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ABSTRACT 

A new analysis of the three dimensional version of the O(N) 

symmetric 11 -6" field theory is presented. At large N, this theory is 

shown to possess a nontrivial ultraviolet fixed point. Associated with 

this fixed point is a new phase where the asymptotic scale invariance is 

spontaneously broken and a dynamical mass is generated through the 

mechanism of dimensional transmutation. At the tricritical limit of 

this theory, the spontaneous breaking of an exact scale invariance at 

leading N results in the formation of a goldstone mode, the dilaton, 

as a massless bound state. We compare these results to the standard 

(l/N) expansion and emphasize the nonperturbative nature of these 

phenomena. 
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lbe O(N) vector model, rl(J*)3 , presents a unique laboratory for 

the study of several interesting aspects of quantum field theory. In 

three dimensions the theory is just renormalizahle and, indeed, the 

coupling constant, ~7, is not renormalized in the leading N 

approximation. However, recent analyses Cl,21 of the (l/N) corrections 

have shown the existence of an ultraviolet fixed point at a finite 

coupling, q = q*. Hence the theory represents an example of a 

nonasymptotically free field theory with a nontrivial ultraviolet limit 

governed by the fixed point. In contrast, for the lo$' theory in four 

dimensions, there is an accumulation of evidence that the renormalized 

theory(3-6) is either inconsistent (xo<O) or "trivialw (Xo>O). me 

n 6" theory has also been used as a laboratory for studying interesting 

effects of critical. and t~iC~itica1 behavior in field theory. 

In this paper, variational methods will be exploited to reveal 

novel, nonperturhative aspects of n($'j3 theory which fundamentally 

alter our understanding of the ground state structure, the spectrum, and 

the ultraviolet behavior of this theory. We will show that the 

ultraviolet fixed point, n q n*, found through a perturbative 

analysis("2) lies in the region of instability where nonperturbative 

effects dominate the physics. The essential structure of this theory 

is, however, governed by a different ultraviolet fixed point, n = no<n*. 

'lhe true ground state is characterized by dynamical mass generation 

through dimensional transmutation. 'Ihis massive phase reflects the 

nontrivial fixed point structure of the &function which occurs even at 

leading order in the (l/N) expansion where the perturbative f3-function 

vanishes. At the tricritical point, the theory is scale invariant at 

leading N order. This scale invariance is spontaneously broken by the 
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dynamical mass generation and a massless goldstone boson, the dilaton, 

appears as a dynamical bound state. The stress tensor remains traceless 

but now contains a direct, induced coupling to the dilaton. lhe (l/N) 

corrections will break the exact scale invarianoe, even at the 

tricritioal point, and the dilaton will gain a mass of order (l/N). 

We wish to consider the O(N) vector model described in three 

dimensions by the lagrangian, 

Xe: G (ap$)* - Jy’, - ; g (;62)2 _ ; %QV (1) 

Where { ;6 } is an N component scal.ar field. We have scaled the 

coupling constants consistent with the large N limit where l$ x 
0' 

% 
are held fixed as w. In this limit, only the cactus diagrams will 

contribute. lhe theory may be analysed either through euclidean 

functional integrals or through direct hamiltonian methods. 

In the following, we use the variational methods of Ref. 6 to Find 

the best plane wave ground state which can be repressented in the 

Schriidinger pictureC7) by the wave functional, 

${$] = exp {-.fdax d3y (~(~)-~~)*(~(Y)-~~)G,(:-;)] (2) 

where the constant background field, $o, and the correlation function, 

G,G-$), can be determined by minimizing the ground state energy. To 

leading order in N, the vacuum energy can be expressed in terms of the 

kinetic and potential energies, 
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w (m2,$o) = K(m') + &?J> (3) 

where 

K(m2) q - g c'drn' m2 a <;5'> 
ad 

and 
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(4) 

It is sufficient to parameterize the ground state by a common mass, m. 

me vaouum value of <J2> depends on m and in three dimensions is given 

by 

A <;62>=NJ dlk= +A - s m) 

(rn)S ' k2+m2 2s' 
(6) 

where we have used a symmetric euclidean cutoff, A, to define the 

divergent integrals. 

lhe complete vacuum energy is expressed in terms of the variational 

parameters, m and ;b o, by 

1 x 
+qfCo- P tFJ2 N2 

+pq -gm)' (7) 

Where the first term is the kinetic energy and we have introduced 

renormalized potential parameters, Il-rl 0' x = x0 + yM12, and 

1-12 = 11; + 1$/2n2 + l@/'ln'. We observe that the 4" coupli~ng, n, 

requires no divergent renormalization. 
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Our subsequent analysis will focus on the coupling, n, as it 

governs the ultimate stability of this theory in three dimensions. lhe 

renormalized parameters, u2, and X, are both dimensional constants and 

their effects may be ignored in the ultraviolet limit. We remark that 

when u2 is zero the theory is said to be at the critical point and when 

both u2 and X are zero the theory is tricritical. At the tricritical 

point, the leading N theory is scale invariant since the remaining 

coupling, n, is unrenormalized. As an immediate consequence, the 

perturbative &function can be seen to vanish in this limit. 

lhe ultimate stability of the ground state depends on the balance 

between the kinetic energy and the leading terms of the potential 

energy. By examining Eq.(7), the existence of a stable ground state 

requires a constraint on the fundamental coupling constant, 

0 < rl 5 rlc = (4llP (8) 

where the lower bound comes From the large 5 dependence and the upper 

bound from the large m dependence. 'Ihe apparent instability for n > no 

is a surprising new feature of this analysis. me fixed point, n*, 

dicussed by Pisarski (1) lies in this region. He computes the (l/N) 

corrections to the perturbative B-function and finds 

i?(n) = 0 + - 3 1 112( 1-ll/ll') 
2n* N 

where q' : 192 > q 
c 

q (4n12. Our combined results seem to have 

disastrous implications for the theory. me Pisarski E-function causes 

the coupling to run slowly to values larger than n, in the ultraviolet 

limit. Hence there seems to be no stable domain for the existence of 

the theory without an explicit ultraviolet cutoff to keep the coupling 
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less than n,. We will see that this disaster is avoided due to the 

existence of a different, nonperturbative fixed point associated with 

the critical coupling, n,. 

lhe instability we have discovered at large coupling is, indeed, a 

strange result. Namely, the (4')' operator associated with the 

coupling, n, would seem to be positive definite and incapable of 

generating a vacuum instability. It is only the large negative 

renormalization of the $' operator which makes the potential energy 

unbounded from below. However, it should also be clear that any 

physically regulated theory should have a stable ground state as the 

positivity properties will be maintained. he observed instability will 

be reflected by the generation of a large mass, m, typically of order 

the physical cutoff, A, when the coupling is larger, n > nc, in the 

regulated theory. One may then question the existence of a "continuum" 

limit if all masses are of order the cutoff. lhe emergence of a stable 

ground state with nontrivial infrared structure is possible, however, if 

the theory has an ultraviolet Fixed point at 0,. Indeed, we can 

establish the existence of this nonperturbative fixed point and a finite 

dynamical mass is generated through the mechanism of dimensional 

transmutation. 

lhe physically regularized theory may be defined in many ways. We 

choose to introduce a consistent momentum cutoff but we have obtained 

the same results using lattice, Pauli-Villars,(8) and dimensional 

regularization methods (note that it is essential to use 3-~ and not 3+e 

dimensions as in Ref.(l)). me essential modification of the 

regularization is to keep the nonleading terms in the evaluation of 

Eq.(6), 
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<J2> : N (A - : m + m2/A + l *) (10) 
2n2 

where we have assumed m << A. me kinetic energy may be computed through 

Eq.(4) and used to obtain a regularized expression For the vacuum energy 

at the tricritical point 

W : & Cm3 - : m4/l\+*- .) 

+ i $ (4,' - g m + -$ m2/A+***)'. (11) 

A stable minimum now exists For the theory as the potential energy no 

longer dominates the kinetic energy as m increases. Since there will 

be no symmetry breaking we take $o = 0 and compute the gap equation 

a 
o=zw 

=k 
(1 - $ m/A) [me - A ( m - $u’/A)~I. 

(4lr)Z 

me relevant solution is 

(12) 

m = A fCn)=A!$ (1 - v'?$ii) (13) 

Indeed we find that a Finite mass is generated for the I$ particles if 

the coupling is allowed to approach the fixed point, r~ = s + ii/A, as 

we approach the continuum limit, A+-. Equation (13) has precisely the 

structure expected for a nonperturbative fixed point and dimensional 

transmutation. We can use Eq.(13) to derive the B-function for this 

massive phase, 
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B(ll) = Aa*(“)lm + $4, rl + n,’ (14) 

and show the result in Fig.(l). Near the fixed point, the B-function is 

expected to be universal, (however, it appears to be difficult to 

directly extract the correct B-function using dimensional 

regulariaation) and we can verify Eq. (14) by a direct examination of 

the physical six point vertex as seen below. 

At the tricritical point, both the mass and four point vertex are 

expected to vanish. We have seen that a dynamical mass is generated in 

the strong coupling phase. The normal ordering of the 4" interaction in 

the massive phase also generates a correction to the four point vertex. 

5; = A0 + 2 + &$'> : A - iq m/2x . (15) 

This induced coupling must now be included in computing the amplitudes 

of the theory. 

At leading N, the Four point function involves the sum of bubble 

diagrams in Fig.(2a) with the result 

Pk(p) = $7 (1 - XB(p))-' (16) 

where the standard bubble integral is, in three dimensions, given by 

B(P) = - & Iida Em* - u(l-a)~*l-“~ . (17) 

At the tricritical point, X : 0, the renormalized four point amplitude 

becomes 
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r (p) q - T m (1 - ~~da~l-a(l-a),p'/m*~~~'*~~~ (18) 
L) 

where we must use n : no in the continuum as implied by the discussion 

following Eq.(13). 

A remarkable Feature of the amplitude in Eq.(18) is the existence 

of a pole at p* : 0, 

Pll(P)-+ 
192nm" 1 
-T--p2 (19) 

This bound state pole in the O(N) singlet amplitude can be interpreted 

as the massless goldstone mode, the dilaton, expected because scale 

invariance is spontaneously broken in the massive phase. me infrared 

coupling between the dilaton and two massive C$ particles can be read 

off from Eq.(19). 

lhe six point function also has induced corrections as shown in 

Fig.(2b,c) and can be written in this form 

3 
Ia = 8~~1 - v(p1p2p3)) II (1 -TB(p,j--' 

kzl 
(20) 

where the vertex Function, V, comes from the contribution of the 

triangle diagram, Fig.(2c). Ibe bubble sums generate dilaton poles in 

each of the singlet channels. We can use the six point amplitude to 

define a physical running coupling constant, n(p) = re(p)/8. In the 

ultraviolet limit, B and V vanish and n(p) approaches $. In the 

infrared limit, 1-V is of order p:, but the coupling, n(p), still blows 

up as p-' because of the dilaton poles. me B-function can be computed 

directly for this coupling constant and has the behavior, 
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P(n) -f n,-n ml,+ 

+ -4l7 wm . (21) 

We can examine the scale invariance and its spontaneous breaking by 

evaluating matrix elements of the stress tensor. We note the scale 

current is usually defined as Su = Xv Q 
W 

and is conserved if the 

stress tensor is traceless. We must again include the contributions of 

the induoed terms as shown in Fig.(3). me two point matrix element is 

simply computed and given by 

<P'IBuVIP> : (P'P + P P' - guVPcP + gUVm2) 
Fcv NV 

+ (qux - q2gu,)$l - 81:da a(l-a)[l-a(l-a)q2/m21-'/*) 

'Cl- (da [, - a(l-a)qz/m21-"2)-' (22) 

where the first term is the standard tree amplitude for a particle of 

mass, m, and the second is the induced term with q=p*-p. me 

induced term contains the dilaton pole and can be simplified using an 

identity. We find 

<p'lQuvIP) I (Pip, + P Pa - guVPCP + guVm2) 
!JV 

+ (9 9 PV 
- s2gu,,) (m*/q* + 4) (23) 

The amplitude is clearly traceless and the direct coupling of the 

dilaton to the stress tensor is made explicit. Of course, a general 

analysis of the leading N amplitudes can be made to verify the 

traceless condition as an operator statement. me beauty of an O(N) 

theory is that all amplitudes are simply computed in the large N 

limit. 
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We have established an interesting new phase structure for the 

I$$*) 3 theory in three dimensions. mis phase structure is directly 

related to the existence of a nonperturbative fixed point found by our 

analysis. At the tricritical point, the theory is scale invariant at 

leading N approximation. At strong coupling, the scale invariance is 

spontaneously broken with mass being generated for the $I particles and 

the dilaton established as the goldstone boson of broken scale 

invariance. At leading N, all amplitudes can be computed in closed 

form. While we have examined the tricritical limit, the nonleading 

terms related to X and !.I' can be included as explicit symmetry breaking. 

lhe 0(1/N) corrections will also break scale invariance and generate 

mass for the dilaton. However, the general picture of the phase 

structure should remain intact. It would be interesting to verify the 

results of our large N analysis by other methods, such as throu& 

direct lattice calculations. We also raise the question as to whether 

the new phase structure we have observed here may actually correspond to 

phenomena observed in real physical systems in three dimensions. 
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FIGURE CAPTIONS 

Figure 1. me perturbative B-function Cl,21 in (a) leading N and (b) 

next leading N, the nonperturbative B-function in (c) 

leading N. (Eq.14) 

Figure 2. lhe leading N contributions from induced couplings to (a) 

four point function, (b) and (01 six point function. 

Figure 3. The leading N contributions to the stress tensor matrix 

element. 
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