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ABSTRACT 

In a large N analysis of the O(N) IQ4 theory in four 

dimensions, we find that the O(N) symmetric lowest lying 

state is a metastable state. The decay rate of this false 

vacuum into a broken symmetry state is however suppressed 

(*exp(-N) 1. Nevertheless, at finite temperature, we find 

that above a critical temperature TC the only existing phase 

is a broken symmetry phase with N-l goldstone bosons. This 

phase reflects the intrinsic instability of this theory, and 

the large ac structure indicates that the renormalized A@ 4 

theory is inconsistent. The only acceptable version of this 

theory is its regularized form which becomes a free field 

theory as the regularization is removed. 
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I. INTRODUCTION 

Quantum field theories with N dynamical variables, N*m, 

have recently attracted attention from several different 

perspectives. l-4 Traditionally, these theories have served 

mostly as study grounds for extending one's intuition in 

handling the basic problems of quantum field theory. 

Aproximations used at large N possess many of the properties 

believed to be true in the exact solution. Thus, it is 

hoped that the theory's features revealed in the large N 

limit as well as the lessons learned in these analyses are 

worthwhile. 

Indeed, the phase structure and the nature of the 

ground state of large N theories are of much interest. 

Recently, t'Hooft3 has obtained results for the planar model 

when the perturbation expansion is performed in the phase 

where all particles are massive and the renormalized 

coupling constant magnitude is bounded from above. The 

stability of this phase at zero temperature as well as at 

finite temperature will be investigated for an analogous 

O(N) vector model in the present study. Quantum as well as 

thermal fluctuations will be calculated in the large N limit 

and the full phase structure of the theory will be 

elucidated. 

Spontaneous symmetry breaking in the O(N)-symmetric 

vector model at large N was studied by Coleman, Jackiw and 

Politzer.5'6 It was found that the ground state could have a 



-3- FEEMILAB-Pub-83/23-THY 

broken or an unbroken O(N) symmetry. The theory was shown, 

however, to possess a tachyon and therefore be 

inconsistent. 7 Further analyses 889 revealed an O(N) 

symmetric phase free of tachyons and it was concluded that 

spontaneous symmetry breaking is impossible in the large N 

limit. The effective potential remained undefined at large 

values of the classical field in these analyses . 5-9 A 

detailed study of the phase structure of the O(N) vector 

model presented here shows some of these previous results to 

be in error. 

Another problem which concerns us is the existence of 

the renormalized XQ4 theory as a non-trivial field theory in 

four dimensions. Momentum space or lattice regularization 

are usually regarded as intermediate steps on the way to 

obtain a finite physical result either in perturbation 

theory or in a nonperturbative analysis. It is then assumed 

that the limit A'+= or a+O, result in a well-defined theory 

provided the correct vacuum has been chosen. In a lattice 

field theory, the ultraviolet fixed point reached must be 

the continuum theory originally meant to be analyzed. The 

existence of a renormalized XQ4 in four dimensions has been 

in doubt for some time.1°-12 There are no indications that 

the theory possesses a non-trivial ultraviolet fixed point13 

and recent rigorous results14r15 indicate that the 

renormalized XQ4 may very well be a free field theory in 

d>4. However we should emphasize that the regularized J.Q4 - 

theory may well describe the correct physics for a broad 
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spectrum of processes below the cutoff scale. 

In Sec. II we present a variational calculation 

combined with a large N approximation for the Hartree Fock 

ground state energy and the gap equation of the O(N) vector 

model. The resulting phase structure of the theory is 

described in Sec. III along with a comparison to previous 

results. We discuss, in some detail, the end point 

contribution in the variational calculation and also the 

appearance of tachyons and related instabilities for large 

values of $c. In Sec. IV we estimate the decay rate for the 

false vacuum (m#O phase) at zero temperature. We find it to 

be proportional to emN. Thermal fluctuations at finite 

temperature are calculated in Sec. V, where we find that at 

T>Tc (finite) the only existing phase of the theory is a 

broken symmetry phase. A summary and discussion of our 

results is given in Sec. VI. In Appendix A we present a 

calculation where the oscillator frequency16 is used as a 

variational parameter rather then the oscillator mass as in 

Sections II-V. The effective action that determines the 

dynamics involved in the decay of the false vacuum is 

calculated in Appendix B. 
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II. VARIATIONAL CALCULATION AND l/N EXPANSION 

The O(N) symmetric XQ4 theory is defined from the 

functional integral 

Z (5 = JD&x, exp( jd”[-+,~,’ - $5’ 

where 3(x) is an N component real scalar field and po, X0 

are the unrenormalized mass and coupling constant. The 

large N behavior of the theory can be studied 4-9 holding XoN 

fixed as N+m. Here we will combine a variational calculation 

with the l/N expansion in order to obtain an upper limit for 

the ground state energy of the theory. Writing 3 as 3 = 

;5,+4 r where 
4, 

is a background classical field and $ is the 

N component quantum dynamical variable of the theory, we 

first calculate the kinetic energy K built up from the 

quantum fluctuation in 4. The Hartree Fock variational 

ground state is defined as the state annihilated by the 

operators a,(k) in the trial plane wave expansion of the 

quantum field ;6. 

+,(x,i, = j-j$ [ &k, ikh + Q.,+ f,(x) ] @.a 
where 
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fk(x) = (2~)-~'~exp(-ikx) and w* = J . k2+m2 

We choose here the oscillator mass m2 as our variational 

parameter. (Alternatively, one may vary uk instead of m2; 

this possibility will be discussed in Appendix A. ) The 

kinetic energy per unit volume given by 

Km = +<ofd~ +[ %t, +~&t,>Z-j IO) 

Q-3) 

is defined with an ultraviolet cutoff A2 or one may prefer 

to define the theory on a D dimensional Euclidean lattice 

with finite lattice spacing a. In what follows, whenever 

the regulated bare theory will be considered, it will be 

assumed that the theory has a nontrivial physical content at 

k2<<A2 (or k2<<(a/a)2) and not all of its physics is at the 

ultraviolet end. Thus, under certain circumstances the 

regulated theory may be regarded as an effective field 

theory at energies which are low on the scale of A2 -2 ora . 

The relation of K (m2) to the quantum fluctuation of 

$(x,t) can be expressed also by 

aK =-I t 4% = 
LW ad 

_ m” ‘;3 &k 1 
(err)" kL+mL 

(2.41 
aen% 2. am 
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This can be also derived from the Euclidean path integral 

over 4. 

I Do ,-Jd: %$(x1) '5 e[-&w -+mf< $>JvT 

(2.5) 

where&(a) is the Euclidean Lagrangian of a free field 4 of 

mass m. 

The ultraviolet cutoff will be defined from 

(2.6, 

and finally the kinetic energy is 

K (%I’) = & m44cg (+q 

Adding now the potential energy <V($)>o, 

Hartree Fock energy in the large N limit 

(2.7) 

we obtain the 

WC g: l-r?) = Ken? + < VCQ ‘v km? + V( (i;,:<g;, 
(2.8) 

The variational ground state energy of the theory is now 

found by minimizing W(Jz,m2) with respect to Jc and m2. The 

physics of the model is thus determined from the extremum 
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conditions in the {$c, m2} space. 

3W - = - r ~=q~~-/$ -x0($=+ < &)I = o Q-m= L am= 
(2.9) 

aw = - a-q = p + P z +A,( cjy+ a>) 3 = 0 
One should note, however, that in order to find the lowest 

energy eigenstate, the end point values of W($z,m2) must 

also be examined and compared to the extremal values found 

by solving Eqs. 2.9, 10. These extremum conditions can be 

expressed in terms of the renormalized parameters defined 

from 

A= A, 
I + g-e, iI (@ 

2 6 = g +,$z,/Y 
0 

(2. I I ) 

(2.12) 

where M2 is a renormalization scale and u2/X>0. Eqs. 2.9 

and 2.10 have now the form 

b-W = - -0 x XP> mz 
am% 257 To’ I gxp$) - (f’r /g> I 

(2.13) 

0 =- 
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$i = < [+ (y=) g$ (Lf$) j']=0 (2.14) 
c 

Since a<J2>/am2 = (-W/16rr2) loq (h2/m2) is non-zero in 

what is considered, as mentioned above, the physical region 

(m2ccA2) for the regulated theory, we see that the gap 

equation in Eq. 2.13 and aW/a$ in Eq. 2.14 vanish 

simultaneously at $,=O, m 2 = v; + Xo<J2> # 0 or 3,#0 

(~~+XO($~+<$2>)=0 ), m2=0. We will consider these extremum 

points as well as the end points in m2 (which do not satisfy 

Eqs. 2.14 and 2.15) by inserting these values (m2 = m2($z)) 

in W and find the lowest energy from W(Gz, m2(;62)). 

A convenient approach in discussing the energy 

eigenvalues determined by the extremum condition (gap 

equation Eq. 2.13 ) is to insert its solution into 

Eq. 2.8 . First, from Eqs. 2.6 and 2.8 we have 

(2.F) 

W(g=,w) = -$&dL$=$) +$[ $tj$ -&Jj& 
B 
(e$,f 

and finally, if the gap equation is satisfied one inserts 

the solution to Eq. 2.13 into Eq. 2.15 to obtain 
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W&,,L,, *z) = $ [k + &z k$+j ] (2.16) 

where $E = $z(m2) is determined from Eq. 2.13. These steps 

are clearlv traced in Fig. 1. The solid line is m211/X + 

(N/l6ll2) log(eM2/m2) 1 which determines $i(m2) f u2/X (gap 

equation 2.13). The dashed line is W(m2) of Eq. 2.16. 

Thus, for a given $i we find m2($:) from the solid line and 

knowing m2($:), we determine W($i) = W($i, m2(;bt)) from the 

dashed line. 

As seen in Fig. 1, the gap equation has two branches 

to the right and left of 

m,2 =M+ey+C’h ) = /l= e~/46+5,~El) (2.17) 

on which the m2 dependence of W($i, m2) is at the extremum. 

Note, however, that 

3’W 
7 = g+$, [k. + &go&] a mL (2. IS) 

is positive on the left hand side branch (m2<A2) if Xo>O. In 

the case lo<0 I a 2w/a 2m2 is positive for m2>mi, namely, on 

the right hand branch. 
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The significance of Xo>O and Xo<O can be seen in Eq. 

2.11. If X is held fixed as h'.+m, then clearly X0+0- (A 

necessary condition in a renormalized XG4 is Xo<O), whereas 

holding lo>0 implies A+0 as h2+-. Otherwise, for a fixed X 

and Xo>O the ultraviolet regulator must be kept fixed 

(finite A2 or lattice spacing a). These different cases 

will be discussed in Section III. 
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III. PHASES OF THE O(N)M4 VECTOR THEORY 

3.1 Gap Equation and End Point Contribution - Case XO>O 

The theory with a positive bare coupling constant 

exhibits the expected behavior. We will discuss the two 

cases (a) pi/X0 + (N/16n2)eA2 = u2/X and (b) ui/XO + 

(N/16n2)eh2 = -u2/X (recall that we denote u2/X always 

positive). As mentioned in Sec. II, since for XO>O we have 

m2>A2 
X (eq. 2.17), the interesting physical region is the 

rn2<<rn z branch in Fig. 1. 

In case (a), as seen in Fig. 1, the classical field $i 

reaches any value between sz=O at m2=m: and 4: = (@i)max at 

m2=m2 Clearly, 
X’ 

the ground state energy is W(O,mf) and the 

system is in the O(N) symmetric phase with pions of mass m 5 
Note that rnf is the solution of u2,/X = mf[l/A + (N/16n2) log 

(eM2/m2) 1 1 ‘ and since M2 exp(16n2/XN) = A2 exp(16n2/XoN) we 

can keep rnf<<A 2 only if u2/X is small enough. W($c(m2),m2) 

(Eq. 2.16) in Fig. 1 gives the value of the Hartree Fock 

energy W when the gap equation 3W/am2 = 0 in Eq. 2.13 is 

satisfied. The end point value of W(J2,m2) at m2=0 can be 

read from Eq. 2.15 (aW/am2 # 0). We have W(Ji,O) = 

(X0/4) d; + l.12/XJ2 > W(;$:,mf) and thus the end point value 

does not give a lower energy state. Case (a) is summarized 

in Fig. 2a. 
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In case (b) (ui/ho + (N/16x2)eA2 = -u2/X, Ao>O) we see 

in Fig. 1 that $2 has a minimum value $z = u2/X if the gap 

equation is satisfied. This value is obtained at m2=0 and 

there W(u2/X,0) = 0. The end point value (m2=O) of W($z, 

m2) gives W($i,O) = (X0/4)($: - )~~/h)~ (Eq. 2.15); it 

coincides with the gap equation solution at $g = u2/X and 

gives a broken O(N) symmetry ground state. It also gives 

the energy in the range ;bt<u2/X not attainable from the gap 

equation solution. Case (b) is summarized in Fig. 2b. 

Thus, the O(N) vector theory with lo>0 is consistent 
11 with a lattice theory with a finite lattice spacing- -1 asA . 

The physics at k2<A2 and in particular the phase structure 

is governed by the value of ug/Xo + (N/16n2)eA2. We have an 

O(N) symmetric or asymmetric ground state if this quantity 

is positive or negative, respectively. (The zero mass N-l 

pions in the broken symmetry phase are the goldstone bosons 

of the O(N)+O(N-1) breaking). The theory can be viewed as 

an effective field theory in the regime k2<<A2 where A2 must 

be kept fixed. If A2+~ (a-+0) the renormalized coupling 

constant X+0 (Eq. 2.11), and the theory is a free field 

theory.12-15 



-14- FEHMILAB-Pub-83/23-THY 

3.2 Gap Equation and End Point Contribution - Case Ao<O 

As mentioned in Sec. II, this case allows a finite 

renormalized X as A2+- and we are interested in determining 

whether a consistent A94 renormalized theory can be defined 

in four dimensions. Though the gap equation remains 

unchanged, both regimes m2cm2 x and m 2 2 >rn now x in Fig. 1 are 

of physical interest. Moreover, it has been shown above 

(Eq. 2.18) that the gap equation solution for m2>mt is a 

local minimum of W, whereas the solution of the gap equation 

for m2cm2 x is a local maximum of W. 

We would like now to relate our results for the case in 

which the gap equation is satisfied to those of refs. 5, 8, 

and 9. Rq. 2.15 can be rewritten in the form 

Wbpnl~) = $[+ +g&J$e~j ] 
+ F’{+j$ -m’[+ +,+rzt $7 I 1 eh’) 
+ $q if)E -my* + &40$~z) ] r 

Note that the coefficients of m2/2 and X0/4 in Eq. 3.1 are 

the gap equation (Eq. 2.13) and its square, respectively. 

Now, suppose we hold $i, m2 fixed and let X0+0- (X0+0- in 

the renormalized theory with a fixed X and A2+m). The last 

term in Eq. 3.1 now vanishes and we obtain the standard 

result for the effective potential, Veff(Gi, m2fx), 

presented in refs. (5) and (8-9). 
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A,- o- (3.2) 

= gL( (T;,‘2E) - I$+[; +,$jp5& ] 

V eff (@gtm2) reproduces, of course the same gap equation as 

well as the same value of W on the gap equation branches. 

Indeed, Eq. 2.18 is replaced now by 

???a= --L L, N 
2’mL L t x ~J$$~ I 

(3.3) 

and thus V eff has a local minimum as a function of m 2 in the 

range m2>m2 x, namely, when satisfying the gap equation (Fig. 

1 - solid line) on its right hand side branch. The value of 

the ground state energy can be read again from Fig. 1. In 

the case U;/Ao + (~116~~) eA 2 = u2/A, Veff is given by the 

dashed lines in Fig. 3a and Fig. 3b, and in the case ).1:/1~ 

+ (~/16n~) eA2 = -u2/X by the dashed lines in Figs. 3c and 

3d. This agrees with the results of refs. (a,9). We also 

plot on Fig. 3a-d the value of Veff that can be read from 

the left hand side branch (m2<mz) of the gap equation where 

V eff has a maximum. This is the solid line in Fig. 3 a-d 
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which agrees with the results of ref. (5) - 

The gap equation solutions have been considered above. 

These should be compared with the end point m2=0 value of 

W(;:,m2) from Eq. 2.15 . We have W(;2c,0) = (X0/4) (6; * 

u2/AJ2 < 0 which goes to minus infinity as ;62=. From our 

point of view, this upper limit on the ground state energy, 

which is unbounded from below, renders the Xo<O case 

intrinsically unstable. 10-12 Restricting ourselves to veff 
of Eq. 3.2 (X0$20 region) gives an end point contribution 

which is flat in this regime shown by the dotted curve in 

Fig. 3a-d. 

Thus, in addition to the previously obtained 

results""' in the l/N expansion, our variational 

calculation shows the existence of a new broken symmetry 

phase. This phase comes from the contribution of the end 

point value in the variational parameter range O<m2<m. Even 

for small values of ec the ground state is in this phase if 

4 is negative and 1ui1 large enough. (Note: &A0 + 

(N/16n2)eA2 = u2/X in Figs. 3a and 3b ). There exists a 

first order phase transition from the phase found in refs. 

8-9 where m2 = e112m2 = e1/2M2exp(16s2/AN) : m2 
X WO 

to the m2 = 

0 new phase.17 We note, however, as mentioned above, that 

the instability of this new phase at large $2 values implies 

a basic instability in the renormalized O(N) Ae4 vector 

theory. 
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Fig. 4 summarizes the different cases. We plot 

V eff($:,m2) (Eq. 3.2) as a function of m2 for different 

ranges of 4: f u2/A. For the renormalized theory (Ao<O) the 

maximum and minimum in these plots represent the O(N) 

symmetric phases found in refs. (5) and (a-9), 

respectively. The end point m2=0 gives the broken symmetry 

phase. The decay rate of the O(N) symmetric metastable 

false vacuum into the broken symmetry (m2=O) phase will be 

discussed in Sec. IV. 
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3.3 Tachyons - Case Ao>O 

We wish to examine first the scattering amplitude in 

the broken symmetry phase where the $. component of the 

field 3 has vacuum expectation value <$> and the fields 4l 
describe the N-l goldstone boson degrees of freedom. The 

appearance of poles at positive Euclidean momenta will be 

our main concern. To lowest order in l/N, the 71~ scattering 

amplitude is calculated by summing the "bubble diagrams" 

giving (in the Euclidean region) the amplitude 

1 
A- p +vMz 

(3.4) RR cpz- ma) &, + By, myv) ] +G>>’ 
where B(p2,m2,A2) is the 'TI loop integrall' 

Bq: N-I d3 m: A') = -y I 
I 

@d (k’+ rn’> ( (l<+p)‘+ ml) 

o+$pl+ Ir\’ ] 
(3.5) 

The c propagator is given by 

iD6,= &A 0 + By, m*,~=) 

(p=+m*> [ & + B(pa,mL,tv,] + <+>’ 
(3.6) 

In the broken symmetry phase (<$>#O, m2=O) the denominator 

in Eq. 3.6 (d(p2)ap2[1/2Xo + B(p2,0,A2)1 + <$J>~) is 
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positive at p2=0 and d(p2) + -m as p2 + m. Since B(p2 ,0,A2) 

= (N/32n2) log(e2A2/p2), we find a tachyon pole (p2>O), at 

p2=m2 > A2 
T exp(16r2/NXo). In the case Ao>O this pole is 

outside the physical region. This phase has the ground 

state energy determined from Fig. 2b. 

In the O(N) symmetric phase (<l$>=O, m2#o) the 

denominator in the lull scattering amplitude in Eq. 3.4 is 

d(p2) = 1/2X0 + B(p2, m2, A'). At p2=0 we have d(0) = WA0 

+ (N/32n2) log(A2/m2) , which is positive on the left hand 

branch of the gap equation in Fig. 1. Since B(p2, m2, A2) 

decreases as p2+@3 (3. 3.5) a tachyon will appear if 

d(p2=0)>0 Indeed, this is the case in the (Ao>o) O(N) 

symmetric phase presented in Fig. 2a which has been derived 

from the gap equation solution on the left hand branch of 

Fig. 1. But again, the tachyon pole p2=m2 T will appear at 

m2,A2 T since p2=m2 T is now the solution of 

I 
zx, + 3+nJo j pL > + 0 ( y) = 0 (fi (3.7) 

Thus, we see that the symmetric as well as the broken 

symmetry phase in the ho>0 case do not have tachyons in the 

physical region p2<A2. This is not the situation in the Xo<O 

case as we will see next. 
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3.4 Tachyons - Case Xo<O 

Following the discussion in Sec. II , a transparent 

way for studying the Xo<O case is to use the renormalized 

theory. Indeed, only for Xo<O we may keep X fixed and 

finite as A2-. The denominator in the ~171 scattering 

amplitude in Eq. 3.4 can be now written (using Eq. 2.11) 

as: 

dy, = + C p’+ ml> r~~+,~~2~~a,i,,,~~~~2,..,1 + 4; 
(3.8) 

In the broken symmetry phase (<$>#O, m2=O) a tachyon pole 

will appear at a value of p2 which is a solution of 

I_ + 24 x P’ = ,$l lo (&J B 
(3.9) 

This pole at positive Euclidean p2 further demonstrates the 

intrinsic instability discussed in Sec. II of the ground 

state of the renormalized O(N) vector theory. 

The system in the O(N) symmetric phase (<@>=O, m2#O) as 

shown in Sec. 3.2, is in a metastable state. Searching the 

spectrum in this phase for tachyons does not reveal its 

instability and indeed no tachyons are found here. 8-g The 
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decay of this false vacuum will be studied in Sec. IV, 

where we will also discuss its apparent stability at large 

N. 

The absence of a tachyon pole in the ilt~ scattering 

amplitude in the O(N) symmetric phase is clearly viewed in 

Eq. 3.4. One can define8 (using Eq. 3.4 with <$1>=0) an 

effective four pion coupling constant 

A’lll~‘) = J,$ Q +& ‘p: m: A=\‘) 
(3.10) 

x = 
’ + pgl(b4 Jcl [.d&‘+m’l 0 J 

which is negative for all values of p2 provided the gap 

equation is satisfied on the right hand branch in Fig. 1. 

Indeed, we have seen in Sec. II that the extremum of the 

Hartree Fock energy as a function of m2 gives a local 

minimum (see also Fig. 4) on the right hand side branch and 

thus m2>M2 exp(16n2/XN), which assures that 

Q+‘p” = , + &o~i~~ ( * (3. I I) 

Since 1 eff(~2) + O- as P2 + aI no tachyon poles are found. 

Note that the tachyon found in ref. 5 (CJP) are due to 

using the solution of the gap equation on the left hand 

branch of Fig. 1, which is not a local minimum (but in 
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fact, a local maximum in Fig. 4). Indeed, in this case, 

x eff(p2=0)>0 and changes sign as p2+-. 
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IV. THE DECAY OF THE FALSE VACUUM 

There are two types of instabilities detectable in the 

phase structure of the O(N) vector theory in four 

dimensions. The first one, an intrinsic instability 

extensively discussed in Secs.11 and III, originates from 

the fact that the lowest lying state has an energy unbounded 

from below as the classical background field $C+m. If one 

limits the magnitude of @c below some finite $zax the ground 

state is then determined by the value of $I; * u2/X as seen 

in Fig. 4a-f. The system can then be in one of two 

distinct phases: an O(N) symmetric phase with massive pions 

(discussed previously also in refs. 8-9) or in a 

spontaneously broken symmetry phase with N-l massless 

goldstone bosons found in Sec. II. The different phases 

are also depicted in Fig. 3. The lowest energy state in 

the O(N) symmetric phase (ec=<e>=O, m2#O) is not the lowest 

lying state of the system if u2/A is large (e.g. Fig. 3b 

and Fig. de) , and thus this false vacuum will eventually 

decay into the lower lying broken symmetry phase even if e, 

is kept small. This is the second type of instability which 

will be discussed now. We recall also that the first 

instability revealed itself also by the presence of tachyons 

in the m2 = 0 broken symmetry phase (in Sec. 3.4). On the 

other hand, no tachyons were found in the metastable 00-J) 

symmetric phase. This renders the stability of this phase 

very interesting. 
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The ground state is in the O(N) symmetric phase as long 

as (Fig. 4c) 

(4.1) 

$’ /$ < J$+ et ?I( [= 3&rhze.Xp( $y+ t1 3 
We will discuss here the $i=O region and thus as long as 

u2/X is limited from above, as seen in Eq. 4.1, the system 

is in the massive O(N) symmetric ground state. Since pL/X = 
2 vo/Xo + (N/16T2)eh2 (Eq. 2.12) and Xo<O, we see that for a 

fixed ultraviolet regulator, u2/X increases as !.I: decreases. 

Indeed, as expected, for 11; negative and large, u2,/X reaches 

(N/32n2) M2exp(16a2/XN + l/2) and the ground state is now 

degenerate with the broken symmetry state with m2=0 (Fig. 

4d and going from Fig. 3a to 3b). For larger values of 

U2/X, the system, whose Veff is shown now in Fig. 4e, 

should decay into its true vacuum, which is in the m2=0 

phase. In order to calculate the rate of decay we will have 

to know the effective action that governs the dynamics of 

the sys tern. Following ref. 5 we multiply the original 

Euclidean action functional integral 

Z(T) -[D&x, exp{ (d:[--:(2JL /ye 
x - -Q -a ‘L 
4 (9 ) +MJ} (4.0 

by an integral on the field x(x) 
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I DXOO e-y{ p&p -#-pl] 

which is well defined for lo<0 and a contour rotation is 

needed for Xo>O. 

In Appendix B we present the calculation of the 

effective action in terms of x by integrating out the 

degrees of freedom 3 = 4 + Jc. This gives 

Z(5 = ID* (*) yJ ( - r{x) 

+‘r[$@{ + T-X] } 
where 

f {x} = dlt I l -: ( <‘+ /y)X - +g ] 

+; 7-d 
% 

(4+X) 

(4.5) 

In the region of small (aXj2/X3 we calculated the effective 

action in terms of J, where 

YZ = J- ~tw, (Xl 192 rf= (4.6 1 
We obtained 
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T i(r) = Ait -2 YD‘Y J ( + VW ) (4.7) 

where 

VCYJ, = ; q12 Y2 - $ y 4AGj ( y) (4.8) 
The constantsm', K, M2 in Eq. 4.8 are given in Eq. 8.17 in 

terms of L12r A, M2 and N. The shape of the potential V(a) 

is similar to the potential shown in Fig. 4 (when m2 is 

replaced by I)~). 

We would like now to estimate the transition rate from 

the O(N) symmetric metastable ground state with m2>0 

(<$>O>O) to the symmetry broken lower lying state (m2=0, 

<$',=O). Following ref. 19 we have to estimate the "bounce" 

which is the total Euclidean action B = Jm -&'E r since the 

width of the unstable symmetric state is proportional*' to 

exp (-B/V) . The calculation of B involves the solution of the 

imaginary-time equation of motion in the potential -V(Q), 

with the initial and final condition shown in Fig. 5. The 

initial and final points are just the solution of the gap 

equation 

a VW) 
F- = y/ r %I2 - I( vJ?c$?$, J (4.9) 
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The bounce fm -,dT$ is clearly proportional to N since xflO(l) 

on the gap equation and thus I)~sO(N). The decay rate of the 

metastable O(N) symmetric state is thus proportional to 

exp(-N) and asymptotically small for large N. 

The absence of tachyons in the metastable O(N) 

symmetric state at large N noted in Sec. 3.4 is due to the 

apparent stability of this state in the N+m limit. It seems 

proper to conclude that a perturbation expansion 3 around 

this false vacuum is not obviously inconsistent. Though the 

system is only metastable it can survive time scales 

arbitrarily large as N-L-. At finite N, the finite life time 

must be large compared to any time scale in the problem 

(e.g. universe life time, etc.) in order that an expansion 

around this false vacuum has any practical physical 

application. The situation is however very different at 

finite temperature as we find in Sec. V. At T>Tc there is 

no metastable O(N) symmetric ground state for the 

renormalized X0 4 theory (Xo<O) and no consistent 

perturbation expansion can be defined as the ultraviolet 

regulator is removed (A2+-). 
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V. THE O(N) VECTOR MODEL AT FINITE TEMPERATURE AND THE 

FATE OF THE FALSE VACUUM 

The discussion in the previous section dealt with the 

theory at zero temperature. The effect of a finite 

temperature on the phase structure and transition rate from 

the false vacuum will be discussed here. 

The finite temperature effects in quantum field 

theories have been discussed in refs. 21 and 22. The large 

N analysis combined with a variational calculation (used in 

Section II to compute the quantum fluctuations to first 

order in l/N), will be used now to calculate the thermal 

fluctuations at finite temperature T=B-l, 

The J2 vacuum expectation value at finite B is given by 

using the finite temperature Feynman rules 

<4=+ = &$k~ D+L, = ; 1 J A&:3 
n=o,tl,k2. 

p: n-la (y-1 > 
where k =W 0 n = (2ir/S)n. In Eq. 5.1 

CC 4trLna 

0’ 
+ p+,z 

) 
-’ 

h=O,*I,+l . . . 
= $ ‘+ip.,x I: 

I( i 
$y$J) 

n=o,l,2 * 

where E k = (Z2+m2)l'2. Using 
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c 

x I 
nz+ XL 

= - - + +thk) 
LX 

%l=i,r... 
one finds 

<+b r = NI($[& + -i&P& ) > 3 

zn-~(k~+~~ 
(5.31 

-4 

di l - 
(FT~)” k=+mL + ePE - I [ I 

The second term originates from the Bose-Einstein 

distribution of the free boson gas. This expression clearly 

separates the quantum and thermal fluctuations of <T2>8. 

Following Eq. 2.4 and 2.8, the Hartree Fock free energy at 

finite temperature can be written as 

W 
B 
($‘,m’) = K(ML) + < V&>k 

B 
where 

al<p~l /hL ac7> 
arnz = - 2 amz P 

k 4) 

(5. 5) 

and at large N 
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<VC$)> 
(3 

= V( $“<Ff) 

From Eq. 5.3 

<+I =,$A' -,~~~-&li(~~j + $$-'Fpj l-t 

and one finds 

up) = &-& m”-e,l, c*, MY’;- L 

-PI “2 yL$$ 
0 

(5 6) 

(5: 7) 

where the first term is the T=O variational kinetic energy 

term in Eq. 2.8. The rest of the expression in Eq. 5.1 

contains the TfO contributions. F(X) (shown in Fig. 6) is 

given by 

F 
O” ‘3’dl I 

oc) = $L [ ex (Qzi-1 - I I (S.8) 

0 
v3’ p 

at x+o (myT+O limit) F(0) = 1 and F(x)+eSX as ~-+a. From Eq. 

5.4 one finds: 
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wpjy; )).)l) =G+Lm44pk~fi~) - & “~;‘xi%~$ 
0 

+$j$‘+ J$ +~pAz - &mt&J (c&J 

+ 5 TLFq:) IL (s.91 

which can be compared with Eq. 2.15. After some algebra 

w&, m2) can be written in the form (compare to Eq. 3.1) 

Wpc~~m~~ = qy4 [f +,$a,(e+i] - $$J;;($jhJ)) 
0 

+ t$ (G. Es) + $ b- E’j*)’ (5.10) 

where 

G.Eq, s $=f,$ - ~~-,~LWL~d(~j + $rLF& 

(5. II) 
This is in fact the gap equation in the case TfO since 

3W 

-AT L 
= x, 9% f 2 FxF I % = wlHI%~ 

- J- R,gc$,] x (G.E,.) 
16TT= 

(5. Ir) 
The coefficient in front of the G.Eq. is always negative in 

the physical region. (m2<h2) and thus the only solution to 

awlam = 0 is G.Eq. = 0. Analogous to Eq. 3.2,we have here 
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y;( ({‘, w’) = “‘(qy1.g) 

-$ I 
4 -x +lEz L N $$+j -$($ (F&i)] 0 

that reproduces, of course, the same gap equation. 

We will now discuss the renormalized theory (X finite, 
2 n -+m and X0+0-). Fig. 7 represents the gap equation 

solution in case of TfO. Clearly, as seen from Eq. 5.11, 

the only change is that $z f u2/X in Fig. 1 is now replaced 

by $z f u2/X + (N/24)T2F(m2/T2). The effect, however, is 

very interesting; as T grows, the gap equation solutions rn; 

and m 2 R approach rnz and finally, at larqe enough finite T=TC, 

there is no solution. Viewed in Fig. 8, which is the TfO 

version of Fig. 4, we see the change in the effective 

potential due to the thermal fluctuations. 

Thus, at high temperature (T'Tc) the I.arge N 

renormalized 10 4 theory can be only in one phase in which 

the O(N) symmetry is broken. We see here the less common 

effect of a sys tern that becomes asymmetric as the 

temperature increases. 23r24 A perturbation expansion in the 

symmetric vacuum (m2#O) is bound to break down as the 

temperature increases. The implication of this result on 

the work of ref. 3 and in cosmological models may be of 

much interest. Indeed if we start at a very high 

temperature in the early universe, the metastable O(N) 
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symmetric state will never be obtained as the universe cools 

down. The only existing (broken symmetry) phase suffers 

however from the intrinsic instability of the renormalized 

theory, namely the ground state energy is unbounded from 

below as seen in Sec. III. We conclude that the 

renormalized O(N) Xg4 vector theory is futile for T-cm 

studies and the only consistent form of the theory in this 

limit is its regularized version with X >O and a finite 0 
cutoff, AX. 

The theory with a finite ultraviolet regulator and lo>0 

has the usual behavior. Namely, as T increases, the ground 

state becomes symmetric even if we start at T=O in an 

asymetric phase. This is clearly seen in Fig. 7. In the 

ho>0 and finite A2 case, onlv the left hand branch of the 

gap equation is of interest (since m2>A2 x as discussed in 

Sec. III). The O(N) symmetric phase at T=O in Fig. 2a 

will remain symmetric at T#O. At +c = <e> = 0 we see from 

Fig. 7 that the effective mass rniT grows with T and the 

O(N) symme tr ic lower energy state in Fig. 2a continues to 

be the ground state of the system. 

The broken symmetry phase shown in Fig. 2b (gap 

equation solution) will have $c = <e> + 0 as T increases and 

finally as seen in Fig. 7 at -l12/h + (N/24)T2F(0) > 0, 

namely T>/24u2/XN the system will be in an O(N) symmetric 

phase (with rni # 0). 
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As discussed in Sec. III we have to restrict the range 

of possible u2/X values so that rn2<<rnz and thus stay within 

what we called the physical region of the regularized theory 

namely, the low energy regime on the A' scale. Here we also 

must restrict the temperature range to T2cA2 in order to 

stay in the physical region. This also allows a properly 

behaved solution to the gap equation for all values of T, as 

seen in Fig. 7, contrary to the case xo<o of the 

renormalized theory where there is no solution to the gap 

equation as T+m. 
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VI. SUMMARY AND DISCUSSION 

Combining a variational calculation and a detailed 

large N analysis of the O(N) XQ4 vector model, the following 

results have been obtained: 

(1). We have proved the existence of a broken symmetry 

phase with N-l massless goldstone bosons in the large N 

limit of the renormalized XQ4 vector theory. This phase has 

been found here when the end point contribution of the 

variational parameters were studied. Previous analysesEr9 

concluded that there is no spontaneous symmetry breaking at 

large N. The symmetric and broken symmetry phases 

correspond to the minimum at m2#0 and the end point m2=0 in 

Fig. 4, respectively. 

(2) We have pointed out, however, the existence of an 

inherent instability in the renormalized version of the 

theory. The upper limit of the ground state energy is 

unbounded from below at large values of the classical field 

(see Section 3.1 e.g. Eq. 3.1). If the analysis is 

limited to the small e c region, one finds a broken or an 

unbroken symmetry ground state (depending on the value of 

u2/h - Figs. 3,4). The instability reflects itself, 

however, through either limitingsrEr9 the possible sc values 

below a certain $yx or through the existence of tachyons in 

the theory. We believe that this inherent instability 

persists in higher order calculations and is not a 

peculiarity of the l/N expansion but rather a property of 
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the exact solution. Its origin can be traced back to the 

negative sign of X0 in the renormalized theory. 

(3) From (1) and (2) we have concluded that the 

renormalized version of the large N XQ4 O(N) vector model in 

four dimensions is inconsistent. The broken and unbroken 

phases mentioned above are metastable. We have not 

calculated their decay rate at large SC values. If, 

however, the lifetimes are large, the theory may still have 

practical use, though ultimately unstable. 

(4) Taking into account the last remark in (3) we have 

concentrated on the small $ 
C 

region of the renormalized 

theory. The new broken symmetry phase we have found 

contains, for a certain region of the parameters, the true 

vacuum of the theory. We have shown that the decay rate of 

the O(N) symmetric (m,#O) false vacuum is small 

(proportional to emN) in the large N limit. 

(5) At finite temperature and above some finite value 

of Tc we have found that the symmetric phase disappears and 

only the broken symmetry phase of the theory can exist at 

high temperature. This phase transition structure is of a 

less common type (although, not unknown): the system becomes 

asymmetric as the temperature increases. 23,24 

(6) The theory with positive x0 does not suffer from 

the instabilities mentioned in (2) and it may very well be 

the only meaningful theory. If xo>o, then the theory is 

defined as an effective field theory at momenta scale small 

compared to a fixed cutoff (A2 or inverse lattice spacing 
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a-l). At energies above this cutoff the physics must be 

modified from XQ'. If we take A2+, (a+O) then the 

renormalized coupling X+0 and thus the O(N) kQ4 vector 

theory. becomes a free theory.14'15 

(7) The results (4) and (5) imply that indeed the O(N) 

symmetric (mz#O) false vacuum may be used as a ground state 

for performing perturbation calculations (e.g., Ref. 3) 

since its decay rate is sesN. However, the disappearance of 

this false vacuum at high temperature (Sec. V) implies that 

little use for practical physical applications can be made 

of the theory at T>T 
C’ Thus, any early universe model 

incorporating this theory will never find the system in the 

O(N) symmetric false vacuum phase, as the universe cools 

down (seen in Fig. 8). The system will remain in the m2=0 

phase, where W+-- as &w 
c ' thus demonstrating the 

inconsistency in the renormalized XQ4. 
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APPENDIX A 

OSCILLATOR FREQUENCY AS A VARIATIONAL PARAMETER 

AND END POINT CONTRIBUTION 

In Sec. II we used the mass m2 defined from the 

oscillator frequencies mk = (k2+m2) ‘I2 as a variational 

parameter. One may instead let the frequencies wk vary, and 

then choose the best oscillator frequency that will 

determine the lowest lying state. Eq. 2.8 can be written 

instead as a functional of mk 

Wrw,\ = I(cw,l, +<VdQ 

c3, I;’ 
il +2L3, ) + l?-jN~~ $&> 

where 

<p> = ($ I$$$ k 

The variation of Wk gives 
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slzl N 
&q-323 ‘-is; i lz= - r& - $ N j g3 &- ] (R.2) L4 

and thus 6W/6wk = 0 implies 

CA,,'= k'+ ,'L + X,N ($ & 
I" 

f k 

which gives the gap equation (compare with Eq. 

cd;= k'*'+ roz + A, c P> 
( or16 

I 

(R.3) 

2.9): 

h4) 

> 

The physics in these calculations is clearly seen in 

Eq. A.3. in the case xo>o and ui>O, there will be no 

condensation of the zero mode in the $ summation in <q2, and 

the mass m2 will be determined by the gap equation. After 

renormalization, Eq. A.4 gives (using Eqs. 2.6 and 

2.11-12) 

iAl;= p+ur\z +A.[ ZE - ~2-&.p7~~oJ(~)] 
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When a background classical field Jc is added, Jc will vary 

and acquire the value $c = <a> = 0 in the ground state. The 

coefficient Of x0 in Eq. A.5 gives the gap equation as seen 

in Eq. 2.13. 

If pi<0 (still xo>O) a condensation of the zero mode 

will give <$>#O and thus Eq. A.3 becomes 

qz = \f+ r ,’ +x,(<#J>‘+~(;;~3 $- h ) VW 

With <@' 2 = 2 -PO/A0 (or <@> 2- - -u2/A if renormalization is 

taken into account) a massless phase is created (Fig. 2b). 

No further condensations of the higher modes will occur in 
2 2 this case (Xo>O) since <e> = -uo/Xo stabilizes the system. 

If a classical background field Jc is introduced it will 

acquire the value $2 = <@' 2 = -).I:/;\~ in the ground state. 

In the region $:<-ug/Xo the effective mass is negative and 

the system is unstable. 5,25 We have seen that the solution 

to the gap equation (e.g., Fig. 2b) does not define the 
2 - effective potential below ec - -lQ"o. When the end points 

of W($:, 2 m ) had been checked in the Xo>O case in sec. III, 

we did not find any lower energy state below the one found 

from the gap equation. 

The situation is different in the Xo<O case. Here the 

condensation of the hjk=O mode does not suffice to stabilize 

the system and the gap equation above does not reveal all 

the physics. In Eq. A.3 after the wk=O mode condenses and 
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therefore <$>#O, there is a preference for higher modes to 

condense as well when Xo<O. The gap equation now is however 

not much different from the Xo>O case and gives (Eq. A.5 

including $A) 

cg=zrJ - y?-$TLmaAJc$l) = 0 b.7) 

It allows a m2#0, $c=<@>=O solution which gives an O(N) 

symmetric phase but the instability mentioned above reveals 

itself in the end point contribution of W($z,m2) Indeed the 

energy of the m2=0, @,=<@>#O broken symmetry phase has been 

shown in Sec. III to be lower than the energy of the lowest 

lying state in the m2#0 phase. In fact, as we have seen in 

Sec. III, the lowest lying state in the m2=0 phase has an 

energy which is unbounded from below at large 0,. 
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APPENDIX B 

The effective action r{x} in Eqs. 4.5 and 4.6 which 

governs the dynamics of the large N theory will be 

calculated here. l?{x} is defined from the Euclidean 

functional integral 

2 (F, = 

= bmm" l ""pI-jd:[~(~~~~a+jix~2 

- 6, 'xz-;~x-~-~J J (B. 1) 

After integrating out the 3 = $ + Jc degrees of 

freedom, we have 

zoj = {In “%pI p4+&$ -txq (D 
.L 
) 

+‘x’-g&x +‘j*$] - ~T;%p+q 4x0 
= ID2 exr{ -&,g +~J’&$D{+~~~) ) 

where we denote 
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rjrl = T’rl, - { J”,[&X’- -ICC+ j&x] (~3) 

and 

-f%j 
e = DT eXP(-JdCl[i @n+X)q]} 

(B. 4) 
= 

In what follows we will consider the subspace of slowly 

varying functions X(z)for which (3X)2/X3<<l. T(X) can then 

be written as a local expansion26 

- (l3.Q 

F,(x) + F;tzm~>” + . . . ] 
f 

where FO(X) and Fl(X) are local functions of X(z). FO(X) is 

found by calculating the Tr log(-D+ X) in Eq. B.4 with a 

constant X. Up to an (infinite) constant 

*T&j (-L7Xk) = $ jd”+$, &(I+ 5, 

- ’ d4t e/YZ - -- 
31lT’ f r 

or alternatively use Eq. 2.6 and a constant X 
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mzJ = ; <(p> 
liE 

bJ (,*l _ g//J (,A’) ) = ‘3Ew = 3rTTZ “jr -ax 
and thus (5.7) 

E(X) = gr. [e/l’2 - gx* % ($I?) ] 
as is found also in Eq. B.6. 

In order to calculate Fl(x) one notes 

connected part <$2(x)$2(~)>c can be written as 

(B.8) 

that the 

b%rl = I 
- sxw SXr;(, 4 [ <&x, “y> - <etx,>&pJ (0.9) 

It can be calculated from Eq. B.4 with a constant x 

_ S’F{Xj eih(x->) I 
bX(k,S XJ, q- k,‘+x >q=+ x > 

= fi Lk 
1 3LllL (2td 

This can be expanded in the form 

_ S’i%~ = $$a -Ll 
B 
($) sex-J, + Ji- Ll &x-y 

Ii&x, FXqr 192lT+ x 

+ O( D%~x-;l’) 
Using Eq. 8.5 we can now identify FO(X) and Fl(X) with the 

constant x expansion of Eq. B.11 
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a’F,w =- 
a22 -E 4y ($j 

32rr= 

2 F; (X) = ,9”L nL ; 

FERMILAB-Pub-83/23-THY 

(Q. 12 a> 

Eq. B.12a reproduces the result of Eq. B.6 and Eq. B.7 

(given in Eq. B.8). We finally have in Eq. B.3 

r (x3 = A42 i I &),J2p2 + f (q+ g*+ &)& 4 x 
-6LQ+5ye+j _ L3LL] (B”3) 

Using Eqs. 2.11 and 2.12 r!x} can be written in terms of 

the renormalized parameters 

(IL 14) 

- & x L+$e$‘) 
4 (4KY -4LxxJ 

If we now define 

Y’ (&I = ,&L %cr, (0. IC) 

then 
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where 
(WI) 

q& !y’( $1 t /$I 144 (4uY 
J 

k=T 

pi’= M’( ,4% -p(Yj 
(!3. 17) 
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FIGURE CAPTIONS 

Fi .g. 1 Solid line is the gap equation (Eq. 2.13) m2(1/X 

+ (N/16x2) log(eM2/m2))= ;62 t ).1~/1. Dashed line is 

the Hartree Fock energv W at m2 values (m2=m2(ez)) 

for which the gap equation is satisfied (Eq. 2.16) 

W(m2) = (m4/4) (l/X + (N/16n2)log(J-,A2/m2)). rn: 2 

solve the gap equation at &i=O (in the caie 

+v2/X), m2 , m2 
Go w. 

are the zeroes of the solid and 

dashed lines whose maximum is at mx 2 (m2 2 
GO 

=em = 
X 

& m = M2exp(16r2/,N) = A2exp(16n2/hON)). 
” 

Fig.2 The Hartree Fock ground state energy W in the case 

Xo>O and finite A2. The dashed line is the value 

of W as obtained from its extremum points when the 

gap equation awlam = 0 is satisfied (Eq. 2.13). 

The dotted line is the end point values of W at 

m2=0. The positive and negative 2 
FLo/xo + 

(N/16a2)eh2 2 = +p /X cases are shown in Figs. 2a 

and 2b, respectively. The ground state is in an 

O(N) symmetric phase (2a) or in a broken symmetry 

(2b) in the case of +b2/X or -u2/X, respectively. 

Fig. 3 Case Xo<O: As in Fig. 2, we plot the Hartree Fock 

ground state energy as obtained from the gap 

equation (Eq. 2.13) solution (dashed line - case 

m2,m2 2 2. x, solid line - case m <mx in Fig. 1.) and the 

end point value (m2=0 - the dotted line). Here we 

plot W in the limit X0+0- and finite $2; this 
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Fi 

reproduces the results of refs. 5 and 8-9, and we 

denote W in this limit as V eff' In the broken 

symmetry phase (m2=O). Veff 2 is independent of Jc 

but W-+-m as $2, (not shown in these figures, see 

Eq. 2.15 with m2=O). 

.¶. 4 Veffd$ m2) in different $i+p2/X regions. The 

gap equation solutions in Fig. 3 are the result 

of the minimum and maximum contributions shown 

here (dashed and solid lines of Fig. 3, 

respectively). The end point contribution is the 

m2=0 point. The decay of the false vacuum in case 

(e) is discussed in Sec.IV. 

Fig. 5 The potential -V(e) in Eq. 4.8 (compare also to 

Fig. 4e), which governs the decay of the m2>0 

false vacuum. The "bounce" B = IdT % E is of order 

N and thus the decay rate O(edN). 

Fig. 6 The shape of F(x) which appears in Eqs. 5.6 - 

5.13. 

Fig. 7 The effect of the finite temperature T on the gap 

equation solution of Fig. 1. For a given $2, the 

m2 solutions change from m 2 2 
RO' mLC 

2 to mRT, 2 
mLT. 

Clearly for high enough temperature there is no 

solution to the gap equation in the case of (ho<O) 

the renormalized 10 4 ( see also Fig. 8). In the 

case Xo>O and finite A 2 there will always be a 

solution in the physical region (p2, T2 << A2). 
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Fig. 8 The disappearance of the false vacuum (gap 

equation solution with 2 m >O) as the temperature 

increases beyond Tc. (See also Fig. 7). Here we 

see the behavior for the renormalized iQ4(Xo<O). 

Recall that in the case ho>O, and finite AL, the 

normal expected behavior occurs in the physical 

region as T2 increases (always below A2). 


