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1 . WHY SPECTROSCOPY? 

He live in the era of local gauge invariance, in which 

it appears that the fundamental interactions among the 

elementary constituents all may be derived from symmetry 

principles. This development has brought a greater unity to 

the interactions themselves and thus to particle physics, 

and has also brought our field into increased and fruitful 

contact with other specialties. The study of the early 

universe is one prominent example. 

In spite of the structural appeal of gauge theories and 

the phenomenological successes of the Weinberg-Salam model 

and quantum chromodynamics, some central properties remain 

to be verified and many computational impediments remain to 

be overcome. Leaving aside the predicted properties of the 

intermediate bosons, we require a demonstration of the 

non-Abelian nature of the theories. In the case of the 

su(2)LBu(l)y electroweak theory, this is perhaps best done 

through the detailed study of radiative corrections to 

observable quantities. The existence of glueballs and the 

running of the strong coupling constant would provide 

relatively good evidence for the three-gluon interaction in 

QCD. 

tiith respect to calculational difficulties, consider 

the comparison of perturbative QCD and experiment shown in 

Fig. 1. [This is a fabrication, but we have a11 heard 

similar remarks in experimental seminars.1 Such a picture is 
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sometimes shown with the comment that there is excellent 

agreement between perturbative QCD and experiment at 900, 

and that elsewhere there is evidence for higher-twist 

effects. This is silly, of course, but higher-twist 

contributions or bound-state wavefunction effects are 

serious business. They are part of the reason that our 

comparisons between QCD and experiment are so unincisive. 

The importance of spectroscopy can be dramatized in a 

different way by an appeal to pride. If you know the 

elementary particles (and we think we do, the quarks and 

leptons) and their interactions (we think we do, gauge 

theories) and you call yourself a physicist, you ought to be 

able to calculate the consequences. Although steady 

progress is being made in the investigation of lattice gauge 

theories, we have not yet learned to solve the strong 

interactions. Among our aspirations must be these: 

* to compute the properties of hadrons, explain the absence 

Of unseen species, and predict the existence of new 

varieties of hadrons; 

* to explain why quarks and the quanta of the color 

interaction, gluons, are not observed in isolation. 

* to derive the interactions among hadrons as a collective 

effect of the interactions among constituents. 

For the moment these remain aspirations, but QCD does 

provide a framework in which to pursue such issues. 



-4- FERMILAB-Pub-83/25-THY 

2. BOUND STATES IN QCD 

It is widely held that QCD is a confining theory in the 

sense that only color-singlet objects can exist in 

isolation. An entirely rigorous demonstration has not yet 

been given for the continuum theory, but this belief is 

strongly supported by lattice calculations.’ Granting that 

confinement occurs in QCD, we may ask how the theory would 

have to be distorted to make it nonconfining. This line of 

inquiry is of importance both for the possibility that free 

quarks may someday be observed and for the insight it may 

provide into the nature of the confinement mechanism itself. 

Although these deep issues remain incompletely 

resolved, QCD - as currently understood - has already 

provided insights Ot- part ial answers to many of 

spectroscopy’s long-standing puzzles. Fl 
Among these are: 

. the puzzle of triality, or the saturation of interquark 

forces; 

* the equality (see Figs. 2 and 3) of the slopes of meson 

and baryon Regge trajectories; 

. the chromomagnetic interaction, manifested in the fine 

structure and hyperfine structure of baryons, and in their 

decay systematics; 

- the U(1) problem and other issues raised by current 

algebra - the successes of PCAC and the nature and 

consequences of chiral symmetry breaking; 
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* the inhibitions of certain strong decays, as embodied in 

the Zweig rule, which arises naturally in the SU(+-),olor 

limit of QCD; F2 

* the nonrelativistic description of the quasiatomic bound 

states of quarks and antiquarks. 

It is this last topic which is the focus of these lectures. 

One of the basic issues on which we hope for 

enlightenment from QCD is this: why does the valence quark 

model work so well (but not perfectly)? Table I serves as a 

partial reminder that the elementary quark model is an 

admirable classification tool. In addition, the simple 

valence quark model provides useful insights into the 

electromagnetic structure of hadrons, as represented by the 

charge radii of the pseudoscalar mesons and of the neutron. 

The pattern of magnetic dipole transition rates in mesons is 

also anticipated by the model, and - with similar values 

for the quark dipole moments - a good account is given of 

the baryon magnetic dipole moments, as shown in Table II. 

Our experimental knowledge of these three classes Of 

observables has been greatly improved by a series of 

high-precision high-energy experiments. Further improve- 

ments are to be expected for the baryon magnetic moments, 

radiative transitions, and the closely related rate for 

two-photon decays of neutral mesons, the last from the study 

l - 
of YY collisions in e e storage rings. 
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While the hadron spectrum has not been calculated from 

the basic field theory, F3 the quark model supplemented by 

dynamical assumptions inspired by QCD has led to increased 

understanding of the systematics. The order of levels and 

the signs and relative magnitudes of hyperfine splittings is 

well described by the picture exploited by De Rujula. 

Georgi, and Glashow. 
4 Promising extensions to the 

orbitally-excited baryons have been made by Isgur and Karl 

and collaborators, 5 although the dynamical basis of their 

Ansatz is questionable. 

The phenomenology of radially-excited states is less 

developed. Among the mesons composed of light quarks, only 

a handful of candidates for radial excitations are known. 

It is likely that the vector mesons ~'(1600) and $'(1634) 

are, or are considerably mixed with, Z3S 
1 

radial excitations 

of the familiar vector mesons. Increasing attention is 

being devoted to the study of pseudoscalar states beyond the 

familiar nonet. 6 Some of these are collected in Table III. 

If these are indeed (44) states, they are necessarily radial 

excitations, because the quantum numbers J PC = o-+ do not 

occur in orbitally-excited states. Other interpretations of 

new pseudoscalar levels as glueballs or multiquark states 

are tenable only if the (qq) interpretation can be ruled 

out. This is therefore an issue of more than passing 

importance. In the heavy-quark families * and T, 

essentially pure radial excitations are commonplace, as we 

shall discuss below. 
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3. BEYOND THE QUARK MODEL 

To the extent that we gain an understanding of the 

dynamics of strong interactions, we may reasonably hope to 

advance beyond the simple quark model rules. In SO doing, 

we open to discussion states which are described only 

symbolically - or not at all - by the elementary scheme. 

Multiquark states and hadrons which manifest the gluonic 

degrees of freedom may be considered in this broader 

context. 

Multiquark hadrons include (qqqq) exotic mesons, (4qi) 

exotic baryons, and stable (6q) dibaryons. Al though 

color-singlet multiquark configurations are readily 

constructed, elementary color-saturation arguments give no 

reason to expect that they should be strongly bound. 

However, as Jaffe 7 has emphasized, in special circumstances 

the color hyperfine interaction might be strong enough to 

provide the binding force. On the basis of this reasoning, 

he has conjectured a lightly-bound AA bound state. A first 

experimental search a was unsuccessful. Similar consider- 

ations ’ have been applied to (qqqq) “baryonium” states for 

which there is at the moment no experimental evidence. 

In the second category lie hybrid states such as (44g) 

(qqqg) 9” “vibrational modes” of heavy Q6 systems, 
12 

or and 

quarkless states known variously as gluonia, gluonic mesons, 

13 or glueballs. Establishment of hadrons composed 

exclusively of gluons would constitute strong evidence in 
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favor of the correctness of QCD, and would specifically test 

the existence of the nonlinear gluon interactions. 

Over the past few years, an interesting candidate has 

come forward: the J PC = 0-f 1(1440), seen in the decay 

I$ + Y(KKn) . (3.1) 

Some of the evidence 14 for this state is shown in Fig. 4. 

The correlation between the prominence of the signal and the 

low-KK-mass cut is suggestive of the decay chain 

1 + 6(98O)T 

LKK . (3.2) 

This idea is supported, though not established, by the 

Dalitz plot distribution given in Fig. 5, which does not 

show prominent K* bands. The verdict is not clearcut 

because of the limited phase space available for the decay, 

and the fact that the K* bands would overlap in the 6 

region. [I show the Dalitz plot here, however, not to enter 

into the details of iotology but to remark on its 

sparseness, in an analysis based on 2.2~10 6 * triggers. It 

is frustrating that a significant increase in statistics is 

unlikely to materialize.1 The interest in this state derives 

in no small part from the relatively large branching ratio 

for the decay $+Yi(1440), which suggests a connection with 

*+ygg 9 (3.3) 

with 
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Two important theoretical questions arise at once: what 

is the maSS scale for glueballs and how prominently will 

they appear in the spectrum of hadrons? Given the small 

mass of the pion it is nearly a certainty that the lightest 

glue state will be unstable. We must then ask whether the 

quarkless states will become so broad as to be lost in a 

general continuum, whether they will mix so strongly with 

(99) and (q;g) states as to lose their identity, or whether 

they will remain relatively pure glue states of modest 

width. Distinguishing gluonia from ordinary (qq) states 

will require a detailed knowledge of meson spectroscopy. 

One simple example of the kind of studies that may be 

undertaken is the comparison of bosons produced in radiative 

quarkonium decays (3.3), which should emphasize gluonic 

constituents, with those produced in two-photon collisions 

yy + 94 I (3.4) 

which should emphasize quark constituents. The similarities 

and differences should illuminate the nature of the possibly 

mixed mesons concerned. 

A provocative observation is the line shape of the 

f0 (1273) observed15 In the two-photon process 

YY + f 0 0 0 
+lril , (3.5) 
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show” in Fig. 6, which is shifted downward by approximately 

40 MeV/c* compared with the standard f 0 detected in hadronic 

collisions and in 16 l).*YfO. 

4. WHY QUARKONIUM? 

After this brief tour of spectroscopy in general, which 

was intended to place the subject in the broader context of 

elementary particle physics, and to evoke its importance for 

the evolution of QCD, we turn now to a discussion of the 

heavy mesons known as quarkonium. These are not merely of 

typical spectroscopic interest, but alSO have special 

features which attract our attention. Because of asymptotic 

freedom, they m=y provide us with another access’7 to 

perturbative QCD. This has two important operational 

consequences: The utility of nonrelativistic methods, and 

the goodness of the valence quark model approximation as a 

perturbative statement, in addition to the familiar 

encouragements of experience and the l/N expansion. 

In the I) and T families, we are approaching for the 

first time a truly predictive spectroscopy, and also have 

the opportunity to probe the strong interaction between 

quarks in new ways. We have been able to “measure” the form 

of the Q6 interaction at intermediate (0.1 fm<r<l fm) 

distances. Many methods are by now available, so there is a 



-1 l- FERMILAB-Pub-83/25-THY 

good measure of control over the systematic uncertainties of 

these determinations. Quarkonium also offers the advantage 

of a large, and growing, body of beautiful data, which 

presents us uith many things to understand and opens the 

opportunity for a creative interplay between theory and 

experiment. Knowledge of the interquark potential is also 

of interest for what may be called “engineering” purposes: 

comparing expectation with observation for quarkonia is a 

superb tool for probing the flavor and color properties of 

new quarks. 

What expectations for the interquark interactions 

should we have before looking at any data? According to the 

conventional wisdom, at small distances the potential should 

approach the Coulomb form 

V(r) - -4crs/3r (4.1) 

characteristic of the exchange of a single massless gluon. 

At large distances, a popular conjecture is that the 

potential (to the extent that it has meaning) approaches a 

linear form 

V(r) - r/a 2 (4.2) 

contrived to confine the quarks. Between these limits of 

perturbative QCD calculation and Reggeistic inspiration we 

are ignorant of the force law. The simplest guess ” is that 

the potential takes the form 
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V(r) = -4crs/3r + r/a 
2 . (4.3) 

The quark mass m 
q’ 

the strong coupling constant as, and the 

string tension l/a 
2 are then taken as parameters which m=Y 

be adjusted to reproduce features of the observed spectrum. 

Although the simple form provides an extremely useful 

first guess, we shall find that the distance scale to which 

observables are sensitive is precisely that intermediate 

region in which we are ignorant. It also develops that 

observables are rather insensitive to assumptions about 

large- and small-r behavior. It is therefore in our 

interest to discuss ways of determining the interaction 

which are free from r+O and r+- prejudices. 

5. THE SPIN-SINGLET STATES OF CHARMONIUM 

Important progress has been made recently in 

identifying the ‘S o hyperfine partners of the 3s , + =nd $’ 

levels of charmonium. The particle known as U(2.98) is now 

securely established ” as the n,(2983+5), with a total width 

of 12*4 MeV. The hyperf ine splitting, M($)-M(nc) = 

114t5 MeV/c*, is in reasonable accord with theoretical 

expectations. The nc has been seen in the Ml transitions 

PYnc, *‘-Yrlc, at rates given by 
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r(*'Yq,)/r(*'all) = (1.2O+~*~~x 9 (5.1) 

which implies 

r($+Ync) = 0.44-0.95 keV ; 

and 

r(~'+yq~)/r($+all) = (0.32+0.05+0.05)% , 

(5.2) 

(5.3) 

which implies 

r($‘+vnc) = (0.69+0.23+0.11)keV . (5.4) 

The 2’S. radial excitation Tlh(3592+5), with a total 

width less than 9 MeV, ha3 been observed 2o in the transition 

$J’+Yn’ c’ with 

r(*‘+Yq;)/r(* ‘+all) = (0.6~2~‘)% , (5.5) 

which implies 

r($‘+vn;J) = (1.3x2+‘)keV . (5.6) 

The hyperfine interval, M(i)‘) - M(n;) = 92?5 MeV/c2, is of 

approximately the expected magnitude. 

With these additions, the spectrum of psions is as 

shown in Fig. 7. Among the expected narrow levels, only the 

2’ P, state remain3 to be observed. It3 mas3 is expected to 



-14- FERMILAB-Pub-83/25-THY 

coincide with the centroid of the 3P J masses, at about 

3525 MeV/c2. 

6. UPSILON UPDATE 

The principal experimental progress in recent months 

ha3 been in establishing an absolute scale for the T mass 

and in finding the first evidence for electromagnetic 

transitions to orbitally excited States. In addition, mass 

splittings and leptonic widths have been refined somewhat. 

A precision measurement of the T mass was carried out 

at Novosibirsk using the re3onance depolarization method to 

provide an absolute calibration of the machine energy. The 

result is2’ 

M(T) = (9459.7+0.6)MeV/c 2 . (6.1) 

Current knowledge of the basic properties of the 
3s1 vector 

states is summarized in Table IV. 

The first studies of the El transitions between S and P 

states have been carried out by the CUSB Collaboration 

working at CESR. They have observed the 33sp + 23PJ 

radiation, and have determined22 the center of gravity of 

the 23P j level3 a3 10.255+0.004 CeV/c2. Current knowledge of 

the upsilon3 F4 is summarized in Fig 8 . . 
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In the near future, we may look forward to a steady 

flow Of new results from CESR. In addition, the new ARGUS 

detector and the transplanted Crystal Ball are coming into 

operation at the rebuilt DORIS II machine in Hamburg. Thus 

we may reasonably expect much new information about the 

upsilon spectrum over the next few years. 

7. SCALING THE SCHRODINGER EQUATION 

For simple potentials, including power-laws and other 

monotonic wells, rather far-reaching results can be derived 

using quite elementary techniques. This mode of analysis 

has been reviewed by Quigg and Rosner, 24 and exploited by 

many authors. I shall summarize here a few of the results 

with direct applications to experiment. 

7.1 Dependence on Constituent Mass and Coupling Constant 

The reduced radial SchrBdinger equation for a particle 

with ma33 u and angular momentum ¶. moving in a central 

potential V may be written in the form 

!c u”(r) + 
211 [ 

E-VCr) _ c(fi+l)Hz 
2ur2 I 

u(r) = 0 ) (7.1) 

subject to the boundary conditions 
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u(0) = 0 , 

(7.2) 
u’(0) = R(O) . 

A prime is used to denote derivatives with respect to the 

argument, and the reduced radial wavefunction u(r) is 

related to the three-dimensional wavefunction 

l’(r) = R(r)Y Qm(e’e) (7.3) 

u(r) = rR(r) . (7.4) 

The familiar substitution (7.4) place3 the radial equation 

in three dimensions in formal correspondence with the 

one-dimensional Schradinger equation. 

For the special ca3e of a power-law potential, 

V(r) = ,irv , (7.5) 

the equation (7.1) can be divested of all its dimensionful 

parameters. To see this, we first introduce a scaled 

measure of length 

p E (H2/24A1P r , (7.6) 

where the exponent p is to be chosen to eliminate dimensions 

from (7.1). The choice 

P = -1/(2+v) I (7.7) 

when accompanied by the substitution3 
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(7.8) 

where E is dimensionless, and 

W(P) = u(r) (7.9) 

accomplishes precisely this. The ensuing equation is 

w”(p) + CE - sgn(h)p” - e(e+l)/p2lw(p) = 0 ) (7.10) 

which depends only upon pure numbers. 

Several consequences f OllOW immediately from these 

manipulations. Lengths and quantities with the dimensions 

of lengths depend upon the constituent *as3 and coupling 

strength a3 

L = (Ul”p-“(2+v) . (7.11) 

As a result, the particle density at the origin Of 

coordinates behave3 as 

/ploq2-- L-3 m (UlAj)3’(2+v) . (7.12) 

Level spacings have a similarly definite behavior, according 

to (7.8): 

AE 0: Jo -v/(2+v) ,*,2/(2+v) . 
(7.13) 

The limiting behavior of the scaled Schradinger equation as 
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V+O is easily studied. The “power-law” potential 

corresponding to this limit is simply 

V(r) = c log(r) . (7.14) 

The scaling laws (7.11)-(7.13) contain many well-known 

results. Recall, for example, that in the Coulomb 

potential, for which v=-1, 

AE(v=-1) 0: ;la2 = p/Al2 . 

Likewise. the conclusion that in a linear potential 

(Y(O) I2 
= PIAl 

V=l 

can be derived at once using the identity 

lY(O$ = A--- 
21rn2 

The scaling law3 ( 

in quarkonium physics 

that electric multipole 

7.11)-(7.13) have many applications 

For the moment let us merely note 

matrix elements vary a3 

(7.15) 

(7.16) 

(7.17) 

<n’IEjln>- Lj = (~[,4l)-j’(~+“) , 

30 that transition rates behave as 

(7.18) 



FERXILAB-Pub-83/25-THY -19- 

r(EjJ w k2jf’l<n’lEjln>12 , (7.19) 

where k is the energy of the radiated photon, which is just 

a level spacing AE. Using (7.11) and (7.13) we then deduce 

that 

r(Ej) c u 
-[2j(l+v)+vl/(2+v)l,,Z(j+l)/(2+~) . 

(7.20) 

This has the interesting consequence that for fixed 

potential strength Ii/, r(Ej) is a decreasing function of j 

as u+- for potentials less singular than the Coulomb 

potential. 

Using the Van Royen-Weiskopf formula 25 

+ - 
r(VO+e e 1 = 'zl"' [Y(O) 12<e2q) (7.21 1 

V 

for vector meson decay, one may easily show that for ” > -1 

(for which binding energies are asymptotically negligible) 

r(Ej)/r(V’+e+e-) = u -(2j-l)(v+l)/(2+v)lA12(j-l)/~2+~) 

(7.22i 

which implies the dominance of leptonic Over radiative 

decays as ‘o+m for fixed potential strength IAl. 
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7.2 Dependence on Principal Quantum Number 

TO investigate how observables depend UPO” the 

principal quantum number with some degree of generality it 

is convenient to adopt the semiclassical, or JWKB 

approximation. This turns out to be rather less of a 

compromise than one might at first surmise. Judiciously 

applied, the SemiClaSSiCal SpprOXimatiOn iS in fact highly 

accurate for the sort of nonpathological potentials one 

hopes to encounter for quarkonium. This accuracy is 

documented in Ref. 24, where additional rf?fet-C!“CeS may be 

found. 

The semiclassical results a11 r0110w from the 

quantization condition 

drC2u(E-V(r))l”* = (n- &TH , (7.23) 

where n is the principal quantum number and the classical 

turning point rc is defined through V(rc) = E. Although it 

is both possible and useful to be more general, it is 

appropriate to retain the spirit of the preceding Section 

and speciaize to power-law potentials. For s-wave bound 

states of nonsingular potentials of the form (7.5). eqn. 

(7.23) can be integrated by elementary means to yield 

(7.24) 
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where with an eye toward the intended applications I have 

suppressed the dependence on constituent mass and coupling 

strength given in (7.13). For singular 

additional care is required near the origin. 

nodification of the usual procedure leads to 

potentials 

A simple 

E” 
oi (*-y( “) )2v’(2+v) ) -2<v<o , 

where 

Y(v) = ;[g . 

(7.25) 

(7.26) 

Similar expressions may be obtained for orbitally-excited 

states. 

By evaluating the expectation value in eq. (7.17) with 

JKWB wavefunctions, it is also straightforward to derive 

I (*- $2(u-l)/(2+v) 
4 v>o ) (7.27a) 

O>v>-2 . (7.27b) 

For a general nonsingular potential, one inay readily show 

that 

1'2 a(2uE 1 
jY"(o)/2 = "::;;3 a" " . (7.28) 
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Generalizations of these results to e&O have also been made, 

but we shall not require them here. Let us now see what can 

be learned by comparing the simple results of this Section 

with experimental information. 

8. INFERENCES 

The strategy embodied in sec. 7 has been pursued 

explicitly by several authors 24,26-29 and implicitly by many 

others. The conclusion to be drawn from the data is that a 

potential of the form 

V(r) = A + Br” (8.1 1 

with v=o. 1 gives a good representation of the $ and T 

spectra. This is based upon t-our distinct kinds of 

evidence. 

First, we may note by comparing Figs. 7 and 8 that the 

level spacings are quite similar in the $ and T families. 

Indeed, the observation that 

M T, - MT = Ma, - MJI (8.2) 

provided an early motivation for the logarithmic 

potential. 27 A more detailed look at the intervals is given 

by Fig. 9, which indicates that 
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AE(T) = 0.95 AE($) . (8.3) 

Assuming that the potential strength does not Vary between 

the + and T systems, this implies a small positive power for 

the effective potential. The precise value of the exponent 

depends upon the ratio of quark masses, which is imperfectly 

known. 

The principal-quantum-number dependence of observables 

within one quarkonium system is free from the assumption 

that the potential strength A is the same f-or different 

quark flavors. Effective powers m=Y be inferred 

independently from the $ and T levels and compared for 

consistency. The level strut tures (E3-~2)/(E2-E,), etc. 

are characteristic of the potential shape. These ratios of 

intervals are the same for ti 

E3-E2 

E2-E1 
= 0.53 

w 

and T 

E3-E2 
E2-E, T = o'59 

(8.3) 

states, and are again compatible with v=O.l, as shown in 

Fig. 10. Similarly, the 2S-2P spacing, know" only for the $ 

family [Fig. 111, implies a small positive power. The 3S-3P 

interval in the upsilon system is also characteristic of a 

PO"C?i- near zero, but slightly negative as shown in Fig. 12. 
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The same is true of the ratio (E,-E~)/(E~-E~) in the T 

family, displayed in Fig. 13. Finally, the principal 

quantum number dependence of wavefunctions at the origin, or 

equivalently of the reduced leptonic widths 

i”( VO+e+e- ) = M; r(vO+ e+e-) , (8.5) 

is approximately given by 

pn(0)12- wn-+I (8.6) 

for both $ and T, as shown in Figs. 14 and 15. This 

behavior again corresponds to an effective potential which 

is a small positive power. It was this observation for the 

j, family that led Machacek and Tomozawa3’ to investigate 

softer-than-linear confining potentials, including 

logarithmic forms. Taken together, these results Oil 

principal quantum number dependence would seem to exclude 

the bizarre possibility that the nearly equal spacing in the 

* and T families results from a potential strength which 

varies approximately as 

A a !J 
v/2 (8.7) 

Martin 29 has shown that careful attention to hyperf ine 

effects does not change the conclusions of this analysis, 

namely that the interquark potential is flavor-independent 
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(as QCD would have it) and characterized by an effective 

power-law potential with a small positive exponent. This is 

also in agreement with the conclusions of all other analyses 

and fits: In the region of space between 0.1 fm and 1 fm, 

the interaction between heavy quarks is flavor-independent, 

and roughly logarithmic in shape. 31 932 

9. THEOREMS AND NEAR THEOREMS 

An excellent review of statements about bound-state 

properties which may be proved rigorously in nonrelativistic 

potential theory has been given by Grosse and Martin. 33 Many 

results have been deduced which pertain to the order of 

levels, inequalities for wavefunctions at the origin, bounds 

on quark mass differences and so forth. The value of such 

statements is not only that they are true, but also that 

they provide a context for computations based upon explicit 

potentials. It is of great value to understand what must be 

true for any reasonable potential, or for any potential of a 

particular class, in order to distinguish the consequences 

that may be peculiar to a specific model. I shall cite two 

examples that bear directly upon experimental results. 

Consider a quarkonium potential which is monotonic, 

dV’/dr > 0 - (9.1) 

and concave downward, 
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d2V/dr2 < 0 - (9.2) 

The first property is motivated by simplicity, and the 

second by the expectation that the confining potential rises 

no faster than linearly. Both are satisfied by the 

effective power-law potentials just discussed. Then if m>u 

are masses of the constituents of two Q4 systems, one may 

prove34 that 

IYm(0)12 2 (m/n) lYu(0)12 . (9.3) 

This result holds for the ground state under the assumptions 

stated, for all levels in power-law potentials (compare 

eq. (7.12)), and for all levels in a general potential 

satisfying the assumptions, in WKB approximation. 33 It 

implies a lower bound on leptonic widths in the more massive 

system as, in the case at hand, 

T(T,+ 

n 

(9.4) 

The lower bounds on upsilon leptonic widths are plotted in 

Fig. 16, together with the experimental measurements. A 

b-quark charge of 2/3 is seen to be incompatible with the 

bound. The conclusion that lebl = l/3 is substantiated by 

+ - + - 
the measurements of R = u(e e +hadrons)/u(e e +N+u-). 
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By extrapolating from the upsilons to higher masses one 

may bound from below the integrated cross section for the 

production of the ground state of the next quarkonium family 

+ - 
in ee annihilations. F5 Using cross section measurements 

from PETRA35 it is possible to exclude on this basis a tt 

2 
resonance (charge 213 quarks) below 38.63 GeV/c . 

A semiclassical near-theorem relates the number of 

levels below flavor threshold to the mass of the 

constituents. This would seem to be a question ill-suited 

to a nonrelativistic approach because it is necessary to 

compute both quarkonium (Q6) masses and the mass of the 

lightest flavored (4s) state. The latter is unlikely to be 

governed by a potential theory description. However, a key 

simplifying observation was made by Eichten and Gottfried 36 

who noted that the mass of the light quark-heavy quark state 

can be written as 

M(Qq) = M(Q) + M(q) + binding + hyperfine . (9.5) 

Al though the binding energy may not be calculable, it is 

reasonable to suppose that it depends upon the reduced mass 

of the constituents, which tends to M(q) as M(Q)+-. Thus the 

binding energy must become independent of the heavy quark 

mass. Furthermore, the hyperfine splitting of the O-+ and 
-- 

1 (Qq) levels must certainly vary as l/M(Q). It therefore 

vanishes as M(Q)‘-. Hence in the limit of infinite quark 

mass, the difference 
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6(M(Q)) = 2XCQq) - ZM(Q) + 6m , 
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(9.6) 

independent of the heavy-quark mass. 

In the regime in which &CM(Q)) = 6- is a good 

approximation, the number of levels below flavor threshold 

is easily calculated. 37 
Consider any confining potential. 

In semiclassical approximation the number of levels bound 

below E = ZMCQ) + 6_ is specified by the quantization 

condition 

drCM(Q)(Am-VW)l"2 =(n-$I , (9.7) 

where to save writing the zero of energy has been set at 

2MCQ). The classical turning point r6, defined through 

V(r,) = 6_ (9.8) 

is independent of M(Q), so we have by inspection the result 

that 

(n- ;, -m (9.9) 

It is likely that the limit (9.6) is already approached 

within 10% in the charmonium system, in which two 3s1 levels 

lie below charm threshold. Thus there should be slightly 

less than four bound levels in the upsilon family, in 

agreement with the observation of three narrow vector 
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states. The SUCCPSS of this prediction provides another 

verification of flavor independence, jrhich was the principal 

assumption. Xany “arrow levels are thus to be expected for 

the next quarkonium family, when it is found, since the next 

quark maSs certainly exceeds 18 GeV/c’. 

It is interesting to see how the result (9.9) is 

realized in specific potentials. To make this plain, I show 

in Fig. 17 the evolution with constituent mass of the 

spectra of the potentials V(r) = -r -l/2 
, V(r) = In r and 

‘i(r) = r, l/3 0 for which AE--p , p , -l/3 
and u , respectively, 

according to (7.13). All the levels fall deeper into the 

wells as II is increased. For the potential V(r) = -=’ 12 

singular at the origin, the levels spread apart as they sink 

into the well. For the linear potential, no such pit 

exists, but the levels are packed more densely as 11 

increases. The logarithmic potential represents a” 

intermediate case in which the level spacing is independent 

of the inas and levels drop into the well at a common rate 

given by 

Ei(p’) = Ei(~) - ; l”(u’/p) * (9.10) 

In each case the rate of accumulation of levels below any 

specific value of the energy is given by (9.9). 

A corollary to the conclusion that the classical 

turning point of the last narrow level has become 

independent of quark mass is that the single-channel 
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analysis cannot be extended past about 1 fm. Heavier (Qi) 

systems will extend our knowledge of the interaction to 

snorter cistances, but are unlikely to address the nature of 

the confining potential. 

10. THE INVERSE BOUND-STATE PROBLEM FOR QUARKONIUM 

In the preceding lecture we reviewed some of the 

motivation for an interest in heavy-quark spectroscopy, and 

investigated a few of the ways in which elementary methods 

of quantum mechanics can be useful. In this lecture we 

shall approach similar issues “sing different techniques. 

We seek answers to the following questions: 

. How, and to what extent, does the spectrum of a quarkonium 

system measure the interquark potential? 

* Where do we know the potential, and what is its form? The 

elementary analyses suggested that a form 

V(r) = (730 MeV)log(r) (10.1) 

is a convenient summary for the ly and T states. 

* What information do we need to know the potential better? 

* What conclusions may we draw about the force between 

quarks? 

In addition, it is of interest to generate some expectations 

for the properties of the next quarkonium family, the (tt) 

bound states. Our tool in this lecture will be the inverse 

scattering formalism. 
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We are a11 familiar with the direct problem of 

scattering theory, which consists in calculating the 

S-matrix from the equation of motion and the interaction. 

In typical nonrelativistic applications the quantities to be 

computed are the bound-state positions and wavefunctions and 

the scattering amplitudes or phase shifts. 

The inverse problem of scattering theory is 

complementary: given the equation of motion and the 

S-matrix, deduce the interaction. This is not the place for 

a thorough treatment of the inverse scattering problem, 

which has an immense literature, nor even to give a complete 

derivation of the results we shall use. Instead, we shall 

present some examples to make plausible the utility of the 

inverse formalism. We shall next pass on to a statement of 

the quantum mechanical problem first for finite potentials 

and then for confining potentials. There follows a review 

of the methodology followed in applications to quarkonium, 

and a study of the associated phenomenology of the 11, and T 

families. The lecture concludes with a summary of what has 

been learned and an outlook on future prospects. 
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11. SOME SIMPLE INVERSE PROBLEMS 

Two examples will illustrate the sort of information 

(and assumptions!) required to determine a potential. 

11.1 The Classical Inverse Problem 

In classical mechanics, knowledge of the period of 

oscillation as a function of energy is sufficient to 

determine uniquely a symmetric, monotonic potential. 

Consider a one-dimensional potential well of the kind shown 

in Fig. 18. The energy of a particle moving in such a well 

is given by 

.2 
E = !.s- + V(x) . 

2 

Solving for 

; = [2cy]“2 

(11.1) 

(11.2) 

gives an expression for dt/dx which may be integrated to 

give the period 
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112 .x(E) dx 
T(E) = 4(T) i, - 

JE-V‘ 

l/2 E 
= 2(2m) J, 

dV(dx/dV) 

JE-V' . 

FERMILAB-Pub-83/25-THY 

(11.3) 

If we divide this equation by J, where c1 is for the 

moment a parameter satisfying 

O<V<E(a , - - (11.4) 

integrate over the energy j:dE, and interchange the order of 

integration, we find 

I a dE T(E) = 2C2mjl/2 

O&FE- 
~~d”(dX/dV~~~dE[:E-“~(~-g)l-“’ 

ll (11.5) 

= Zn(Zm) l/2 
x((I) . 

Now replacing cr+V, we obtain an expression for the shape of 

the potential in terms of the period, 

x(V) = 
1 

I 
" dE T(E) 

Zn(2m) l/2 0 
/Y-E' * 

(11.6) 

If, for example, the period is independent of energy, 

we readily find that 

x(V) -m , (11.7) 

Or’, in other words, 

‘J(x) 0: x2 . (11.8) 
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This is a familiar result. 

11.2 The Semiclassical Inverse Problem 

Very similar arithmetic leads to the reconstruction, in 

semiclassical approximation, of a symmetric, monotonic 

potential in one dimension. In this instance we begin with 

the quantization condition 

dx[2v(En-V(x))l 
l/2 ‘J = (n+ T,~ . (11 .Y) 

Differentiating both sides with respect to the principal 

quantum number n, we have 

’ dx(aE/an) 
(2P)“210 =ll , 

JE-V’ 

which may be rewritten as 

c l/2 
I 

V(O)20 

(11 .lO) 

(11.11) 

This is quite similar in form to eq. (11.31, and so we 

follow the same steps as before. Operating on the equation 

with G dE(a-E)-“’ and interchanging the order of 

integration, we find 

J;d”(dx/dVjl’ dE 
“2(,_,)1’2 

= ?I 
V (a-E) ‘1 C2~(o-Ejl”2(~E/8nj 

(11.12) 
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The JdE on the left-hand side is a Beta function whose value 

is 77. Consequently upon renaming ~r+li we are left with the 

result 

x(v) = Jv 
dE 

0 Czp(v-E)1"2(aE/an) . 
('1.13) 

Again it is worthwhile to examine an elementary case. 

Consider a constant level density 

aElan = 2 , (11.14) 

with mass 

2u=l . (11.15) 

An elementary computation gives the well-known result 

x=JV . (11.16) 

2 
v=x . (11.17) 

With these two examples to provide plausibility, we now 

turn to the general case in one-dimensional quantum 

mechanics. 
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12. THE QUANTUM-MECHANICAL INVERSE PROBLEM 

The general inverse problem in one-dimensional quantum 

mechanics as governed by the Schradinger equation is highly 

developed. A finite potential which binds N bound states is 

completely specified by 2N bound-state parameters plus 

knowledge of the phase shift everywhere in the co”tinuum.F6 

The procedure, roughly speaking, is to write a dispersion 

relation for the Schrodinger wavefunction, for which one 

must specify the position and wavefunction normalization of 

each bound state (as poles and residues) and the reflection 

coefficient in the continuum (as a dispersion integral). 

Having such a representation of the wavefunction VI(x) and 

knowing the (Schrodinger) equation of motion, one may solve 

for the potential V(x). 

An interesting special case is that of a symmetric 

potential, for which the required bound-state information is 

reduced to N parameters - one for each bound state. A 

further simplification is obtained in the case of a 

symmetric potential which is also reflectionless, which is 

to say that an incident wave is completely transmitted, 

throughout the continuum. The simplest such potential is 

-2K 2 
V(x) = 

cosh2icx 
(12.1) 

For a particle of reduced mass (2p=l) it binds a single 

level at 
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E, = -K’ (12.2) 

and has a vanishing reflection coefficient everywhere in the 

continuum. For potentials of this class, the dispersion 

integral disappears, and we are left with an N-parameter 

algebraic equation for a potential which binds N levels. 

Consequently, a symmetric, reflectionless potential is 

completely specified by the set of binding energies of its 

levels. The inverse Schrodinger problem for reflectionless 

potentials has a deep and interesting connection with 

soliton solutions to the Korteweg-de Vries equation. 39 

The extensive development of the inverse scattering 

formalism has been concentrated on finite potentials, i.e., 

those which bind a finite number of levels. What can be 

done for a confining potential? It is natural 40 to try to 

build up a confining potential by a sequence Of 

reflectionless approximations. A reflectionless approximant 

V,(x) is constructed to reproduce the first N levels of the 

true potential V(x) I and one hopes that in the limit of a 

large number of bound states, 

lim V,(x) -t V(x) 
N+- 

(12.3) 

in some suitable sense. 

It is intuitively reasonable that this procedure should 

provide a faithful representation of the true potential. 

This expectation is supported by a number of numerical 
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examples, some of which are shown in Figs. 19-21. I” the 

case of confining potentials, we must supplement the 

bound-state information with a choice of the ionization 

point VN(+-) for each approximant. We have found (through 

numerical experiments as well as analytic studies) that the 

choice 

VN(tm) = 4 (EN l EN+,) (12.4) 

yields sensible approximations. It satisfies the obvious 

requirements 

EN 5 VN(+-) 5 EN+’ , (12.5) 

and has the advantage of being easy to remember. In the 

limit as N-t=, the details of this choice become unimportant. 

Take first the case of the harmonic oscillator 

potential 

2 
V(x) = x , (12.6) 

which supports bound states at energies 

E n = 2n+l ( n=0,1,2,... (12.7) 

The first five reflectionless approximations to (12.6), with 

IIN given by (12.4), are compared with the true potential 

in Fig. 19(a)-(e). The agreement is excellent in the region 

of x relevant to the specified energy levels. Successive 

approximations to the bound-stats wave functions are plotted 



in Fig. 19(f)-(j). They are seen to converge rapidly toward 

the exact solutions shown in Fig. 19(k). 

As a second example, consider the linear potential 

‘J(x) = [xl , (12.8) 

for which the bound-state energies are given by the zeros of 

Airy functions 

Ai’ C-E,) = 0 , n = 1,3,5... 

(12.9) 
Ai(-En) = 0 , n = 2,4,6,... 

This energy spectrum gives rise to the approximate 

potentials and wavefunctions displayed in Fig. 20. The 

agreement is again extremely encouraging. 

Finally, it is well to examine the pathological case of 

an infinitely deep square-well potential 

I 
0, 1x1 < n/2 

V(x) = 

-. 1x1 > n/2 
(12.10) 

which has bound states at 

E 2 
n =n ( n = 1,2,... (12.11) 

The reconstructed potentials are shown in Fig. 21(a)-(e). 

The agreement between exact and approximate forms is rather 

less striking than for the two preceding examples. The 

manner in which the approximate wavefunctions plotted in 

Fig. 21(f)-(j) are increasingly excluded from the forbidden 
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region of space is noteworthy, however. 

These examples, which suggest the convergence of 

reflectionless approximations to nonpathological potentials, 

also indicate a” acceptable rate of convergence. It has 

been possible to prove a number of limited statements about 

the fact of convergence, 41-43 but nothing is known about the 

rate Of convergence beyond what is indicated by the 

numerical experiments. I” the numerical experiments 

reported here the potentials have been reconstructed from 

the binding energies of the levels of both odd and even 

parity. Alternatively, one may base the reconstruction on 

the states of either parity, in which case the binding 

energies must be supplemented with wave function information 

such as the value or slope of the *aYe function at the 

origin. Some of the proofs of convergence have been carried 

through for all three sets of input information. 

13. DETERMINATIONS OF THE QUARKONIUM POTENTIAL 

In a series of publications, 44-46 Rosner, Thacker, and 

I have extended the inverse scattering formalism For 

reflectionless potentials to the reconstruction of central 

potentials in three space dimensions, and have derived 

approximate interquark potentials from the quarkonium data. 

I” this Section I will briefly summarize what we have done 

and what we think we have learned about the force between 

quarks. 
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The reduced radial SchrBdinger equation for s-waves, 

2. u”(r) 
2u 

+ [E-V(r)lu(r) = 0 I (13.1) 

is identical in form to the one-dimensional Schradinger 

equation. As a consequence, the one-dimensional inverse 

scattering formalism can be applied to the study of 

quarkonium systems. However, because of the boundary 

condition 

u(O) = 0 (13.2) 

imposed by the finiteness of the radial wave function at the 

origin, only the odd-parity levels in one dimension 

correspond to physical states. Therefore, in order to apply 

our one-dimensional formalism to the psions, we must regard 

the ‘4 and $I’ as the second and fourth levels of a symmetric 

one-dimensional potential V(r) = V(-r). The even-parity 

levels which appear in the one-dimensional problem are 

interleaved with the physical psions, one below the I), one 

between the J, and $I’, and so on. 

To substitute in the reconstruction algorithm for the 

fictitious levels we require information about the slopes of 

the odd-parity reduced radial wavefunctions, or 

equivalently, the values of the three-dimensional 

wavefunctions at the origin. These are related in principle 

to the measured leptonic decay widths through the connection 
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IYy,(o)l* = C1/16ncx2e~)-p-Mf, r(V"+e+e-) . (13.3) 

With the parameter p=l, this is simply the 

Van Royen-Weisskopf formula 25 of nonrelativistic potential 

scattering. In a purely Coulombic quarkonium system, 

quantum chromodynamics yields a correction 

o(!32) 
3 

-1 
(13.4) 

where u. s is the strong coupling constant and 6 is the speed 

of the bound quark. Although the known quarkonium families 

are decidedly non-Coulombic, the belief that the strong 

coupling constant may be as large as as=0.2-0.3 has led many 

authors to suspect that p may be appreciably greater than 

one. 

In the most recent analysis, 
46 we use as inputs to the 

charmonium potential the masses and leptonic widths of $ and 

tJ’ 9 and choose the “ionization point” as F7 

EO = V(+-) -3.8Gev . (13.5) 

This is half way between the $’ and the first omitted 

fictitious (even-parity) level, estimated by 

E. = jM($‘)+M(4.028) 
4 (13.6) 

To explore the effects of our ignorance of strong radiative 
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corrections to the decay rate, we take as representative 

values Of the multiplicative correction to the 

van Royen-Weisskopf formula p=l (which corresponds to no 

correction), and p=l.4 and 2. We believe, but cannot prove, 

that p=2 represents a larger correction than is plausible, 

and intend that the extremes p-(1,2) bracket the true value. 

Although only s-wave information is used systematically 

in the inverse-scattering algorithm, information about other 

partial waves may be used to discriminate among potentials 

constructed under varying assumptions for the quark mass. 

For each value of p. we select the value of the charmed 

quark mass m c which correctly reproduces the center of 

gravity of the 23PJ x states. The resulting potentials are 

shown in Fig. 22. For each potential we choose a value of 

the b-quark mass which reproduces the mass of the T ground 

state, and the” compute the complete upsilon spectrum. The 

agreement with experiment is quite satisfying. 

The three -harmonium potentials are compared in 

Fig. 23. In the range 0.5 GeV-’ -1 < r <5 GeV , - - the potentials 

Vary approximately logarithmically with the interquark 

separation, a3 expected on the basis of the scaling 

arguments reviewed in the first lecture. The local 

fluctuations are artifacts of the reflectionless approximant 

technique. Also shown in Fig. 23 (as the short-dashed line) 

is the shape of the QCD-inspired potential of BuchmUller and 

TY~,~’ which is typical of explicit potentials that provide 

a good representation of I) and T data. In the region of 
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space to which charmonium observables are sensitive, it 

provides a smooth interpolation of the inverse-scattering 

results. 

The method of constructing potentials from the upsilon 

family differs only slightly in detail. In this case we 

took as inputs the masses and leptonic widths of the 1 s-4s 

levels, and chose as ionization point the value 

E. ii 5M(4S)-M(3S) = 1o 6 GeV 
4 (13.7) 

Since the spectrum of p-wave states is not yet well 

established, we were not able to use the P-states to select 

the ” b es t ” value of the b-quark mass. 
F8 We therefore chose 

mb for each p rather arbitrarily to be close to the value 

needed to reproduce the T(lS) mass in the corresponding 

charmonium potential. Although this does not lead to 

appreciable ambiguity in our conclusions, it represents an 

indefiniteness that one would hope eventually to overcome. 

The resulting potentials are shown in Fig. 24. For each of 

them we choose a value of the charmed quark mass m which c 

reproduces the mass of the J, ground state. Again, the 

agreement between prediction and observation is 

satisfactory. 

The three T potentials are compared in Fig. 25. They 

are essentially indistinguishable for interquark separations 

larger than 0.4 GeV -1 . They also approximately coincide with 

other potentials that reproduce the data. Like the 
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bzharmonium potentials of Fig. 23, the T potentials behave 

approximately logarithmically in the interval 0.5 GeV -’ < I‘ - 

<5 GeV-‘. At distances smaller than 0.4 GeV -1 
there is - 

considerable variation among the potentials. This provides 

a measure of our current ignorance of the interaction 

between quarks at short distances. 

The potentials constructed from the I) and T families 

are compared with one another for equal values of the 

parameter p in Fig. 26, where they have been superposed by 

requiring that the $(3097) levels coincide. The agreement 

in each case is excellent for r 2 0.5 GeV -’ (0.1 fm), where 

both quarkonium systems provide information. The comparison 

provides direct evidence that the strong (quark-antiquark) 

interaction is flavor-independent in the range 

0.1 fm< r <l fm. This conclusion is supported by the 

quantitative agreement of predictions from $I potentials with 

T observables and of predictions from T potentials with JI 

observables. 

A number of refinements to this analysis can be 

envisaged. Knowledge of the positions of the Z3PJ, 33PJ, 

3 and 4 P J levels in the upsilon family and improved 

measurements of the leptonic widths of all the 3s1 

quarkonium levels will make possible more precise 

determinations of the potential. Detailed studies of the El 

transition rates for the upsilon will test in a different 

manner the nonrelativistic picture of quarkonium. The fine 

structure of the 3 P states and locations of the ‘P state3 



-46- FERMILAB-Pub-83/25-THY 

hold important clues to the Lorentz structure Of the 

interquark interaction. An extension of our “measurements” 

of the potential to larger distances is unlikely because the 

single-channel description is inappropriate above flavor 

threshold. As we saw in Section 9, it is plausible that the 

dissociation radius is flavor-independent and approximately 

equal to 1 fm. To extend our knowledge to shorter distances 

we require a more massive quarkonium family. By virtue of 

the general result (9.9), the next quarkonium family will 

contain eight or mope narrow 3s1 levels, which would both 

extend and refine our knowledge of the potential. Some 

projections based upon the upsilon system are shown in 

Fig. 27. 

14. OUTLOOK 

The I) and T quarkonium systems have made accessible to 

us a considerable amount of new information about the force 

between quarks. What has been learned ranges from the 

qualitative insight that nonrelativistic methods are apt to 

a rather precise determination of the interquark potential 

at distances between about 0.1 fm and 1 fm. Some of the 

analysis techniques which lead to a determination of the 

potential have bee” reviewed in these lectures. There are 

other important issues that we have not touched on here in 

iakopane. Among them are the general problem of fine 
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structure and the spacetime form of the interaction, and the 

quantitative application of perturbative QCD to quarkonium 

decay rates. Both of these seem ripe for significant 

development. In all areas we would benefit enormously from 

the observation and detailed study of one more quarkonium 

0 family below the mass of the Z . 
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Fl. 

F2. 

F3. 

F4. 

F5. 

F6. 

F7. 

F8. 

Many of these points are treated more thoroughly in my 

1981 Les Houches lectures, Ref. 2, where extensive and 

explicit references are given. 

Why su(-)c should so closely resemble SU(3) remains c 

to be clearly understood. This may eventually be a 

good lattice exercise. 

There has been a good deal of progress toward a priori 

lattice QCD calculations of the spectrum. See the 

papers cited in Ref. 3. 

The BE threshold is based on Ref. 23. 

See, for example, Fig. 10 of Quigg, ref. 28. 

A partial bibliography is given in ref. 38. 

The CESR energy scale was adopted for this analysis. 

Energies should be increased by about 25 MeV. 

Our expectations for the 3P(bi) center of gravity are 

in reasonable accord with the measurement reported in 

sec. 6. 
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TABLE I. Light Mesons as Quark-Antiquark Bound States 

Mixing? JPC I=1 I=0 I='/2 

0 
-+ 

n(l40) "(549) nt(95a) K(496) 
3D1 -- 

1 ~(776) d7a4) '$(1019) K*(a92) 

1 
+- 

B(1231) H(1190ja) QB(1355)b) 

0 
++ 

6(981) E(1300)?h) S*(980) K(1500)? ? 

1 
++ A, (1240ja) D(l285) EC14181 QA(1340)b) 

3F2 2 
++ 

A,(l317) fO(l273) f*(1516) K**(1430) 
2-+ A3(1660) L(1765)? 

3s1 -- 
1 ~'(1600) $'(1634) K*(l650)? 

-- 
2 

3G3 -- 
3 g(1700) ~(1670) $3(1870)c) K*(1753)d) 
3 +- 

3P2 2++ fn(1700)e) e(l64o)g)? 
3 ++ 

4++ K+Ks(2060jf) h(Z040) K*(2070)d) 

a)J.A. Dankowych, et al., Phys. Rev. Lett. 5, 580(1981). 

b) D.W.G.S. Leith, in Experimental Meson Spectroscopy-1977, edited by E. van Goeler 

and R. Weinstein, Northeastern University Press, Boston, p. 207. 
Cl T. Armstrong, et al. Phys. Lett. llOB, 77(1982). 

d)D.Aston, et al., Phys. Lett. 1068, 235(19al). W.E. Cleland, et al., Phys. Lett. 

G, 465(1980). P.A. Dorsaz, Universite de Ge&ve Thesis UGVA-Thbse-1994. 
e) R.J. Cashmore, in Experimental Meson Spectroscopy-1980, edited by S.U. Chung and 

S.J. Lindenbaum, American Institute of Physics, New York, 1981, p. 1. L.Montanet, 

in High Energy Physics-1980, edited by L. Durand and L.C. Pondrom, American 

Institute of Physics, New York, p. 1196. 

r-1 W.E. Cleland, et al., UniversitQ de G&eve preprint UGVA-DPNC '980/07-10'. See also 

Montanet, op. cit. 

g)c . Edwards, et al., Phys. Rev. Lett. 48, 458(1982). 

h)According to A.B. Wicklund, et al., Phys. Rev. Lett. 5, 1469(19aO), the pole lies 

at 1425 MeV. 
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TABLE II. Baryon Magnetic Moments (in nuclear magnetons) 

Baryon Quark Model wPredictions"a) Experiment 

P 

n 

A 

A-E0 

E+ 

E0 

z- 

E 
0 

f 

(4u-d)/3 

(4d-u)/3 

s 

(d-u)/& -1.633 

(4u-s)/3 2.673 

(Zu+Zd-s)/3 0.791 

(4d-s)/3 -1.091 

(43-u)/3 -1.436 -1.253+0.014f) 

(43-d)/3 -0.494 -0.69+0.04 f) 

2.793 

-1.913 

-0.6138 

2.793 

-1.913 

-0.6138 *0.004$ 
-0.6129+0.0045 

2.33kO.13 e) 

2.357+0.012 
2.368to.o,4+o.:/g) 

a) Underlined values are inputs. 

b) L. Schachinger, et al., Phys. Rev. Lett. 2, 1348(1978). 

C) P.T. Cox, et al., Phys. Rev. Lett. 46, 877(1981). 

d) F. Dydak, et al., Nucl. Phys. 6118, l(1977). 

e) 
R. Settles, et al., Phys. Rev. Dz, 2154(1979). 

f) L.C. Pondrom, contribution to the 5th International Symposium on High 

Energy Spin Physics, Brookhaven, 1982. 

g) J.P. Marriner, et al., FERMILAB-Conf-82/85-EXP, contribution to the 5th 

International Symposium on High Energy Spin Physics, Brookhaven, 1982. 
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TABLE III. Candidates for Radially-Excited Pseudoscalars 

State Isospin Seen In Reference 

~'(1342) 1 ET M. Bonesini, et al., Phys. Lett. 
,038, 75(1981). 

n(1275) 0 nnn N. Stanton, et al., Phys. Rev. 
Lett. 42, 346(1981). 

n'(1400) 0 Stanton, et al., quoted by 
F.E. Close, ref. 5. 

l(1440) 0 $+Y+(Ki&) C. Edwards, et al., Phys. Rev. 
Lett. 2, 259(1982); D.L. Scharre 
et al., Phys. Lett. 978, 329(1980 - 

K'(1400) 1 
T 

Knn(Kc) G. Brandenburg, et al., Phys. Rev. 
Lett. 2, 1239(1976): D. Aston, 
et al., Phys. Lett. 106B, 235 - 
(1981). 

‘9 
1. 
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TABLE IV. Properties of the 3S, Upsilon Levels 

T T' T" p I 

Mass (MeV/c2) 9459.7+0.6a) 10019.1 10350.3 10572.4 

M-M(T) (MeV/c2) 559.4i2.5 890.6+0.sb) 1112.7+4.1 

r ee (keV) 1.15~0.13 0.54to.03 0.35+0.03 0.25~0.06 

r total (keV) 42.2k14.9 IT(T) -I-(T) 14.4k5.2 MeV 

a) A.S. Artamonov, et al., Phys. Lett. 1188, 225(1982). 

b) P. Franzini and J. Lee-Franzini, Phys. Rep. 81, 239(1982). 
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FIGURE CAPTIONS 
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Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6: 

Fig. 7: 

Fig. 8: 

Fig. 9: 

Fig. 10: 

Fig. 11: 

Evidence for higher-twist effects? 

Regge trajectories of the natural-parity mesons. 

Uncertain states are indicated by open circles. 

Regge trajectories of the nucleon, a, and A baryon 

resonances. 

K+K-n 0 invariant ma33 distribution for events 

consistent with the hypothesis @+Y(K+K-no). Shaded 

histogram has the requirement M(KK)<1125 MeV/c2. 

[From ref. 14.1 

K+K-n 
0 Dalitz plot for events with 

1400 MeV/c2<M(K+K-To) < 1500 MeV/c2. Solid - - curve 

shows the boundary for M(Kl(rr) = 1450 MeV/c2. The 

dashed line indicates M(KI() = 1125 MeV/c 2 . [From 

ref. 14.3 

Cross section for YY+n TI O O (for lcosB*[<O.7), as a 

function of the 3’11’ invariant mass W. 8’ is the 

angle between the beam direction and a 3 0 measured 

in the rr°Fo rest system. [From ref. 15.1 

The spectrum of charmonium. 

The upsilon spectrum. 

Level spacings in the I) and T families. 

Semiclassical (curve) and exact (small dots) 

ratio3 (g3-~2)/(~2-~1) for s-wave levels in 

potentials V(r) = hr”. [From ref. 24.1 

The quantity (E2s-E2p)/(E2s-E,s) for power-law 



Fig. 12: 

Fig. 13: 

Fig. 14: 

Fig. 15: 

Fig. 16: 
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potentials V(r) = XrV, -l<v<2. The datum is the -- 

value in the charmonium system. 

The quantity (E3S-E3P)/(~3S-E2S) for power-law 

potentials V(r) = A?“, -l<v<2 -- CC. Quigg and 

J.L. Rosner, unpublished). The datum is based on 

the CUSB observation, ref. 22. 

The quantity (E,, -E3)/(E3-E2) for s-wave levels in 

power-law potentials V(r) = ArV, -l<v<2. The datum -- 

is the value in the upsilon system. 

Square of the wavefunction at the origin of the 

psions. Possible mixing between the 23S,(3686) 

and 33D,(3770) levels has been neglected. (a) A 

best fit proportional to (n-l/loP, with p = 

-0.83+0.11 (v-0.12~0.08), assuming the 

conventional 4S assignment for Y(4415). (b) An 

alternative 5s assignment for J1(4i15), which 

corresponds to p = -0.79t0.10 (~-0.15~0.08). In 

plotting the data against (n-1/4), we have 

anticipated the result p > -1 (v > 0). 

Same as Fig. 14 for the upsilons. The best fit is 

for p = -0.79io.10 (v=O. 1 

Lower bounds for lepton ,i 

(after Rosner, Quigg, 

together with the data c i 

bounds are computed 

5+0.08). 

C decays of T and T’ 

and Thacker, ref. 34), 

ted in Table IV. The 

from eq. (9.4) using * 

leptonic widths lo below the central values and 

assuming mb/m c 1 3. 
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Fig. 17: Comparison of mass dependence of energy levels in 

three potentials: (a) V(r) = -r-1’2; (b) V(r) = 

In r; (cl V(r) = r. [From ref. 24.1 

Fig. 18: A symmetric, monotonic potential in one dimension. 

Fig. 19: Approximate reconstruction of the harmonic 

oscillator potential. (a)-(e): N=1,2,3,4,5 

reflectionless approximations to the potential. 

The true potential is shown for comparison. 

(f)-(j): wave functions obtained in the 

N=1,2,3,4,5 reflectionless approximations; 

(k) exact wave functions. [From ref. 40.1 

Fig. 20: Approximate reconstruction of the linear 

potential. See the caption to Fig. 19. [From 

ref.40.1 

Fig. 21: Approximate reconstruction of the infinite 

square-well potential. See the caption to 

Fig. 19. [From ref. 40.1 

Fig. 22: Potentials constructed from from the $ and $I. 

(a) p=l, mc=l .l GeV/c2; (b) p=1.4, mc=l .4 GeV/c2; 

Cc) p=2, 
2 

mc=l .7 GeV/c . Levels of the charmonium 

(T) system are plotted on the left (right). Solid 

lines denote the 
3sl 

states; dashed lines indicate 

the mean mass of the 23PJ states. The right-hand 

scale (for the T’s) is shifted by an amount 

2(mb-mc) with respect to the left-hand (psion) 

scale. [From ref. 46.1 

Fig. 23: Comparison of the charmonium potentials of 
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Fig. 22. Dot-dashed line: p-l, mc=l .l GeV/c 2 ; 

solid line: p=1.4, 
2 

mc=l .4 GeV/c ; long-dashed 

line: p=2, mc-1.7 GeV/c2. The short-dashed line is 

the “asymptotic freedom” potential of Ref. 31. 

[From ref. 46.1 

Fig. 24: Potentials reconstructed from the T spectrum 

(a) p-l, mb=4.5 GeV/c2; (b) ~~1.4, mb=4.75 CeV/c 2 ; 

Cc) p=2, 
2 mb=5 GeV/c . Levels of the upsilon 

(charmonium) system are plotted on the right 

(left). Solid lines denote the 3Sl states; dashed 

lines indicate the mean mass of the 23PJ states. 

The left-hand scale (for the psions) is shifted by 

an amount 2(mc-m,) with respect to the right-hand 

(upsilon) scale. [From ref. 46.1 

Fig. 25: Comparison of the upsilon potentials of Fig. 24. 

Dot-dashed line: p-l, mb=4.5 GeV/c2; solid line: 

p=l.4, 2 mb=4.75 GeV/c ; long-dashed line: p-2, 

mb=5 GeV/c2. The short-dashed line is the 

“asymptotic freedom” potential of ref. 31. [From 

ref. 46.1 

Fig. 26: Comparison of potentials deduced from the $ and T 

families. The energy scale is appropriate for the 

* spectrum. In each graph, the label on the 

left-hand ordinate refers to the potential 

constructed using T data (solid curve). The label 

on the right-hand ordinate refers to the potential 

constructed using psion data (dashed curve). 
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(a) p=l; (b) p-1.4; Cc) p=2. [From ref. 46.1 

Fig. 27: Relative positions of T and (QP) levels in the 

p=1.4, 
2 

mb=4.75 CeV/c potential. The 
3Sl 

levels 

ape indicated by solid lines. The fictitious 

“even-parity” levels of the T problem are shown as 

dotted lines. Shaded bands denote the flavor 

threshold (a) mQ=20 CeV/c2; (b) mQ=30 GeV/c2. 

[From ref. 47.1 
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