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ABSTRACT
in many models based on reductlion from greater than four
dimensions, there are absolutely stable particles with
masses of order R-I. (R 1Ts the compactificatlion
scale,) |f the temperature of the universe were ever
close to R-l, these massive states would have been
present and some would have survived annlhliatlon, We
calculate the present mass density due to these
particles and find both the 5-dimensional model and some

versions of N=8 supergravity to be unacceptable. We

dlscuss some possible solutions to this problem,
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One of the most attractive approaches for unlfying gauge
theories with gravitation is based on enlarging the dimensionallity of
space-time, This program is traced back to the work of Kaluza [1]
and Klein [2], who proposed that gravitation and electrodynamics In 4
dimensions might be uniflied as a pure gravitational theory In 5
dimensions. The vacuum geometry determines the effective low=-energy
theory; 5-dimensional gravity reduces to 4-dimensional gravity and a

peculiar verslon of electrodynamics if the vacuum is the space M4 X

st., (u?

Ils 4-dimensional Minkowski space and S1 is the
1-sphere or circle.)

Recent work has centered on constructing higher-dimensional
theories that Include non-abelian gauge interactlions [3]. For
example, it s possible to formulate N=8 supergravity as a
Kaluze=-Klein theory In 11 dimensions [4]. Another example I!s the
quantum superstring, whlich must be formulated In 10 dimensions [5].
Although there has not yet emerged a low-energy theory with the
observed gauge and fermionic structure of the standard
electroweak-QCD model, the attractiveness of these approaches has
generated much Interest,

Typlcally, the vacuum geometry of interest 1s a direct product

4

of M" with a compact space that has a high degree of symmetry.

Then each field has a harmonic expansion about the vacuum Into
4-dimensional fields times the mass eigenfunctions of the extra
dimensions, The zero modes correspond to the |ow~mass particle

spectrum; the infinite sequences of higher modes have masses of

order R-1. It Is usually assumed that R is of order GNU2 =

me " = 1.62 x 1073

Pl cm times some power of the gauge coupling
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(GN s Newton's constant), although there are model!s where R Is
determined by the electroweak breaking scale GF1/2 = 6,74 x
1077 cm (G- is Ferml's constant) [6].

We discuss a possible cosmologlical consequence resulting from
the "4-dimensional particles corresponding to the non-zero modes of
the harmonlc expansions in mass eigenstates of the higher-dimensional
fields," generically called "pyrgons" [7]. |f the universe were ever
at a temperature comparabie to R_I, the pyrgons would have been
present. In the 5-dimensional theory with an unbroken local U1
symmetry, the pyrgons cannot decay solely Into zero modes, although
they can annihllate with antipyrgons. The stable pyrgons that
survive annihllation contribute to the present energy density of the
universe. We calculate the present number density of the pyrgons,
and then require their contribution be less than the observed bounds.

I'f annihilation were negilgible, then today the number density
of pyrgons would be comparable to the photon number density, which Is
acceptable only If the pyrgon mass satisfles L) £ 100 eV, just as
for neutrino masses [8]. Thus, the pyrgons must be annihilated; we
require that the annihilation rate (f; = nwdilvl, where ny Is
the pyrgon number denslity and O; is the annihilation cross section)
must be comparable to the expanslon rate of the unlverse (fE =
Tz/mpl, where T Is the temperature). If we assume Gk[v|=<xz/m%?,
then at T = my and ny = T3, we estimate r}/[% = qz mPlme. I'n
2

the 5-dimensional Kaluza-Klein model, ¢ = RPIZ/R

and r;/(E = mq?/mpis. For my < L the ratlo is less than

2 2
= mg /mg, ",

unity, and annihfilation Is Ineffective at rlidding the unlverse of

stable pyrgons. However, 1f we modify the theory so the pyrgons
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carry a similar but larger charge such that & appearing In OR is
order unity for any my, then r;/r;f~ mPI/my. | f mp << Mo »
annihlilation can be effective enough to reduce the pyrgon densi+ty
below present observatlonal bounds. For thls to occur we will show

6 GeV,

my < 10
The presence of absolutely stable pyrgons may appear to be a
special feature of the 5-dimensional model, resul+ting from the fact
that the zero modes do not carry the U1 charge. However, there are
somewhat more realistic theorlies with stable pyrgons in which the
zero modes do carry the gauge quantum numbers: for example,
11=-dIimenslonal supergravity with vacuum M4 X S7 has stable
pyrgens even though most of the 256 zero modes do carry the SOB
quantum numbers of the symmetry of 37, as we show later,
We now turn to the detalls of the 5-dimenslional model, where
the vacuum is M X 51, and the harmonlc expanslon [s Just a
Fourier series In the extra coordlinate (y = 2rR®) with coefficlents

that are flelids on M4. (Generalizatlions will be indicated as we go

along.) Thus, the fields are expanded as

a8
D x,y) = > R R (1)

k=-uw
where | Is a space-time Index and lk[ labels the mass elgenstate.
e
(For a compact manifold with symmetry group G, the eIk are

-1
}, where Ly

fs the element of G that parameterizes the point y of the manifold.

replaced by representation matrices of G, Dk(Ly

The sum on k Is replaced by a sum or restricted sum over the

representations of G.)
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The equation of motion for small disturbances about the ground

state geometry is glven by [9]

D(S)?I(X:Y) =0 ’ (2)

where [fs) is the 5-dimensional d'Alembertian. In the free field

limi+, each field #Ik(x) satlisfles a wave equation,
(g e m? 4kc0 = o (3)

where, in thls case, the mass squared operator is Just the
d'Alembertian In the extra dimension. Therefore, each term in the

harmonic expansion (1) corresponds to a particle with mass M z .

k

(k/ZﬂR)z. The generator of the charge Is just iﬂy, so the charge
of éik(x) s proportional to k. The mass spectrum In four
dimensions [9] contains a massless, neutral spin-2 particle; a
massless, neutral spin-1 particle; a massless neutral scalar; and an
infinite tower of charged spin-2 pyrgons with masses Mk2 =
(k/2TRYZ, k= 1, 2, ....

Consider the decay of the pyrgons. We label each 4-dimenslional

fleld In the harmonic expansion by the quantum number k. The

amplltude for the process,
k k k k
76"’95‘+4>2+...+¢” . (4)

Is contained In a term of the 5-dimensional effective actlon of the

form,



f("'k+k +ont+k )e
1 ~ 2R \§d4x ifde o : S A S I
k

¢k'(x) R I (5)

where the contractlion on space-time Indices is Implicit in the
notatlon. Upon integration over the extra dimension, the decay rate

for (4) Is proportional to the Kronecker O, Stk +kyto otk =k).

2
The appearance of derivative couplings In the action still leads to
the same 3~functlion, since the derlvatlive does not mix modes. The
existence of the §-functlion means that no pyrgon (|kl>1) can decay to
zero modes (k=0) only. [For spaces with higher symmetry, the
generallzation of the Kronecker Sis a (3n-3)-symbol, which Is
nonzero only if it satisfles certain "triangle inequalltlies."] Of

course, *the annihilation of a pyrgon with its antiparticle can yield

all zero modes,

We now calculate the number density Ny of remnant pyrgons from
the big bang. There Is no need to follow the evolution of the
universe up to the time of compactification fc it the Iinitial
condltlions for ny can be set at a time near TC. At +c the
universe has become approximately 4-dImensional and the excltatlons
of the vacuum geometry may be relnterpreted as 4-dimensional zero
modes and pyrgons, |f the 4-dimensional temperature T at fc s
near enough to Tc s R-1, then the calculatlon of ng Is
insensitive to the Initial conditlions, as will be seen. Otherwlise,
the calculation places a Jower Iimit on Ny

Unless very specfal Inittal conditlons control the evolutlion of

the universe for t < fc, there will be pyrgons at +c’ and the
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Initial conditlion for the ratlio, r = n?/nz, will be of order unity,
since, typically, the excitations of the 5-dimensional flelds will be
distributed over the modes In (1}, Moreover, if the excited pyrgons
(|k| > 1) decay rapidly enough Into stable |k| = 1 pyrgons and zero
modes, they will be present In a thermal distribution. The stable
pyrgons decrease in number only by annihilation. For simplicity we
ignore the |k| > 1 populations and compute ny for the stable ones,
assuming ny for k = +1 and k = -1 are equal. Then nw satisfles the

equation,
Ay = E(n?equ - nli,,zj aplvl = Tpny (6)

where the equillbrium number density nweq is determined by mw.and
T. As is typical In gauge theorles, for T < My the scale of the

pyrgon=-antipyrgon annihilation crossection is set by myfz:

oulvl 2 fmyrivl o &PRINRT , (7)

where mq &iR_T. The 4-dimensional expansion rate of the unlverse

@ is (P¢ + PY)1/2/mPI' where f¢ I's the I energy density (Pp=
m¢n¢ for T < m*) and.PY Is the radiation energy density (fy'vT4).
We calculate the ratio r from nw In (6) and the photon number
dens |ty ny = T3 [10].

It is typlical of all Kaluza-Klein theories, Including the
5-dimensional case, that the charge carried by the pyrgons Is

q = RP|2/R2, SO Gi|v] = RP,4/R2 RT. Because of the

small annihilation cross sectifon, the final value of r = ny/nx will
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be near unlty, Independent of R. Thus, the model predicts primordial
pyrgons to be nearly as abundant as primordial photons.

Although it Is not in the spirit of Kaluza-Kleln theories, one
may make the ad hoc assumption that the pyrgons carry an additional
charge that is simiiar to &, but not strongly dependent on RP|/R.

If we assume for this charge that & is constant, then &|v]|
= QZRZ/Jﬁ?, and the annihilation rate lIncreases with R.
The ratio r = n¢/nr is shown as a functlon of T/Tc In Fig. 1

C113; a is set to unity and the calculation Is done for varlous

values of R with the Initlal condition, r = 1, In the very special
case that r = 0 at fc’ r rises qulckly to the envelope of the
curves; If r > 1 Initlaily, this calculation gives a lower |imit on

the remnant pyrgons. After decoupling, r Is constant In an
isentropic expansion.

The calculation could be Improved technically by considering
pyrgon-antipyrgon capture into Coulomb bound states with large
principie quantum numbers and subsequent annlhilation [12], or by
considering 3-body inltlal states [13]. However, on the basls of the
effect on monopole-antimonopoie annlhilation, we do not expect the
Improvements to change substantlally the results In Fig. 1.

=13

Today (TKAJIO GeV, ny ~ 400 cmus) the energy density

contributed by the photons Is .PYAJanY‘V1O‘4 fE' where fb ls

-29 3

the closure denslity, 10 g cm °. Since the total energy

denslty of the universe Is less than 20, [14], the present energy

density of the %,P% = myny = R-]n¢, must satisfy

Polpy s 104, or



r=ng/ny 100 TR (8)

Using the results from Fig. 1, this IImlit is satisfied only 1f R >
(10% Gev)™! at r < 1074, 1t the annihilation cross sectlon Is
changed, for Instance, by using a different vaiue of ¢ or by
including more annihilation channels, the bound scales as

5 sev) T,

2
R > (GRM‘P 10
In summary, the above radius is much larger than the Planck

radius. |If the radius were R and the expansion of the universe

Pi
were isentroplc after 4’ decoupling, the photon density would equal
the density of charged spin~2 pyrgons with masses of order Mp )
Moreover, this catastrophic predictlon follows from other models with
stable pyrgons,

Two possibllitlies for clrcumventing this bound on R come to
mind. The first way Is to relax the assumpttlon that ny Is constant,
If a large amount of entropy were created after compactiflication, It
would be possible to dllute the value of r to an acceptable level.
However, the baryon asymmetry would be diluted by the same amount, so
It Is reasonable to requlire the entropy generation at an epoch prior
to baryon number generatlion., This would seem to require

14

compactification at energy scales > 10 GeV. Another possibillty

is to relax the assumptlion that R Is constant during the entire
evolution of the universe. Indeed, Chodos and Detweller [15] have
discussed an interesting cosmological solution of the 5-dimensional
theory In which the extra dimension Is "large" at early times, and
subsequently shrinks as the other three spatial dimenslions grow,

Perhaps, at the time of compactification, R > (IO6 GeV)-T, but

-1

now R has diminished to mPI .
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Since the 5-dimensional model is very schematic, we now ask |f
these results can be generalized to more reailstic theories with
extra dimenslons. The answer to the cruclal question "Are there
stable pyrgons?"™ Is model dependent, There are many types of higher
dimensional theories: various versions of supergravity (n 11
dimensions; superstrings in 10 dimensions [16]; pure Einsteln gravity
in any number of dimensions, where one might use a non-standard
actlion [17] or a non-standard ansatz for the vacuum [18]. 1In some
models there are "external" matter fields present to force the
compactification, while In others, the compactification Is due to the
presence of a cosmological constant,

4 x s, the

In 11-dimensional supergravity with vacuum M
zero modes and pyrgons are classified by helicity and 808. We show
that If the SO8 I's unbroken or broken in a specltic way, there are
stable pyrgons. This can be seen as follows: +the representations of
SO8 fall Iinto 4 nonoverlapping classes that are congruent fto the 1,
8,, ﬁs' or ﬁc [197. All zero modes are in the 1 and ﬂs
congruency classes [20,21]. The zero modes of helicity 2, 3/2, 1,
1/2, and 0, respectively, are In the 1, ﬁs, 28, 58

35

and liv +

where 1, 28, and alil three 25's are In the 1 class, and ﬁs

g*
c?
and iﬁs are In the ﬁs class, Any tensor product cof any number of
representations In the 1 and ﬁs classes remalins in the 1 and ﬂs
classes; It Is Impossible to reach representations In the ﬁc or
ﬂv classes in this way. Thus, by the generallzation of (5), if
there are any pyrgons In the ﬁc or ﬁv classes, then some must be
stable.

7

The pyrgon spectrum for $' is easily computed. The 1

graviton induces a harmonic expanslion of mass elgenstates (1)}, with
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the sum on k In (1) over all SOB representation contalning an 807

singlet: 1, 8
(0000), (1000), (2000), (3000),.... The (2k+1,0,0,0) representations

.y Or in terms of Dynkin labels,

A4 v’ VA

are all in the ﬁv ctass, but the (2k,0,0,0) representations are in
the 1 congruency class., (See [19] for a review.) The supermultiplet
accompanying the (k000) term In the harmonic expansion for the
graviton is a typlical representation, which means fthat I+ is obtalned
by multiplying the zero mode representation by (k000). Now, the
product of an ﬁv-Type representation with a representation in the

1, ﬁv, ﬁs’ or ﬁc class, respectively, Is in the av' 1, ﬁc,
or ﬁs class., Thus, the pyrgons [n the supermultiplets where the
spin~2 member transforms as (2k+1,0,0,0) are In the Bv and ﬁc
classes. For example, the "flirst" exclted modes with hellclty 2,
3/2, 1, 1/2, 0, respectlvely, are ﬁv' ﬁc + iﬁc, 8
lﬁnv’ ﬁc * iﬁc * lﬁgc * ZZAVC' ﬁv * Eﬁv * lﬁgv *
iz, + ZZ&CV'

v

+ +
a6,

v

If the 508 Is broken, but broken wlithout cocllapsing the
congruency-class dlstinctlions, then there stil! remaln stable
pyrgons. The most likely breaking patterns correspond to the IIittle
groups of the spinless zero modes, 35+ 35, [19]. There are 4

oo
little groups of the 35's: SU4 X U1 and SU2 2 X SU2 X

SUZ’ which preserve all the congruency class distinctions; and

X SU

SO7 and SO3 X 505, whlch coilapse the distinctions.

(Explicitly, the ﬂv and 1 classes are collapsed to a 1 class, and
the ﬁs and ﬁc classes are collapsed to a splnor class.) Thus, in
the former case, some pyrgons remaln stable, but in the latter case,
which includes the "squashed 7-sphere™ with symmetry SO3 X 305,

we conclude that all pyrgons are probably unstable [22].
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In conclusion, Interesting higher-dimensional theories may have
stable pyrgons with masses of order R-I; thelr cosmological
implications can provide an important constraint on model building.
The cruclal ingredlents for computing their contribution to the
energy denslty of the universe are the structure of the harmonic
expanslion, the Identificatlon of the zero models and conservation
laws, and the R dependence of 01. 'f there are stable pyrgons,

then they become (yet further) candidates to dominate the dark matter

cof the universe,
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The ratio r of the number density of the pyrgons ng to the

FIG., 1:
photon number denslity ny as a function of T/Tc for various vaiues
X= 1,

of the compactification scale R;



