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ABSTRACT 

We investigate the space of variant mixed actions of 

compact u (1) lattice gauge theory through the Migdal 

renormalization recursion technique. We map and study the 

phase diagrams of actions specified through 

charge l-charge 2, as well as charge Z-charge 5. Different 

phases of such diagrams are characterized by signals in 

their renormalized actions with the distinct patterns and 

periodicities which typify the collective behavior of their 

degrees of freedom. 
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Lattice Euclidean gauge theories [l] are currently 

under vigorous investigation. They have revealed intricate 

phase structures in the space of mixed actions, i.e. 

actions with variable components of several characters of 

the gauge group elements defined on each plaquette. Such 

phase structures can be studied in a variety of ways, 

including renormalization techniques of the Migdal-Kadanoff 

type I21. In a recent paper [31, we have illustrated how 

such techniques can yield information beyond the mere 

presence of a phase boundary: in a study of SU(2) gauge 

theory, we specified the role played by the phase boundaries 

to the universal approach towards infrared-stable lines of 

actions relevant to the continuum theory. 

However, since the phase boundaries of SU(2) are 

observed or generally thought to have "windows," it is 

believed that the theory has only one phase, the confining 

phase. In contrast, the phase boundaries of U(1) gauge 

theory have not revealed (or hinted at the presence of) such 

windows into the confining phase [1,4]. In fact the phase 

boundaries of biperiodic compact U(1) gauge theory separate 

significantly different phases [4,51. 

In this report we use the renormalization recursion 

technique to study the phase behavior of the 

charge l-charge 2 space, whose phase boundary has already 

been determined by Monte Carlo [41. We also study the 

charge Z-charge 5 space which is expected 161 to have an 

interesting two photon structure. The universal "Gaussian" 
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stable line of actions 171 for each region of the phase 

diagrams investigated has a characteristic behavior, and 

allows us to identify the nature of the phase involved 

through its periodicity and the evolution of its effective 

coupling. 

Let us outline the Migdal renormalization technique 

[x,31. Details, conventions and assessment may be found in 

Ref. [31. The (gauge invariant) compact U(1) actions under 

consideration are class functions, and, for this group, they 

depend on only one plaquette variable: 

8 = i arcos u' + (u+)r 
2 (1) 

The representation index r is the charge. The character 

expansion for U(1) even periodic class functions is simply 

the Fourier cosine expansion: 

F(6) = F. + 
r=l 

Fr(2cosr6) 

J 

2a 
F = r 0 

g cosre F(B) 

J " d9 z (Zcosre) (Zcosn(e-8')) = 6 2cosr8'+26 6 (2) 
0 rn ro no' 

We will be studying bare actions of the simplest 

alternative form: 
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-s(e) = 8,(2cosre) + Bn(2cosne) E 2B(crcosrB+cncosne), (3) 

where [r=l, n=Ol denotes the Wilson action, and [r=l, n=Zl, 

[r=2, n=5] the actions analyzed below. We will be comparing 

renormalized actions to the periodic Gaussian actions of the 

Villain form [7,81, whose exponential (Gibbs factor) is: 

-s,(e) 
=ie 

-8 (e-2nk) ’ 
e 

a=-co 
= & ,zm e-n2’45 cosne . (4) 

This action approaches the Wilson action for very small 

and very large B [81. For moderately large 8 it is quite 

close to the Manton action r71, which is a parabola in 

I-lT,lTl, and periodic beyond this interval: 

-8 e:-n,nl = 48 + + E (-lj2 ( 2 n+l 
cosn9 . 

n=l n > 
(5) 

Naturally, if the periodicity of the same function is 

multiplied by an integer factor k, all harmonics not 

divisible by k are missing: 

2 
-' e[-,/k,r/kl = + & (-y+l (6) 

Given a single plaquette action s(e), Migdal's 

approximate renormalization recursion yields the effective 

single plaquette action describing the same theory in a 

lattice whose spacing has been increased by a factor X: 
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-s eff (e,x) id-2 
e = 1 F;' (2cosre -6,,) 

r I 

where 

Fr = J 2n de zii cosre e -s(e) , (71 
0 

d is the dimensionality of spacetime, taken to be 4 in this 

study, and X is chosen [3] to be 1.05, which locates the 

phase transition of the Wilson action (c,=l, c,=O, in Eq. 3) 

at SZO.49, as dictated by Monte Carlo studies [9,41. 

Since the effective action thus generated is also 

defined on the single plaquettes of the expanded lattice, 

the recursion can be iterated by computer a large number of 

times (typically SO), to allow direct evaluation of the 

functional integral by integration over plaquettes [21. As 

described in Ref. [31, we use peaks of the heat capacity 

density g(B), for fixed cr and cnr to locate the phase 

boundaries of a given alternative action. Figures 1 and 

2 indicate the phase boundaries thus specified in the B,, 

B, 2 0 quadrant of the [r=l, n=2] and [r=Z, n=Sl systems 

respectively. In Fig. 1, we are further superposing the 

known Monte Carlo phase boundary [4]. 

On each axis Bl, B2 and B,, the values of the critical 

couplings coincide (B, 2 0.49), since the systems reduce to 

the Wilson action on these axes. In Fig. 1 and Fig. 2 the 

phase boundary for 82 + m tends to the Z2 phase transition 
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value Bl, B, . 0.22. In Fig. 2, for 8, + m, the two phase 

boundaries tend to the Z5 phase transition Lg.101 values 

82 I 0.5 and B2 : 0.6.* 

An exceptional feature of the recursion technique is 

that, by its very nature, it allows us to follow the 

evolution of the couplings and the functional forms of the 

renormalized actions with change of scale. Starting from a 

bare action (3), we directly monitor Seff(9) and its Fourier 

coefficients (or those of its Gibbs factor). We choose to 

do this every five iterations, which corresponds to an 

increase in scale of Z1.28. We can verify when the effective 

action approaches a periodic Gaussian by noting that the 

logarithum of the ratio of successive Fourier coefficients 

of the Gibbs factor (4) varies linearly with n, or, more 

easily, for large 8, by noting that the Fourier coefficients 

of the action itself alternate in sign and decrease as l/n'. 

There is a known embarrassment of this approximate 

renormalization technique, concerning the lack of a sharp 

distinction between the confining and the free (sourceless 

QED) phases of the U(1) lattice theory, first observed in 

the study of the Wilson action: Migdal [Z], and subsequently 

* 
The points marked by * 
peaks of '8(B). Instead __ 9 

in Fig. 2 do not actually represent _ .~ they locate the peaks or its crucial 
component <(c0sse)->-<c0s5e>* 
instead of 8) which 

(obtained by variations of B5 
responds to the transition between 

confined and unconfined photon-5 degrees of freedom, 
discussed below. The elevation of some of these peaks is 
so small that is is swamped by the tails of higher 
neighboring transition peaks in the full 'C??(B) signal. 
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Jos; et al. Lf31, have studied the two dimensional 

planar spin model--whose Migdal-Kadanoff recursions are 

identical to those of the four dimensional U(1) gauge theory 

121. These authors recognized that in the confining phase 

the inverse couplings f3 of the effective long distance 

actions iterate to zero, as they should. However, in the 

weak coupling phase (large B) the effective actions do not 

go to a completely free theory: after approaching some 

quasi-fixed point periodic Gaussian with inverse coupling B, 

that effective B drifts very slowly towards smaller values 

(extremely slowly for large B 181: 
dB/d(iterations) a-B2ee78); eventually the trajectories 

accelerate and enter the confining phase. Thus, strictly 

speaking, there appears no phase transition separating the 

weak from the strong coupling regions. 

Nevertheless, paying proper attention to this caveat, 

we can still distinguish the signal of the confining phase 

from those of the quasi-free phases. In ,Fig. 1 we observe 

that in the confining phase A' 81 and 82 iterate to zero, 

while higher harmonics develop smaller coefficients which 

then flow to zero as well. This behavior is quite similar 

to that of the confining region of the analogous su (2) 

diagram 131. 

In phases B' and C' of Fig. 1, the renormalized actions 

rapidly flow to quasi-fixed point periodic Gaussians (4)-(S) 

with periodicity 2 and 1 respectively, with couplings B 

continuously dependent on the bare couplings. This is 
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represented, in C', by trajectories flowing to the dotted 

line of slope -l/4 which, on Fig. 1, represents the 

projection of Manton's action on the two parameter space of 

the two lowest harmonics. Once the effective actions reach 

these periodic Gaussians, the trajectories appear to stop 

(in contrast to the behavior of the corresponding Su(2) 

trajectories [3]), but they in fact do not. They flow to 

the origin, extremely slowly at first, and increasingly 

faster as they near the phase boundary, which they cross; 

from that point on, they appear like typical trajectories of 

the confining phase. Those trajectories which start in B' 

and C' very near to the interface with region A' do not slow 

down discontinuously after joining their respective periodic 

Gaussian--and in this regard they are not impressively 

different than those starting in region A'. However, the 

coefficient 8 of their dominant harmonic has been observed 

to always increase by some amount, before they start flowing 

to the origin. This is a general feature which the 

trajectories starting in the confining region A' uniformly 

lack (see Fig. 1): in this case the dominant coefficient 6 

always decreases. This signal appears to us to constitute a 

practical clue for contrasting the confining from the 

nonconfining phases in the framework of the Migdal 

approximation. 

The signals observed in the five regions of the 

charge Z-charge 5 systems are more dramatic, and 

characterize the nature of the five phases involved. 

Renormalization trajectories in region A exhibit the 
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conventional confinement behavior typified by all B's 

rapidly going to zero (Fig. 3a). Renormalized actions in 

region B display confining behavior for the components of 

the actions associated with even harmonics (their 

appropriate B's + 0), but quasi-free behavior for those 

harmonics which are divisible by five (their 8's go to 

quasi-fixed values). The quasi-fixed point actions are 

quite close to a Villain/Manton action of periodicity 5 

(Fig. 3b). Symmetrically, the effective actions in region C 

are close to a Villain/Manton action of periodicity 2 

(Fig. 3~). The effective actions in region D are in fact 

superpositions of Villain/Manton actions with periodicity 2 

and 5 (Fig. 3d). Finally, the effective actions in region E 

approach quasi-fixed point Villain actions with periodicity 

1 (Fig. 3e). 

We are thus led to characterize each phase as the 

domain of attraction to a specific type of effective action 

with a distinct periodicity. The associated periodic 

Gaussian Gibbs factors correspond [ll] to the limit 

distributions of statistics, where they describe the 

collective behavior of many weakly coupled degrees of 

freedom. 

We recognize the phases of our diagram as of the types 

anticipated in the entropy-energy analysis of biperiodic 

compact QED of Horn et al. 151. These authors predict that 

a system of the general form (3) will support two types of 

photon excitations and two kinds of monopoles distinguished 
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by two different periodicities--in our particular example 2 

and 5. We thus verify that: 

a) In phase A (in which the monopoles condense), both 

photons are confined. 

b) In phase B, photon-5 is free, and photon-2 is 

confined. 

c) In phase C, photon-2 is free, and photon-5 is 

confined. 

d) In phase D, both photon-2 and photon-5 are free. 

For large 85 this phase is recognized as the 

intermediate phase of Z5 [lOI. 

e) Finally in phase E, both individual periodicities 2 

and 5 have been lost, but the effective action 

retains the fundamental periodicty of the bare 

action (1: the largest common divisor of 2 and S), 

which could not be violated through the iteration 

procedure. This phase displays features of free 

excitations since a quasi-fixed point is reached. 

It corresponds to magnetic confinement-- 

condensation of electric current loops [6,10]. We 

can see that the induced current loops of Ref. [6] 

in fact couple to one linear combination of the two 

photon fields. Consequently this combination 

becomes massive in this phase: but the linearly 

independent combination, which couples only to 



-ll- FERMILAB-Pub-82/56-THY 

monopoles, has periodicity 1 and is massless, thus 

providing the Gaussian signal observed.* 

We have also repeated the same analysis for [r=l, n=61, 

and verified the specific results of Ref. [61. In this case 

the fixed point actions in each region display the same 

pattern as above, with the corresponding periodicities 1 and 

6. The boundary between regions C and E does not extend to 

infinity, and phase C blends smoothly into phase E--observe 

that the fundamental periodicty is 1 in both regions. This 

also occurs in the charge l-charge 2 system. 

In summary, we have illustrated that the numerical 

renormalization recursion technique can not only produce the 

phase diagrams of multiperiodic lattice actions, but it may 

actually identify the essential hallmarks of the different 

phases of these diagrams. 

In the notation of Ref. 161, these linear combinations are 

ii EB N2 1 N2 2 
u BA -rA 

1n 2 LJ 
, and 

f- 

2 2 
A s L 1 _ N2 Nl 

u 8182 
(NIAl + N2A2) , where i = B; + 32. 

In terms of these, the action (14) of that reference reads: 

F2 
-+LL=(F +I, 

26 a8 2 uv,8wu")'-Zni M ) + 
l!J 

Since A does not couple to the electric current, ,it does 
not de&lop a mass. 
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FIGURE CAPTIONS 

Fig. 1: The phase diagram of the charge l-charge 2 system 

and the projection of the associated 

renormalization trajectories on the Bl-B2 plane. 

The x's indicate heat capacity peaks, and the 

dashed line provides the Monte-Carlo boundary of 

Ref. [4] for comparison. The dotted line represents 

the projection of Manton's action on this plane. 

Fig. 2: The phase diagram of the charge Z-charge 5 system. 

The points 0 in each phase locate the 

representative bare actions whose evolution is 

given in Fig. 3. 

Fig. 3: The effective actions of Fig. 2., after 

N(=l,ll,... ) iterations, where N is indicated next 

to each action. The inverse couplings (B2, 8,) of 

each initial bare action are: a) (0.35,0.35); 

b) (0.35,l.O); c) (0.75,0.2); d) (0.65,0.65); 

e) (1.0,l.O). 
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