external non-gauge fields.
Since the covariant anomaly is directly related to the consistent
anomaly, it may also be used to study anomaly cancellation. In the
above discussion we have {ocussed on the ambiguities in defining
appropriate non-abelian currents. There is also the ambiguity in
defining the vacuum (unctional, as one is always free to modify the
vacuum functional by adding local polynemials in the gauge fields,

This freedom is exploited when we use the functional for gauging

dynamivally diffcerent anomaly free subgroups.

—1u-

1. Chiral Anamaliecs in Higher Dimensions

Following the notation of Refs. [11,12] we now describe the

Youg-Mi s Lield serenpgth by means ol the Lic-alyeboa valacd J-torm
T
F=dA+A (3.1)
where d denotes exterior differentiation, and
= A, dx"
= X
A I
is the gauge potential l-form. Explicitly
p — DAy -2 A+ A A (33
F= 7 dx dx” p Ftiv..grdqv QVAF Aa"i v :3)
(the diffoerentials dxu anticommute). let
'P(F:,Fz - E) (3.4)

be a symmetric invariant polynomial of degree n in the lic-algebra

G.2)

}

valued variables Fl""Fn' For compact notation, il some of the Fi's

are equal, say FA =F =...F = F , we shall write (3.4) as

(FF F“) (3.5)

Using the Bianchi identities for the field strength,

dF = FA-AF (3.€)

one shows easily that
AP(F™)=0 | (3.7)

Actually ane can write

P(F™) =d e, (AF) ,

where the (2n~-1)-form is given by

(3.¢)
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oy (1, F )= [ PA,ET) G)

with

F=tda+tA" = EF+E-E)A". (3.0

The consistent non-singlet anomaly 1s obtained as follows. Introduce
an odd (anticommuting) Lie-alpgebra valued element v and an

[nfinitesimal gauge transformation :;

JA=-Dv=-dv-$A, v}
ITF = Fr-vF (3-”)

Jv=-’

which satisfies
I 2d3+3d =d* =0 (3.12)

:fls the generator of a Becchi-Rouet-Stora transformation[22]}., If we

introduce

A = A+v (3.13)
and a corresponding field strength
?:(0(+T)J{+.ﬂ'l | G-14)
we find easily that

T = F . (3.15)

Therefore

-14—

(d+T oo, (A+v, F) =P(F")
_-:ala)zm_, (ﬂ‘, F).

(3.14)

Let us expand in powers of W

2

{ n-1
+ - -F'Chi, y ( 3.f‘7,)

L]
C‘Jzn-,(ﬂ'f”‘r/ F) =0 + Wz

where the superscript indicates the power of v and the subscript the

degree of the form. Equation (3.16) implies a set of relations

o t
jw.zm-l +d mez = O )

{ 2
Jcolm_z +d ey, s =0

(3.18)

Zn-l
JCJO = 0 J

The consistent anomaly is given by the integral of m2n-21‘ The

consistency condition, which can be written as

j jwlﬂ-ll =0 , (3-17)

follows from the second of (2.19), the second terms Integrates to zero.

One can derive a convenient explicit formula for the anomaly [11]

!
§eds' = mlnm1) Jde(1-0) | Plav, £, ™). G.20)
0

In the gauge transformation (3.11) the infinitesimal parameter
is odd (anticommuting) and transforms like a Faddeyev-Pupov ghast.

Lf one prefors, one can rewrite the consistency condilion in terms of
P s y
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cange Lransternat ions T, with even (conmut ing)

7:;1_—_1)/\ =dA+[A A]
"[;\F': [F,/\]

and U does not operate on the parameter itself.
teplaced For v o, is o Jinear functional of A PBenat ing it with

ChGIALE] (the dot indicates integration as well as summation over

internal symmetry indices), it satisfies the consistency condition

1 NG - TAG =[AN ]G, (3.22)

which is equivalent to (3.19). This is the form used in Section 2; it

inllows From the definition

T wWla]l= AG (3.23)

and justifies the above construction. I we define the current

(n=1)-form {which is dual to the usual current vector Ju)

- W
j‘sﬁ 4

£3.23) can he written as

ADT = A [dT+5A,T}) = A-C

Cremember that b ois odd),

(3.24)

W

(3.2r)

How does J transform under gauge transformations? ' As explained in

Savtion 2 we evaluate in two ways the commutator

(5T 8 ) wiA)

v

(3.26)

where is defined by

infinitesimal parameter A

B.21)

The anomaly, with &

-6~

SA=B , SF=DB=dB+§A, B} . (327)

Here, the increment B is odd and the operation ig even,

Since

5 3
Tk = (s ()5

the commuiator eyguals

[B,A] %WE =[B,r])-T

Un the other hand, using (3.23), and again {3.24), the commutator

(3,22’)

(3.29)

s(nc)-m B7).

Equating (3.29) with (3.30) we obtain

T@.7)=-[BA] T+5(nC)
— - B.[7NT) +6(NG)

(3.30)

3

The first term in the right hand side would be the covariant transfor-
mation law appropriate to the adjoint representation. When there is an
anomaly the second term shows that J does not transform covariantly.

[n (3.31) B is taken not to change under the gauge transformation
generated by T, . If instead we stipulate that B transforms accerding

to the adjoint representation
‘T:\B: [B;A:] /

(3.31) beromes simply

(3.32)
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T (8% s(rG) (3.33)

Together with (3,32) and

sA=0 (3.34 )

(3.33) completely specifies the transformation law of the current J in
terms of the anomaly A« G[A,F],
ls it possible to find a local (v -1)-form X such that the new

current

T+ X (3.37)

transforms covariantly? This means

7, (8:7)

(3.3¢)
and therefore we must require

(BX)=-¢(nG) (337)

This equation for X can be rewritten in terms of the anticommuting

parameter v o, instead of »

j(BX) jC‘JZ“-z'(V/A)F)) (3,35’)
. (3:37)

Here we have used the fact that the anomaly is given by

QA F] = [, (na,F).  Ga

Sv=o0

-18-

Now, it is very easy to solve (3.38) in general. We use the

(3.41)

relation, explained in Appendix A,

d=dL +4d

where ' is deflined by (3.27), (3.39), d is the exterior differentio-

tion, and the odd operations is given hy

{A=0, ¢F=B , 4v=o0, (3.42)

Applying (3.41) to w2‘h—2.' we find

Sopy ' =d (L' )+ L dovy,

(3.43)
d (‘e ("').z'n-a.‘ )' 14 ’J&Jz“__l ’ J

where we have used (3.18). Now, the operators ¢ and J anticommute

(3.44)

Upon integration vver (compactified) space-time, the first term in the

LI+ J¢

right hand side of (3.43) vanishes and we obtain finally

%) G‘)Zn-—ﬂ.l = erwz'n-lo

Clearly we van drop the superscript zero in the right hand side.

(3.47 )

Comparing with the eguation for X, (3.38), we see that it is solved by

BX = Lo, (3.4¢)

The vxplicit formula (3.9) for Wyl can be used to tind an explicit

formula for X, since the operator ¢ 1is easy to apply and, from (3.10),

*EE =tB (3.47)
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Uae finds casily

B-X = n(n- I]J-dbt P(B, A, ) (3.47)

Por dnstance, for an internal symmetry such as SU(N) In four dimensions,

P(F})=c Tz F?

(where ¢ Is a known constant). Then

wy =c T (FPA-LFA + L AT

(3.49)

(3.50)

]

and, applying ¢ directly,

Lo =¢ T B(FA+AF - > A7)

(3.51
e B (AA+AdA+LA) )

whivh pgives

(dh A& + A dA +2 A% ). &52)

Alternatively one can use (3.48) with exactly the same result

TRX =é6c 5T BA[LF'_,—,A) (3.53)

whore  STr is the totally symmetrized trace (Sce Ref. {11]).

Since the current J = J + X transforms covariantly, its covariant
divergesonce must also be covariant. In order to compute it we need
D8 = JdX + {a,%X!1. The simplest way to obtain this is to observe

that, integrating by parts,

DX =2Drv e X (3.54)

-20-

(remember that v is odd), and it would seem that the right hand side

can be obtained dirverly from (3.48) just by making the substitution

_B:DU’, (3-5-5.)

Strictly speaking this is not allowed since both B and v are odd and

so fs the cvperation D. To be precise we must first rewrite (3.48) as

C-X :m(n-.)ﬁrt f?(c,ﬁ, £7) , G.58)

where © is even. Actually (3.36) follows from (3.48), and vice-versa.

Now we can set correctly, in (3.56),

C =Dv (3.57)

which gives

Dy X = m{n- ;)Jdtt ?‘(olv+§A v}, A ) (3.57)

We also know that

DT =Dw.T = mnet) e (1) P, A, ) 51)
0

where we have used the explicit form (3.20) for the anomaly. Adding

(3.58) and (3.59) we obtain

DT =m(n-1) d{-f?(d"*tgﬂ v A, )

= (n- l)jdef?(vd“ffﬁ A, B 2)
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(3.¢0 )

1
2
—
_ﬂ
—
O
a
3
N

In going from the first to the second form of this expression we have
used the invariance of the symmetric polynomial P. The last expression
(3.60) shows the covariant form of the anomaly. This result should be

compared with (3.59) or equivalently

v.:DT:wan_z’ (v A,F) . (3.61)

Now, it is clearly

&y (AF)=P(A,F™" )4 (3.62)

where the dots denote higher non linear terms. This implies that

Qony (A F)=P(r F" )4 L (3.43)

Therefore the leading (least non linear) term in (3.60) is n times

larger than the leading term in {3.61). The relation between n and

the dimension v of space time is

V+2 = 2In . (3.64)

As mentioned in the introducticn, this factor can be understood

diagrammatically as a result of Bose symmetrization.

~22-

4. Purely Gravitational Anomalies

Infinitesimal Einstein transformations are specified in terms of
infinitesimal parameters <M(X) and operate on tensors as Lie deriva-

tives. For instance, on a scalar field A(x)

E;A= ¥R | =2, (4+1)

/ ax*
while on the metric tensor g,w(x)
A
E? ?’uv = ;ADA grv -+ af‘rAj)v + 9,? jf.,\
= :[b‘jr;f'+'19v }vu .

They satisfy the commutation relations

[EE, ,E;L] = Efn,m , (4.3)

where

(I, 51) = 82a5r- sfaxl

If the counected vacuum functional in an external gravitational field

(4.2)

(4.4)

W{guv] is not Einstein invariant

EcW=Hy (4.5)

the anomaly H_ must satisfy the consistency condition
£

E}, H}; - EL Hf. = [r, 51

which 1s the analogue of (2.4).

(4.¢)

It 1s not difficult to find a solution of the consistency

condition (4.6) in terms of the form w2n—21 (v, &, F}) which gives

the anomaly in the case of gauge theories. In differential geometry the

Levi-Civita connection TAHp plays the role of gauge potential and the

4]

it the role of field strength. Lf we introduce

Riemann tensor Rv
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()

the Riemann tensor is given by the Z2-formg

R)’u f-:: (ofr]nf— Fz)FP: -é—??u,\f,fa/xvdx"!

(4.7)

/

£
o e

(4.F)

with

P F o f
RvAyf:QVEF "'DArl r' f:o‘_-[l/'

Lo (s
v Tl poove '

p e

Under an infinitesimel Eionstein transformation the connection transforms
as

P e f

+ £ "

3 s

a I L
+ :%'E- {;;‘ - [I;A ;%‘

{4.10)
T - 09 1f

The last three terms have exactly the faorm of a gauge transformation

wilh infinitesimal gauge parameter
/\f______g?f
=T

while the first two terms have the form of a Lie derivative of T

(4.11)

o
A ’

treated as a vector with lower index & and dignoring the other twe

indices o oand o In terms of the l-form (4.7) we can write

E?F—:(,(fr'+'T’F

A /

&%.12)

where

T = DA =dA+ [T, A] o)

—24=

is a gauge transformation with infinitesimal parameter {4.11). In
{4.12} the Lie derivative is defined as usual on forms, to operate only
on those indices which are saturated with differentials, so that it

corresponds to only the first two terms in (4.10), The well known

(4. 14)

formula applies
Q<{i} — 64 L-E -+ L}-ﬁl ’

is the (odd) inner product operator, for instance

: (%.1C)

substitutes the vector

where i,
G (R )= 08

In general, for a form of higher degree, i?

f ;
Ll for each differentlial (one after the other), for instance

f-}??,,_ dx"dx’ = [ dx* - R\ dx” ¥ = 2R Evdxi
[4',6)
’Ryl = - 72/\1/

The effect of an Einstein transformation on the Riemann curvature

2-form is given by

E,R =R+ T K, (4.17)

where now

ﬂR:[Q,/\]. (4.18)

In a space-time of v dimensions a * -form has ma:iimal

degree and its differential vanishes. Therefore (4.14) becomes
Ly, = dGw,) (4.19)

and the integral vanishes (with suitable boundary conditicns)
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ofi.chV = [d(t}wp}:: o . (4.20)

In the dual description, more familiar to physicists, a v-form

corresponds to a density;a, (4.19) corresponds to

o(f@:gf‘(?ﬂ'a)z

and {4.20) corresponds to

i [Ddx = [u(¥r2)dx = 0.

The relation between Einstein and gauge transformations expressed

(4.2))
(4.22)

by (4.12) and (4.17) shows that one can reduce the problem of finding
consistent Einstein anomalies to that of finding consistent gauge
Indeed the gauge anomaly, in the form (3.40), {mmediately

anomalies.

gives a consistent Einstein anomaly in the form

He= AGIMR]=- (3G (M R), (129

with the same function G[T,R}. Indeed

E‘?‘ HL: (O(fu + 7:")/\2-(::_]919}:2)‘ (FIACI)* KlAz'C , @"24)

so fthat

Ey Hy - Ep Hy = APRAS EADAgp?,v)CvF+[A.,AJ'C. (4.25)

i

Finally, using {(4.11), the right bhand side of (4.25) becomes equal to

SEENEAPR AN SR A TN

Observe that the consistent gravirationmal anomaly given by (4.23)

. 2€
EVF -E.IF, [4— /

does not depend explicitly on the metric, but anly on the connection
(and through it on the metric) even though the connected vacuum

functional N[gu | cannot be expressed in terms of the connection
i,
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alone. For instance, in two dimensions, up to a known numerical factor,

the consistent gravitational anomaly is

HE o -ﬁ,}'r‘ QV[:\'PP £ d’x (4.27)

which corresponds to the non-abelian anomaly [see (1.1)]

AG e [T (n A N A (4.2

In higher dimensions the consistent gravitational anomaly is just as
easily written, once the appropriate invariant polynocmial (3.4) is known.

In a Riemann space the Riemann tensor (4.8) is antisymmetric

R, = - R,

o

(4.27)

As a consequence the invariant symmetric polynomial (2.4) vanishes

except for even n

(4.30)

m = 2m y

which corresponds to a space-time dimension

4.31)

V=In-0=4m=-2

{see the analogous argument below, leading to (6.12) and (6.13).

In terms of the energy momentum "tensor"”

@P":_ziy_'
S?fv

(4.32)
(4.5) can be written

j };rI%A C)Fp o{x = - }1} = - N 'C: y C 4,3,{)
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Do = %G f(rR). (4.34)

Here the covariant derivative is that appropriate to a symmetric tensor

density

20" = 90 O, (4.35)

fTee . .
but 1 is nmot a tensor density, when rhe anomaly dees not vanish.
How does it transform under Einstein transformations? We follow an
drpument similar to that given in Section 2. Evaluate in two different

ways the commutator
(EE b - 5 Ey J W [gev] )

where we define

(4.3¢)

5 - S Ay
b [‘Cﬂw S—?Jw

an aperation which gives gu
u

(4.31)

>

an arbitrary symmetric increment (fuw

Since

By = |(Brgw) 2 dr (4.30)

the commutator equals

- [E ‘,M dx .
f( j‘(h‘)g‘?‘w

(In the other hand, using (4.5), the commutator equals

(4.39)

EIW gy 5 H
J‘f’r 55?’” X = % (4.40)

Equating (4.39) and (4.40), and using (4.32), we obtain

J {‘f’f‘” E;O7+ (Ergp) @""fatx = 25 Hy  (441)

or

Es [c&v@’“’ax = 285 Hy (&42)

like a tensor, while Unv[gq,]

in this equation E, transforms ffuu

[Eq. (4.2)].

transforms as it follows from the transformation law of gjr
S L

{f the anomaly in the right hand side were zero, the left hand side
would transform like a tensor

: - . . ~HY
would be Einstein invariant, i.e.

density.
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7. The Covariant Energy Momentum Tensor and its Covariant Anomaly

M

ls it possible to find a symmetric local Y such that the

new energy momentum tensor

ﬁ’FV Fv Y/rv

- v (5.
transforms like a tensor density! This means

E, '(-q,w O dx =0 (5.2

and therefore we must require
E ' 5, H 3
¥ | Quv x =-28 Hy - (5.3)

A solution Y of this equation can be easily found in terms of the
solution of the analogous problem discussed in Section 3. There we

found a (v-1)-form X which satisfied (3.3)

T.B:X =-5AC (3,3)

’
where
$A
ln view of the relation (4.23) between G and H_ , it is clear

that we can use (3.37) with the substitutions A -~ I', F - R

and raking also (4.11) and

since then d§ + § in the right hand side of (3.37). The result is

4

i)

that Y is given by

-30-

2BLg] X = [ Y dx . (5.¢)

Tn order to make this expression more explicit we observe that the

standard expression for the Christoffel connection

P a-
AT CPRRE PR B

B lle)= 55 (Do, = Dfur -2 1c)
(BLe1), = By.fre)dot . (5.¢)

Substituting into (5.6} and Integrating by parts the covariant deriva-

1)

tives one finds easily the explicit form of yHY in terms of that of
X, but we shall not carry it out. We point out that the argument which

leads to (5.6) is based on the identification

EI :o(;—f-rf; (5.9)

and on the fact that C‘TC gives zero when applied to the quantitites
we are interested in.

Since the new energy momentum tensor is really a tensor density,
its covariant divergence will also be covariant. We can work it out

without unnecessary computations i we observe that

S(Dr?v+Dv %) Yk < —QI?VDFYrVo‘X . (5.0

Therefore we can use (5.6) with the substitution

tp =D+ RE = By g &)

which gives

5, =Ey T.12)

¥
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ity drem (5L9) (4.12) and (4.13),

Blgw) = £, = ol M+ DA (5.13)

We obtain in this way

g}uD‘uYPvatx =—-D[}:F-X+A‘D)< . C;H‘)

We shall now use the result (3.60) which represents the solution of the
anadlogous problem For the non-abelian cureent. Equation (3.60) can be

written as {use instead of v)

A DX =AC = m f?(/x,;:"*') |

Combining (4.33), (5.14) and (5.15) with the definition (5.1) we abtain

f?vDréf'vdx ':'MJ’P(A,R“_l)“D(}—F’X (;M)

The right hand side is still not obviously covariant but the two

terms can be combined because, as we shall show below,

Ll X =-m P07, R

Since

/\ﬂv—r(f?r)rv:—%u?v* 24 GP
::——:fov = M‘u

(5.17)
(5s.1¢)

we finally obtain the fully covariant result

J?v B OFdx = m JP(M/R’"") _ (£.1)

Note that, apain, the leading {least non linear) term in (5.19) is

(5.17)

_3oe

W

|re

n =

rel+

times larger than the corresponding term in the right hand
side of (4.33). The covariant form of the anomaly given by the right
hand side of (5.19) is also expressed In terms of the connection alone,
the metric dees not occur explicitly, just as it does nat in the
consistent form.

It remains for us to prove (%.17). 1In space-time dimensions,

(v + 1) forms vanish, therefore

[5X =dlM. X =0 (§.20)

3 : L .
If we apply to these forms the operator i where the veotor o iy

tangent to the w-dimensional space-time manifold, we still get zero
= M (TX+XT) 4T i X (r.11)

and

0=ig(dl. X J= (iydl") X +d [ i X (522

X = igd X +digl . X

= —dl G X =57 d X (5.23)

’

Subtracting (5.21) from (5.23) we obtain

oLy X == RoigX = g7 DX

Now, again in v = 2n - 2 dimensions, the (2n-1)-form

(T.24)
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ym-y (r‘; R ) = 0 (5'21-)

vanishes. apply again 1,
‘&
0 = lif[wz'n—l = L,‘,F -gﬁfwgn__i -+ L}R'a'.'—é (CJZn-I
=G iR X (5.2¢)
where we have used equations analogous to (3.17) and (3.46). This gives

Rtfx == irf".c ; (?:27)

Combining (5.27) with (5.24) we obtain
. L2f
oG X == (DX +G) (5.2¢)

and fipally, using (3.60), we prove (5.17). Observe that occasionally,
in our derivations, we use results proven earlier for odd quantities or
operations and apply them to even guantities or operations and vice-

versa, This is permissible If proper care is exercised and we leave it

to the reader to be properly careful so a not to make sign mistakes.

Yl

6. Einstein Anomalies and lorentz Anomalies are Equivalent

As explained in the introduction, local Lorentz invariance could
also be spoiled by anomalies. In this case the connected vacuum

functional must be considered as a functional of the vielbein field

e and cannot be assumed to depend on the metric tensor. Let us work

pa

in the Euclidean, Under local rotations of infinitesimal parameicr

] = =f the vielbein field transcfrms as
ab ha

LQ Cua = Cub Oia I} ((f )

while under Elnstein transformations we have

E; era = P oeue + 38 era (€.2)

It is easy to see that the full Lie algebra consists of (4.3}, (4.4)

together with

[ty o L ] LEP.,%] (6.3)

and

[LOJLE] =L , (€4)

£26

If there are Lorentz anomalies

L_QW"-—" Kg ) (65’)

they must satisfy the consistency conditions
L K -"L_ K = K [6'[)
o6, 6 [6,,6,]

and

L,H - E K= K, . (¢:7)

8
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It is consistent to assume that there are only Eisstein anomalies
(KI = (1) and woe have discussed this case in scction 4. 1t is alse
consistenl to assume that there are only rotational anomalies (H, = 0).
A consistent form for the rotational anowaly [s casy te find, the

orthogenal rotatlon group can be treated like an internal symmetvy.

The gauge potential is the Cartan-Weyl cennection

D{,,L = - O(La. = 0(‘““_5 dxt

(¢.8)

and the field strength is the Riemann tensor referred to local ortho-

normal frames

RQL: 'PL& = (_,d"('*'o‘l)

=1
‘de

:%KRFV‘,LAX}’J.\(“ (6’7)

(customarily the connection {(6,8) is denoted by the letter @ ; here we
depart from the usual notation in order te aveid confusion with the

forms o of section 3.). The solution of the consistency condition

{f.06) can be written immediately in terms of (3.9) and (3.17)

K = w,h_z'(e)«,ﬁ):B-C[«,E] :

8

[¢.1)

We note again that, because of the antisymmetry of the matrix Rab’

r

P(R™)=z)"P(R

" FANPYERY

i -
j, (_J.I/
'herefore, in the rase of the orthogonal proup, the symmetric polynomial

P will vanish unless n is even

[6.12)

M = 2 m™m

which corresponds to a space~time dimension

YVe=In-2 = 4m-~-2 (¢.13)

—46-

Only in these dimensions can there be rotational (or Lorentz) anomalies.
Just as the Einstein anomaly (4,.23) does not depend explicitly on
the wetric, but only through the connectivn O, so the rotational
anomaly (6,10} does oot depend vxplicitly on the wvivlbein, bat only
through the connection o . Indeed, the funcrional forms of the two
anvmalles are directty related. However, there is a vielbein field,

and in thisg the theory

th 1= h ) oravitation ig net like orther cauve thearic
theory of gravitation is net like other pauge theuries,
a fact which cannot be sufficiently stressed. Let us use matrix
notation and denote by E the vielbeln matrix e . The field U
a

defined by

H

E == (€. 14)

behaves, in a certain sense, like a Goldstone field for beth Einstein
transformations and local rotations. Under an infinitesimal Einstein
transtormation

OOl s AN 4y T
E., 1= 5 o H T i, T

; (6.1)

where T\H is defined by
{

H H

T.e --Ae

(6.18)

and f is given by (4.11). The finite version of (A.16) is

T H A H
et a2 =

P ~
— L A <

[6.11)

Similarly, under a finite rotation

L. H H 8
? e

(¢.18)

This sugeests that, using rhe vielbein Ffiel!d, one should ba able to

£



_37-

condtruct a local functional whose Finstein variation gives the Einstein
aoomaly and whese Loreatz variatfon gives the rotational anomaly, This
ls indeed possible by mimicking the solution of the anomalous chiral
Ward identities obtained using a Goldstone field [6]. Define the

functional

S[e,r]= o;t Te(HG[1])

o

(¢.19)

X

where

~tH tH -tH tH
c:=€ rﬂe + 2 Je

. (620)

In Appendix B we verify that

ES=\%¥C [r]=-H . (6.21)

X

UOn the other hand, ovne can express » in terms of £ and o , instead of
E and T We recall the relation between the Levi-Civita and the

Cartan ceonnection

M=E<E'+ ELE™ (€.22)

This implies that

r (I-t)H - (i-t)H (1-t)H _(-t)H
b:% o € + € de ‘

(§,23)

Changing the integration variable from t to
} (.24)

T=1-t

wer soe that
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{ !
S| E,F]=fdrfﬂHC[«f] ES[E,a] , (6.21)

where

«H -t H er -tH
Uy =€ o € + £ <

(6.26)

Using perfectly analogous arguments as for {(6.21) one shows that
/
L,S=L,S'=K (€.27)
b (Y e

The functional 5 (or 8')) is local, in the sense that it is the
integral of an expression constructed with derivatives of the vielbein
and of the connection up to a finite order. It is highly non linear and
uniquely Jefined only for relatively weak fields. WNevertheless, it can
be used to redefine the connected vacuum functional so as to eliminate
either the Einstein anomalies (by changing W into W + 5) or the Lorentz
anomalies (by changing W into W - $'). 1In this sense Finstein and
Lorentz anomalies are different aspects of the same thing. It seems
convenient to choose the pure Lorentz anomaly (vanishing Einstein
anomaly) as the canonical form of the gravitational anomaly: the
formalism is then more directly related to the case of internal gauge
symmetries and the absence of Einstein anomalies gives a more satisfac-
tory geometrical picture.Fz’F3

Finally, we remark that formulas (6.19) and {6.25) for the
functional §' can be written in a more intrisic form (see Ref. [12]).
We have preferred to use here the special choice of local coordinates
of (6.19) and (6.25) in order to render manifest the locality in x of

the functional,
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/. Gonelusien covariant divergence. With these restrictions, it is not difticult to

An anomaly Is o local expression which satisfies the consistency show that no such loval quantities exist [17] (for the energy momentum

condition, but which is not the pauge variation of a local functional tensor one must also use the fact that it [s symmetric)

of the gauge potential, or the metric tensor, in the gravitational case.
Heve a local functional of certain fields means an integral over x of an
expression constructed with the fields and their x derivatives up to
some finite order. The consistent anomalies discussed in this paper
sutisfy both the above conditions., In order to show that rhey cannot

be obtained from a local functional one has to enumerate all possible
candidate expressions of the correct dimension and with the correct
power of the Ficlds and check that there is no combination which
reproduces the anomaly when one performs a gauge variation. In general,
the proof is rather cumbersome, but it can be considerably simplified

by going over to the covariant form of the anomalies. Since the
covariant current ]u is obtained from the original current J“ by adding
to it a local expression, one can reduce the problem to that of finding
i covariant current which is a local expression in the gauge potential
and whose covarjant divergence gives the covariant anomaly. Similarly,
in the gravitational case, one can ask whether there exists a covariant
enutpy momentum tensor {(which means that it is really a tensor)
constructed locally from the metric tensor and satisfying the anomalous
cquation.  The number of possible candidates is greatly restricted by
the condition rthat these quantities be tensors. A further restriction
comes trom the fact that the covariant anomaly has a known form
possessing "abnormal parity'". i.e. it is constructed with epsilon
tensors {corresponding to it being an exterior form). This would
require the current and the energy momentum tensor also to have abnormal

parity, since no epsilon tensors can be generated by taking the
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Appendix A. Alpebraice Structure

In this appendix we collect and rederive, in part, the results and
techniques described in Refs. {11-13] and used in the wain text of this
paper. The reader will notice that the structure described below is
completely algebraic. In the text we use the resulting formulas for the
gauge potential 1-form A and the [ield streongth 2-form F, and for [orms
which are functious of them. However, the arguments given in this
appendix apply to any expression which is a pelynomial in two free
variables A and F {free means not restricted by algebraic relations),
say with cvomplex coifficients. In particular we do not assume that the
polynomials are symmetric or invariant, nor do we assume that A and F
commute or that they satisfy specific commutation relations. In
addition to A and F we shall also use two more variables . and B.

A, Ay and B are odd (anticommuting), F is even. On these variables we
define the (odd) antiderivatives d, ﬂ'and 2 and the (even) derivative &

with the properties

AA=F-A* | dF =FA-AF | (A1)

JF=Fv-vF ) va‘-_--zr*/ JB=-vB-Bv (A.2)
(A.3)

(A.4)

tAh=o, ¢tF=B , tv=0 , {B=o

sA=B , Sv=0 , $B=0

™ JA+dv =-vA-Av (ﬁ';)
SF_JAB = AB+BA . (A.6)

i
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lhe dilterentiation vperators satisfy

(A7)
(A.F)

5i 1;: —e : = :I 1:: o 7
A +Td = £T+T€ =0

Al

Ld+dd =5 . “.7)

The algebraic consistency of all these relations (A.1) to (A.9) is

not hard to verify. For instance, to see that d2 = 0, apply d2 on A
Ad(dA)= A(F-A*) = od F-dAA+AA
- FA-AF - (F-A)A+A(F-A")=0 . (A1)

Similarly, oo P

A(4F) = d(FA-AF) = dFA+FdA-dAF+AdF

= (FA-ARA+F(F-A%)-(F- AY)F+A(FA-AF)

(1)
=0

Now apoly d on (A.2).  After a little algebra we find, ﬁsing {A.1} and

(A. J) .

@./2)

P . -
This shows that d7 = 0 en v as well, provided d and :T anticommute,

ATA+d v =-TdA

- A=

Let us also voerify, in few cascs, the important relation (A.9).
On A

L(dA)=€(F -A*)=¢tF=B (A.13)

and

d(€h)=0. (A-14)

Comparing the sum of (A.13) and (A.14) with (A.4), we see that (A.9) s

valid on A, Let us check it on F:

£(dF)= £(FA-AF)=BA+AB (A.15)

and

A(4F) = dB. (A1)

Therelfore

(€d+de)F = dB+BA +AB =5F (A.17)

using (A.6).
Because ol the properties of derivatives and antiderivatives all
this extends immediately to polyoomials in the variables A, ¥, v and

B.
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Appemdix B Solution of the Anomaly Equation

tn this appendisc we verify that there exists o local funcrtional

whose Einstein variation gives the Einstein anomaly and whose lLorentz

varifation gives the Lorentz anomaly. The functional is given by (6.19)

f

S[E!F]:'(-o!f(ﬂHq[r‘t} ) (B.1)

4 X

wlhere we use matrix notation and denote by E the vielbein matrix e’m, .

Then

£t (B.2)

and

-~
1
®
!
o
+
®
U
b

An Einstein transtormation is given by {(5.9)

Ey =< +To (8.4)

where

v

A = =% (B.5)

aund the effect of T\ on I' is given by (4.173}

Tl=dA+[r A . - (8.¢)
We see that (B.4) is valid also on E, if we take

TE =-AE (3,7)

and

(B.3)

-4h-

P E =P E (B.7)
which aprees with (4.14)
o[} o= L;d +cf£f

if we treat E as a zero-form.

(8.7)

Now, since $ is the integral of a form of maximum degree,o{:
applied to S gives zerv. Therefore, we need only evaluate the effect

of T, . It is easy to verify that

T,'\T;:d/\bﬁ-[f;)/\t‘] } (B.19)

where

-tH  tH —tH tH
/\t:e, Ae + e 712.

(B.11)

Observe that, from (B.2) and (B.7),

H H

7;% =-ANe

(3.12)

Therefore

(8.13)

and

—-kH tH -tH tH
fgt:_He Ae +e Ne H

-tH tH ~-tH tH
-He Te +e T;[kl H)



, tH  tH | tH
PR DA E A

:[/\b;H]+7;\H - (3:1)

cii
IL is not necessary to know explicitly TA” and Tﬁe . lLet us

e

TS - j‘%J THC[F‘]+HTC[@]) (B.15)

X

Nuw, according to (B.10),

nClRy= T, G[n] (B.16)

il we define

T dA+ [ A (B.17)
t

The congistency condition gives

ﬁaHﬂﬁﬁn=fﬂA'ECUH*fK@%MCmQ,
X X X (_B. id’)

whore we have detined

Dedi+ [T H] = ?r , (B.19

Ty

Sa, (Bo19) pives

> =L5“ | 'f‘*z{( 71H+(At,‘;1)cm+m g%fﬂ}
[ S’&{”tc[r]n\@ﬁ ]j
- [macIr) . (52)

X

i

j E{_ﬁz A G ]

In COrle ]151

EfSZOKSS‘I'AS:‘US:_HF_ (321)

The effect of local rotations can be evaluated in an analapgous
manner, using the expression (6,29 in terms of B oamd . Herc
there is not even the Lie derivative term, since local rotations are
exactlv like ordinary gauge transformations. The result is equation

(6.27).
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AR A1 A P - 3 . -
22 F3 I Lhe case of an internal pauge symnotry based on the GO L

Eie group :;, , one knows [12] that the cxistence o) anomalies
Actually, In two-dimensional Minkowski space-time, the anomaly

requires that the homotopy group +][ g ] contain the group Z
cuan be written in ene of the forms v

of the integers (here v is the dimensions of Space-time) . For

Ap }\,-s
C af_. AA (g i ’7[ the orthogonal group of local rotations OC2) o one is then led to

o consider H”+||U(UJ] + Now, it iy known that this homotopy group
which differ respectively from (1.1) by the jauge variation of the

_ contains 2 only for v o= dm - 2 (moan iateger 13 and otherwise
local tunct bonals
Is fluice (see ey, Ref, [231). So. one ecxpects that only for
+ .S.. A’u AA nz!‘ - + __C_ Ar A . these space-time dimensions there can be a topological Lorentz
2 2
anomaly. This condition is the same as given in {6.13). For
Roman Jackiw has emphasized that these forms are more natural than v =2 there {5 noe topological anomaly, but there still is a Lorenatz
+ Q aly, s .
(1.1) since for chiral {antichiral) spinors in two dimensions the anomaly, in the local sense discussed in this paper. The
the Dirac Lagrangian depends only on Ao + Al’ (AO_AI) and connection between the local and the topolopical meaning of the
therefore the anomaly should also depend only on thase combinations. anomalles will be discussed in Ref. [17].

We prefer to igpore this peculiarity of the two-dimensional
Minkowski case and illustrate our point using the form {1.1) which
is perfectly analopous to the abnormal parity expressions valid in

four and higher dimensions.,

Tom Banks has observed that it is possible (for instance in
sixn space—time dimensions) to regularize the Lagrangian for chiral
spinors with a mass term which is Einstein covariant. Such a
regularizat lon, however, cannot be Lorentz covariant. Evaluated in
this way the anomaly would pnaturally appear as a pure Lorentz

anomaly.



] -

Relerences

[}

[4]

[5]

[&]

{7

(5]

[9]

| 1

i11]

[12]

(13]

4. Fukuda and Y. Miyamoto, Prog. Theor. Phys. 4 (1949) 347; J.

Stelunberger, Phys. Rev. 76 (1949) 1180; J. Schwinger, Phys. Rev, 82

(1931) 664; I.. Rosenberg, Phys. Rev. 129 (1963) 2786; J. Bell and

R. Jackiw, Nuovo Cimento 6QA (1969) 47; §. Adler, Phys. Rev, 177

(1969) 2426,

(.8, Geegstein and R. Jackiw, Phys, Rev, 181 (1969) 1955; R. Jackiw

and K. Johnson, Phys. Rev. 182 (1969) 1459; 5. Adler and W. Bardeen,

Ihys. Rev. 182 (1969) 1517; §. Adler and D.G. Boulware, Phys. Rev.

Phys. Rev. 184 (1969) 1740; R.W. Brown, C. -C. Shi and B. -L. Young,

Phys. Rev. 186 (1969) 1491.

W.A. Bardeen, Phys. Rev. 184 (1969) 1491,

D.J. Gross and R. Jackiw, Phys. Rev. D6 {1972) 477.

. Bouchiat, J. Ilicpoulos and Ph. Meyer, Phys. Lett. 38B (1972)

519.
J. Wess and B, Zumino, Phys. Lett. B37 (1971) 95.

K. Fujikawa, Phys. Rev. Lett. 42 (1979) 1195; 44 (1980) 1733; Phys.

Rev, D21 (1980) 2848; D22 (19380 1499 (E); D23 (1981) 226z,

PUl. Frampron aod T.W., Klephart, Phys. Rev. Lett. 50 {(1983) 1343,

1347, Phys. Rev. D28 (1983) 10]0.

P.K. Townsend and G. Siervxa, LPTENS preprint, 1983,

L. Alvarez-Gaumé and F. Witten, Harvard preprint HUTP-83/A039

{1983), tu be published in Nucl. Phys. B.

B. Zumino, Wu Yong-5hi and A. Zee, Univ. ot Washington preprint. to
be published in Nucl. Phys.

B. Zumino, lLes Houches lectures 1983, to be published by North-

Holland, R. Stora and 8. DeWltt editors.

R. Stora, Carpgese lectures 1983.

[14]
[15]
[16]
[17]

[18]

[19]

{20]

[21}

(22}

[23]

[24]

R. Stora und B. Zumine, in preparation.

C. Gomez, Salamanca preprint, DFTUS 06783 (1983).

L. Alvarez-Gaumé and P Ginspary, Hurvard preprint HUTP-83/A081 (1983).
0. Alverez, I.M.

Singer and B. Zumino, in preparation,

M. Paranjape, M.I.T, Thesis (1984); M. Paranjape and }. Goldstone,

In preparation.  We thank R, Jackiw for informing us of this work.

A.J, Niemi and G.W. Semenoff, Phys, Rev. Lert, 51 (1983) 2077.

E. Witten, Nucl. Phys. B223 (1983) 4225 B223 (1983) 433.
A.P. Balachandran, V.P, Nair, C.G. Trahern, Phys. Rev. D27 (198

1369,

C. Becchi, A. Rouet and R. Stora, Comm. Math. Phys. 42 (1975) 127.

Encyclopedic Dictionary of Mathematics, M.1.T. Press (19807, edited
by 5. lyanaga and Y. Kawada, translation reviewed by K.O0. May.

A.P. Balachandran, G. Marmo, V.P. Nair and C.G. Trahern, Phys. Rev.
D25 (1982) 2713; A. Adrianov, L. Bonora and R. Gamba~Saravi, Phys.

Rev.

D26 (1982} 2821; T. Matsuki, Phys. Rev. D2B (1983) 2107;

T. Matsukl and A, Hill, Ohio preprint (1983); C. Kuaug-Chau,
C. Han-Ying and W. Ke, Peking University preprint A.S-TIP-83-033;
J.M. Gipson, Virginia Polytechnic preprint, VPLI-HEP-83/8; S. Elitzur

and V.P. Nair, Inst. for Adv. Study preprint, Princetun (1984),



