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ABSTRACT 

The deconfinement phase transition for SU(54) gauge 

theory is studied using twisted Eguchi-Kawai methods. 

Expectation values of the action, the Wilson line and the 

energy density are measured. We find evidence for 

deconfining phase transition and compare our data with the 

naive string picture. 
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The deconfinement transition for SU(N) gauge theories 

at finite temperature has been the subject of intense study 

during the past several years [l-31. As yet,the nature of 

the transition is well understood only for SU(2) [21 and 

SU(3) [31 .In the SU(2) theory one has a second order 

transition,while in Su(3) the transition is strongly first 

order, in agreement with general universality 

arguments[4].For N>rl,the situation is less clear:a 

combination of strong coupling and mean field theory 

techniques predicts a first order transition[S];the 

reliability of these arguments is,however,rather doubtful. 

TO understand the nature of the transition,it is essential 

to know its nature for higher values of N.In this 

respect,the recent work on large N theories is of particular 

importance.The observation that these theories are 

equivalent , at NX.3 *to single point matrix 

models(Eguchi-Kawai models)[6-81 has made numerical 

simulations possible.The finite temperature Quenched 

Eguchi-Kawai (QEK) model has been studied earlier I9l:the 

deconfinement temperature reported was very large compared 

to the values at N=2 and N=3. However,it is well known that 

the QEK model suffers from severe finite size effects. It 

is more appropriate to study the twisted Eguchi-Kawai (TEK) 

model [El. A finite temperature version of the TEK model 

which has the same Dyson- Schwinger equations and identical 

perturbation theory as the corresponding field theory has 

been constructed by Klinkhamer and van Baa1 [lOl.(There has 
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been another attempt to construct such a model in Ref ll.It 

is not clear whether this construction is correct).In this 

letter we shall report some results of a Monte-Carlo study 

of the hot TEK model of Ref.lO.More detailed studies,both 

numerical and analytical,are in progress and shall be 

reported in a future communication. 

The TEK model is defined by the partition function: 

Z= I fi dU/* exP (-Ps,,) F+rf 

s = fl3 
- 2 Zp,Td+uv~4~~) + h.c. 

WV 

. . (I) 

where U,,'s are SU(N) matrices and 2 TV is a constant element 

of zN: 

+ 
= Qxp c 

2ninpv 
N ) 

For a symmetric twist,i.e. N=L2 and n Flu =L for all v>u,the 

above model is equivalent to the zero temperature SU(N) 

gauge theory defined on a periodic box of size L [E].For 

this twist,the N=m limit is also the thermodynamic limit in 

which both the spatial and temporal extents of the box go to 

infinity. However, to obtain a reduced model for a finite 

temperature theory one must be able to let the spatial 

extent go to infinity keeping a fixed temporal extent.One of 

the twists which accomplishes this is given by [lo]: the twists which accomplishes this is given by [lo]: 

0 0 2K(4K1-11 2K(4K1-11 4K(4K5) 4K(4K5) Zk(4 KZ-r) ZK(4 KZ-r) 

0 0 2K (2Kt1) 2K (ZKH) 4K1-I 4K1-I 

%, %, 
= N, = N, 

0 0 .ac/= .ac/= -1) -1) 

0 0 
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where No is an odd integer and K is any integer.Let us 

define: 

N = 2 No2 K (4 Kc!) 

N, = 2A/*k(ZK-I> 

N2 = No (4/&-I) . .- . . . (3) 

N3 = 2tioK(2Ktl) 

Then,for K+m,N o fixed,the TEK model with the above twist is 

equivalent to a SU(N) gauge theory in a periodic box of 

temporal extent No and spatial extents Nl,N2 and N3;i.e. a 

finite temperature theory with the physical temperature T 

given by T=l/Noa ,a being the lattice spacing.At extreme 

weak couplings the partition function (1) is dominated by 

the following twist-eating configuration [lOI: 

UD 
=1 c ‘= &,-2 Q 3 ZK(2*.+1)(4~~1)~24X()-ll~~ 

= r: = r: lc+’ @ p2 ~(=u+ol~t?) 
01 Q*- (2K +‘I2 

(41 
u, 

= r, = ‘i;; @ 3 2Kf2*+” &p” . . 

u3 
= -? 

13 
= El-K @ 7, ~~--=?NW-O 67 CZk-I)2 

2 

where (P1,Q1) and 

and SU(M2) respect 

easily checked that 

(P2,Q2) are 't Hooft matrices in SU(N,) 

.ively ,where M2=2NoK(4K2-l).It may be 

A link variable of the field theory U,,(x) is related to the 

reduced variable Uu by the reduction rule: 

I+(x' + b@+ b+&J j b(x) 5 pep' 
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This also provides a prescription for obtaining averages of 

gauge-invariant quantities: 

G c + @QRb = < S( Xx) u,~'W>~ 
THEDRY 

where < >TEE denotes averaging over the Uu's in the ensemble 

defined by (1). In particular, the Wilson line (which is a 

product of link variables along a straight time-like line 

running from one end of the box to the other) is given by 

MO = j+ xe < -G u/O . . . (S) 

In the standard lattice gauge theory there is a zN 

symmetry which,if unbroken, forces <WL> to be z.ero.This 

simply acts by a translation of the eigenvalues of the 

Wilson line opeKator,i.e. the untraced WL.In weak coupling 

these eigenvalues all cluster to the same value, thus 

breaking the zN symmetry and leading to a nonzero WL. In 

the reduced model one is interested in the eigenvalues of 

uoNo.ln extreme weak coupling UoNo = ToNo = 1 so that the EN 

symmetry is bKoken.(Note,however,that No is the lowest 

integer for which roNo =l. This is a special case of the 

fact that all open lines vanish, except those which run from 

one end of the box to the other-which is necessary for the 

equivalence of the reduced model to the field theory).By 

standard arguments, the ZW symmetry is restored at strong 

couplings.Thus one expects a phase transition. 
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Another good order parameter for the deconfining 

transition is the average energy density per plaquette 

[11,3].In the hot TEK model this is given by 

42 
3N 

[ 2 ZG Tr ( u;$U;‘U,‘) - 1 Zoi Tf(UaU,.‘aC’:)J ‘. (‘6) 
i 7j i 

where i,j runs from 1 to 3. 

We have performed Monte Carlo simulations of the above 

model for No=3 and K=l. This corresponds to a SU(54) theory 

in a box of temporal extent 3 and spatial extents 6X9X18 

lattice spacings. The updating procedure was that of Kef 

13. We measured the total action density,given by : 

<o = i xe( r Zp,T~@+uy+f~~)> ~~“” Ttx 
P7Y 

the Wilson line (eqn.5) and the energy density E 

(eqn.6).Typically, the action would equilibrate after 30-50 

sweeps,except in the crossover region where there is 

considerable critical slowing down.The Wilson line takes 

longer to relax,as is expected for a non-local quantity. We 

went through about 100 sweeps for each 8 in the strong and 

weak coupling regions. In intermediate couplings 

considerably longer runs were made. The average action is 

plotted as a function of 8/N in Figure 1. The points 

labelled "weak coupling side" and "strong coupling side" 

were obtained by starting the calculation at large or small 

8 respectively, performing approximately 200 sweeps before 
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passing to the neighboring value of 8/N and gradually 

working our way into the intermediate coupling region. This 

is a good procedure for searching for a phase transition and 

studying its order. The data in Fig.1 is in good agreement 

with the lowest order expressions in the weak and strong 

coupling expansions: 

$;) p 37N 

. . (8) 

p <ZN 
N 

There is a clear signal for a first order phase 

transition in the vicinity of B/N=0.35, in agreement with 

the findings of Ref.8 and 14. A typical history of the 

action for StK ong and weak coupling starts is shown in 

Figure 2. Figure 3 shows the average Wilson line obtained 

from strong and weak coupling starts. <WL> remains zero up 

to 8/N=O.44 for strong starts. For weak starts the Wilson 

line jumps discontinuously from zero to about 0.3 at 

8/N=0.34. Such a discontinuous jump, together with the 

presence of hysteresis indicates a first order transition. 

However, in this particular case the presence of the zero 

temperature bulk transition at 8/N=0.35 complicates the 

interpretation of our data. In a finite temperature large N 

theory the Wilson line average is related to Wilson loop 

averages via Dyson-Schwinger equations. The bulk transition 

is not deconfining,but does involve a discontinuous change 
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in the string tension value. Therefore, if the deconfining 

transition lies in the strong coupling side of the bulk 

transition, the Wilson line would suffer a similar 

discontinuity at the latter. In view of the severe 

hysteresis we cannot pin down the coupling at which 

deconfinement occurs. However, if we trust the value of 8/N 

where <WL> takes off from the weak coupling side, the Wilson 

line is probably influenced by the bulk transition which is 

rather close to this value of the critical coupling. 

Figure 4 shows the energy density as a function of 8/N. 

This quantity is usually a good guide to the finite 

temperature transition because it vanishes identically on a 

symmetric lattice and is not affected by any Z-TO 

temperature bulk transition. However, our data for s is 

rather noisy as typical error bars indicate. The energy 

density turns on at 8/N=0.32 for weak coupling starts and at 

8/N=0.44 for strong coupling starts,i.e. at the same places 

where the Wilson line turns on. We cannot say with any 

certainty whether the change in E is discontinuous or 

smooth. It may be noted that internal energy calculations 

required 3,000 to 5,000 sweeps in SU(3) gauge theory on a 4 

x 83 lattice to measure the system's latent heat [3] This 

indicates that we probably require an order of magnitude 

more computer power to decide this question without bias. 

Nevertheless the magnitude of E for very weak couplings is 

consistent with the standard Stefan-Boltzman value on a 3 X 

73 lattice 1121 which has typically the same size as our 
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lattice. 

In view of the large hysteresis loop in Figures 3 and 4 

it is difficult to obtain the exact deconfinement 

temperature. A simple theoretical estimate follows from the 

observation that at large N the theory reduces to a free 

string theory. In the string picture the deconfinement 

transition occurs when the entropy of a string starts 

dominating over the energy. In three spatial dimensions the 

transition temperature is approximately given by (151 : 

where u is the string tension and a is the lattice spacing. 

In a latiice of temporal extent No this corresponds to : 

QCtch. = (gy2 
Using the data of Ref.14 one has a(R 1 0.0026 

corresponding to a Be/N = 0.326. This value is close to the 

observed value of the coupling where <WL> and E turn on ;n 

the Monte Carlo runs which begin from the weak coupling side 

(see Figures 3 and 4). It might very well be that the 

deconfinement transition is actually in this vicinity. 

This, however, means that deconfi!ment occurs in the strong 

coupling side of the bulk transition, and by our previous 

arguments the Wilson line is grossly influenced by the 

latter. Furthermore, in this case the critical coupling 
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does not lie in the scaling region and it is not possible to 

extract the physical temperature quantitatively from our 

data,. 

It is also possible that the finite temperature phase 

transition occurs at the opposite end of the hyteresis loop, 

at 8/N = 0.442. Comparing to string tension calculations 

[141 a critical temperature of Tc/AL = 1370 follows as 

measured in units of the lattice /\,. parameter 

aA, = c 48 -rr’..& -i-i-N ) ‘Vu exp (-T2$) 

Since JO/AL = 280 & 20 [141, we would find Tc&= 4.90 - a 

very large temperature. If ,however, the transition occurs 

on the strong coupling side of the hysteresis loop at B/N = 

0.34 - 0.35, then T,//u 2 0.60, which is close to the SU(2) 

and SU(3) values. Unfortunately, this estimate is 

particularly uncertain because of the nearby bulk 

transition. 

Clearly the large hysteresis loop in the Monte Carlo 

data limits its usefulness. As pointed out to us by 

G.Parisi, considerable hysteresis is expected at large N 

because tunneling probabilities hehave as exp(-l/g‘) = 

exp(-N). In other words, fluctuations are suppressed ;rt 

large N and metastability effects are enhanced. 

One message of our work is that one requires a larger 

No to push back the critical coupling for deconfinement into 

the scaling region, separating it from the bulk transition 
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and thereby obtain reliable information about the physics. 

In addition, longer Monte Carlo runs are necessary to deal 

with the tunneling suppression inherent in the large N 

limit. 
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FIGURE CAPTIONS 

Fig. 1: Total Action for strong coupling starts (squares) 

and weak coupling starts (crosses). The lines 

represent lowest order contributions in the strong 

and weak coupling expansions. Typical errors are 

+0.05. 

Fig. 2: History of the total action for B/N = 0.37. 

Strong coupling starts are represented by dots, 

weak coupling starts by crosses. 

Fig. 3: Wilson line average for strong (dots) and weak 

(crosses) coupling starts. The dashed lines are 

not exact fits - they are drawn to guide the eye. 

Fig. 4: Internal energy density E for strong (circles) and 

weak (triangles) coupling starts. Typical error 

bars are shown. The line at E = 0.135 corresponds 

to the Stefan-Bolzmann value on a 3 X 73 lattice. 
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