
dk Fermi National Accelerator Laboratory 

FERMILAB-Pub-81/18-THY 
January 1981 

Decoupling, Effective Lagrangian, and Gauge Hierarchy 
in Spontaneously Broken Non-Abelian Gauge Theories 

YOICHI KAZAMA 
Fermi National Accelerator Laboratory 

P.O. Box 500, Batavia, Illinols 60510 

YORK-PENG YAO 
Randall Laboratory of Physics 

The University of Michigan, Ann Arbor, Michigan 48109 

(Received 

ABSTRACT 

In spontaneously broken non-abelian gauge theories which admit gauge hier- 

archy at the tree level, we show, to all orders in perturbation theory, that (i) the 

super heavy particles decouple from the light sector at low energies, (ii) effective 

low energy renormalizable theory emerges together with appropriate counter 

terms, and (iii) gauge hierarchy can be consistently maintained in the presence of 

radiative corrections. These assertions are explicitly demonstrated for O(3) gauge 

theory with two triplets of Higgs particles in a manner easily applicable to more 

realistic grand unified theories. Furthermore, as a byproduct of our analysis, we 

obtain a systematic method of computing the parameters of the effective low 

energy theory via renormalization group equations to any desired accuracy. 

PACS Category Nos.: 11.3O.Qc, 12.20.H~ 
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I, INTRODUCTION AND SUMMARY 

A central idea behind the unification of forces of vastly different strength is 

that such an apparent hierarchy arises not from the difference of the fundamental 

coupling constants of the theory but rather from that of the masses of the 

exchanged particles. Although, ultimately, we hope to explain the mass hierarchy 

itself through some dynamical mechanism from a theory with a single coupling 

constant and a single mass scale, it is certainly worthwhile, at this stage, to try to 

achieve the unification along such a line of thought. This has come to be known as 

grand unification.’ 

In such unified theories, very heavy particles must inevitably occur. The 

behavior of the coupling constants of the now popular low energy 

SU(3)C @ SU(2)L@ U(1) theory undeniably points to that direction2: If no new 

physics interferes with their evolution drastically, the mass scale of the heavy 

particles is as high as 1014s 1Oi5 CeV. It is perhaps not a coincidence that 

attempts of quark lepton unification (i.e. assigning them to the same irreducible 

representation of the fundamental gauge group) call for such a mass scale in order 

to secure the longevity of protons.3 

NOW in constructing a viable unified theory, these heavy particles must be 

incorporated into the structure with due caution. Among the most important 

requirements are (i) that super heavy particles must effectively decouple at low 

energies, (ii) that correct effective light particle theory must emerge at low 

energies, and (iii) that the mass hierarchy, arranged at the tree level, should be 

stable against radiative corrections. As we shall see, these requirements are 

deeply interrelated. None of them are trivial to satisfy. Indeed there have been 

numerous discussions of each of these problems in the literature, 4-6 with yet no 

clear-cut conclusion. In this paper we shall address ourselves to these questions 
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and give solutions to all orders in perturbation theory. Specifically, we shall 

establish the following: In spontaneously broken non-abelian gauge theories which 

admit gauge hierarchy at the tree level, (i) superheavy particles decouple from the 

light sector at low energies, (ii) effective low energy renormalizable theory 

emerges together with appropriate counter terms, and (iii) gauge hierarchy can be 

consistently maintained in the presence of radiative corrections. These assertions 

will be demonstrated for O(3) gauge theory with two triplets of Higgs particles in a 

manner that does not depend on the details of the theory (hence readily 

generalizable to more realistic theories such as W(5) theory). 

Let us first explain the nature of each of the problems and point out the 

difficulties involved in resolving them. 

1. Decoupling. Consider a theory with heavy (mass M) and light (mass m) 

particles. Heavy particles are said to decouple at low energies if their effects are 

physically undetectable in the limit M +-. To be more precise, they are said to 

decouple if their effects are either of C(l/hl) (manifest decoupling) or, if non- 

vanishing (call it of O(l)), can be absorbed into finite renormalization of masses, 

coupling constants, and the wave functions of a low energy effective light particle 

renormalizable theory. In equation, 

r ~,l’Pi’ g, m7 hu) = Z-n’2rjyiht(~i, geff, meff, 11) + 0(1/M) (1.1) 

where u is a renormalization scale and Z is a finite wave function renormalization 

constant. For theories without spontaneous symmetry breaking, Eq. (1.1) has 

already been establisehd by Symanzik, and Appelquist and Carazzone. 7 The 

essence of their demonstration is that while for graphs (or subgraphs) with 

dimension less than zero heavy particle effects are suppressed by the heavy 
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propagators, for graphs (or subgraphs) with dimension greater than zero one can 

absorb all the apparently large heavy particle effects into the renormalization 

counter terms. Although the original demonstration was done in momentum 

subtraction scheme with small subtraction scale Q.I << MI so that the decoupling is 

manifest, the fact of decoupling is clearly independent of the renormalization 

scheme chosen. It is a matter of simple finite renormalization to go from one 

scheme to the other. 

To discuss decoupling in theories with spontaneously broken symmetry, one 

must first specify the manner in which M becomes large. In such theories, the 

masses are proportional to gV, where g and 1’ are, respectively, a generic coupling 

constant and a vacuum expectation value of a scalar field. Thus two cases should 

be clearly distinguished. Case (a) g + -. In this case, the light particle sector 

becomes, in general, apparently nonrenormalizable, indicating its sensitivity to the 

physics at large mass scale. One therefore expects no decoupling. (This does not 

necessarily mean that heavy particle effects are easily observable in practice. 

Since these effects appear through radiative corrections, they are often suppressed 

by powers of remaining small coupling constants of the theory.) Indeed many 

examples of this phenomenon have been reported.’ Besides, the theory in this limit 

will contain a strongly interacting sector. Although potentially very interesting, 

we shall not dwell on this case any further. Case (b) V-+ m. This is the case 

relevant to the theories in the grand unification category, and is the one to be 

discussed in this paper. Contrary to case (a), light sector looks renormalizable and 

therefore one expects the decoupling to take place. Some explicit calculations 

have been performed to one loop order with results in support of this expec- 

tation.4’5 

However, to go beyond explicit calculation is not an easy task. For spon- 

taneously broken theories, the essential arguments of Symanzik, Appelquist and 
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Carazzone do not go through: Propagator suppression does not always work due to 

large three point vector-vector-scalar coupling and scalar self-coupling (and 

possibly large Yukawa coupling if very heavy fermions are present), and not every 

two, three, and four point counter term can be freely adjusted due to the gauge 

symmetry restriction. Added to these difficulties is the fact that, in general, light- 

heavy mixing occurs. I.e., even if we define light and heavy particles at the tree 

level, this identification is lost once one turns on the radiative corrections. 

Although conceptually one may re-identify light and heavy particles at each loop 

level, in practice it is certainly difficult, if not impossible, to implement such a 

procedure to all orders. Furthermore one must worry about the gauge hierarchy 

problem,’ for without gauge hierarchy the very concept of decoupling does not 

make sense. 

2. Effective Lagrangian: Now, complementary to the existence of de- 

coupling is that of effective low energy light particle Lagrangian. As is already 

clear in the case of theories without spontaneously broken symmetry one cannot 

talk about decoupling without the existence of an effective light particle theory, 

because in its absence we cannot absorb the large mass effects by redefinition of 

the parameters of the light theory. These two concepts are, therefore, two sides of 

one and the same subject. Thus all the difficulties associated with decoupling are 

present in deriving an effective Lagrangian. Recently a method of 

obtaining an effective Lagrangian by “integrating out” “heavy 

fields” has been discusssed by several 5 authors. If 

implemented naively, this method produces an infinite series 

of seemingly nonrenormalizable-looking terms in the 

Lagrangian, which is due to the (unallowable) interchange of 

the limits A(cutoff)+m and M+m. To avoid this, analysis of 

light-heavy overlapping graphs is called for and this has been 

done to two loop order. 5 Our method to be described in this 
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article deals exclusively with fully renormalized Green’s 

functions and hence leads to systematic incorporation of the 

correct limiting procedure to all 100p orders. 

3. Gauge hierarchy: Finally the gauge hierarchy problem. There are two 

levels at which to discuss this problem. Cf course the profound question is m 

such a hierarchy exists. .Although some interesting ideas have been put forth (e.g. 

technicolor approach,’ and Veltman’s conjecture lo of underlying supersymmetry) 

nobody has yet solved the problem. From this point of view, any nonsuper- 

symmetric theory with elementary scalars is “unnatural” due to the existence of 

quaoratic divergences. The less profound, yet important and practical question is 

whether u;e can maintain gauge hierarchy consistently in the presence of radiative 

corrections within the realm of perturbation theory.6 The emphasis is on the 

“consistency,” for, in a renormalizable theory, we have a certain number of free 

parameters and it is trivial to choose the renormalized value of small (v) and large 

(V) vacuum expectation values to be among our free parameters. The real question 

of consistency is whether, by so doing, $J the masses (not all of them are free now) 

automatically come out to retain the desired hierarchical pattern. This is another 

question we address ourselves to in this paper and give the answer in the 

affirmative. 

Now let us summarize the essence of how we solve all the problems 

mentioned previously, to all orders in perturbation theory. (This will at the same 

time serve to inform the organization of the paper.) 

The model is the O(3) gauge theory with two triplets of Piggs particles. It is 

chosen so that we can easily arrange a gauge hierarchy at the tree level. (It is 

described in Sec. II.) The first step (the content of Sec. III) is to do away with the 

light-heavy mixing problem. R’e shall show that consideration of one light-particle- 

irreducible (hereafter denoted by LPI) Green’s functions, \vhich are the natural 
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objects to study from the point of view of effective Lagrangian, takes care of the 

mixing automatically v;ithout the need of rediagonalization. Kere “light particle” 

means the one defined at the tree level. 

The next step (see Sec. IV), one of the two crucial steps in our program, is to 

decompose d given arbitrary renormalized LPI light graph into the part which 

survives in the h! + m limit (call it O(1) part) and the remainder of 0(1/M) in such a 

x that @(I) part is readily seen to be generated by an effective Lagrangian with 

effective parameters and appropriate counter terms. The basic idea here is that of 

factorization of the most “divergent” part, where “divergent” here is defined with 

respect to the limit R! + ==. Factorization has been widely discussed lately I1 but 

there is, however, a novel feature in our case: the operators of interest are of 

dimension four and hence appear many times in a diagram. This is to be contrasted 

with, for instance, the usual operator product expansion, where one needs to 

consider only a single insertion. Therefore combinatorical and renormalization 

aspects of such multiple insertions present complications. Technically, this is 

handled by the construction of a new algebraic identity in the Bogoliubov-Parasiuk- 

FIepp-Zimmermann (BPHZ) framework. 12 At the same time power counting 

theorems are stated (see the appendix for proof) which guarantee that what is 

claimed to be O(I/fi:!l is indeed 0(1/M). It is to be emphasized that !ve shall always 

deal with fully renormalized graphs so that nou:here do we interchange the limits 

A + m and M + m. The fact that the identity is designed to closely follow the 

combinatorics of renormalization is responsible for (i) O(I) part can be generated 

from a Lagrangian and (ii) counter terms are automatically supplied. 

Now that we have an effective Lagrangian, the final crucial step (Sec. V) is to 

(i) find what theory it describes, (ii) see if all the light particles remain light, and 

(iii) identify the effective coupling constants of the theory. It is at this point that 
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the gauge symmetry of the theory plays the central role. (POwer counting alone 

cannot exclude the possibility that light particles may become heavy.) Prom the 

original o(3) Becchi-Rouet-Stora CBRS) identity I3 (in fact what is relevant is an 

C(2) part of it around the direction of the large vacuum expectation value-the 

“residual” symmetry) we derive the BRS identity satisfied by the proper generating 

functional of the effective light particle theory. This puts such a severe constraint 

that the structure of the theory is completely determined: it is that of the O(2) 

gauge theory spontaneously broken by a small vacuum expectation value s v. In 

particular, the masses of the gauge, Higgs and ghost particles (we shall use a 

renormalizable gauge!‘) dre shown to be of order (Xv). This demonstrates that the 

gauge hierarchy can be consistently maintained in the presence of radiative 

corrections. 

Furthermore, as a byproduct of our analysis, we obtain a systematic and 

unambiguous method of computing the parameters of low energy effective theory 

to any desired accuracy via renormalization group equations (Sec. VI). The 

effective theory constructed in Sec. IV and V is provided with counterterms 

corresponding to zero momentum subtraction, and it is not particularly convenient 

from the point of view of renormalization group analysis. More advantageous in 

this respect is the effective theory made finite by minimal subtractions. I5 We 

shall describe an algorithm by which such a representation is obtained directly from 

the full theory without going through the intermediate stage of zero momentum 

subtractions. 

In the minimal scheme, effective parameters are free of infrared (i.e. m + 0) 

singularities and the decoupling takes place irrespective of the magnitude of the 

renormalization scale u. By comparing renormalization group equations pertinent 

to the Green’s functions of the full and the effective theory, exact equations 

satisfied by the effective parameters are obtained. Boundary conditions to be 
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imposed at 9 a$: for rhe solutions of t!?ese equations are found in an unambiguous 

manner through ti:e a1goritt.m .111uded to above. The merit of our method lies in 

that it is conceptually clear, and is systematic (backed by the all order analysis) so 

that the procedure can be carried through straightforwardly to any desired 

accuracy. Also included in this section is a comment on the “partially covariant” 

gauge fixing procedure recently proposed by !I:einberg” in the context of effective 

Lagrangian. It will be pointed out that there exist certain difficulties associated 

with this procedure. 

II. THE Ev:@DEL 

Although our ,rguments and the techniques in studying the three problems 

stated in the introduction are quite general, it is certainly instructive to carry 

through the procedures explicitly for a definite model theory. We have chosen to 

work with the O(3) gauge theory with two triplets of Higgs fields, 6 and 6, so that a 

gauge hierarchy can be arranged at the tree level. 

The starting Ligrangian is given by 

PO = -,!%F;avF “a + Yz(D$*ti 6) + K(Dv?&l’-Lh’) - V(i?, $) , (2.1) 

\‘@, 6’) = -!imH2k!2 - fimh2h2 + %fi(H2) 
2 

+ Kf,(h*) 
2 

e !if ti2h2 + Xf,(fi.$)* 3 

where 

c = a + @“A; 
P LJ 

(a = 1,2,3) 

it*) 
SC = - Eabc 

, (2.2) 

(2.3) 

(2.4) 
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is the covariant derivative in the triplet representation. K’e have assumed the 

symmetry under separate reflections, it! + -6 and 6 + -g and for simplicity no 

fermions have been added. The Lagrangian go is invariant under the O(3) gauge 

transformations, 

&A”(X) : E “bCA;(xl _ $ E aba u 
i 

cStib(d = -;(Dll)ab&) (2.5~1) 

&H”(x) : E~~~H~(x)~~ b(x) (2.5b) 

(2.5~) 

\:‘e shall, of course, ddd the gauge fixing and the corresponding ghost terms later. 

As was discussed by Gldener,6 one can easily arrange a gauge hierarchy at 

the tree level under the conditions 

0 < fi (i = 1,2,4) (2.6a) 

(2.6b) 

As we shall work in perturbation theory, fiS fj C< 1 will be assumed. The absolute 

minimum of the potential then occurs when 

<o/~Ic>~<ol~lo> = 0 (2.7) 

\I’e may therefore choose 
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colH,iG > = OaIv (2.8a) 
CL 

<O/halo’= 6,2v (2.8b) 

V2 and v2 are given, in terms of the original parameters, by 

V2 = (f m ’ - 2 H f3mh2)/(f ,f2 - f3) 

V* = (flmh2 - f,mH2)/(flf2 - f3) 

Alternatively, 

mH 
2 

q f1V2 3 +f v2 

m 2 
h 

= f3V2 + f2v2 

(2.93) 

(2.9b) 

(2.1Oa) 

(2.10b) 

Gauge hierarchy is arranged by choosing 

“2 >> “2 (2.11) 

The original O(3) symmetry is broken by “v to C(2) (i.e. U(l)), and then by ?down to 

no symmetry. 

For the purpose of power counting, to be performed later, it is convenient to 

choose a renormalizable gauge for which the ghosts and the Coldstone bosons 

associated with the heavy gauge fields are also heavy. A suitable gaugeI is 

specified by 



FERh,!ILAE-Pub-81/I%THY 

ggf = - & Fai = _ & LU ta&gJ;, t’\)? T-p 

-where the shifted fields ?i and ; are defined by 

h’ = ; + y’ 

+ 

H =,t+; 

(2.12) 

(2.13al 

(2.13b) 

The corresponding ghost Lagrangian then takes the form 

zz 
gh = - 

Ca a qDu)dD~b - g2 c: 

i 

v2Clcl, + V2C2c2 + (2 + 

v(n2Faca - C,nac2) + v(xICaCa _ FaXaCl) (2.14) 

By shifting the fields as in Eq. (2.13) and diagonalizing the quadratic part of 

the resulting Lagrangian, we easily find the particle content of the theory at the 

tree level. The theory contains altogether 12 particles listed in Table 1. Note the 

following features: (il For a gauge parameter u q O(I), the masses of a gauge boson 

and the associated ghost and the Goldstone boson are of the same order. (ii) Mixing 

occurred in (xl, 2 n ) and (n,, x2) systems with small mixing angles, 5 I, 8 2s @(v/V). 

Later we shall see that the radiative corrections induce further mixings, of the 

same order, within these pairs, so that the heavy-light identifications made at the 

tree level will be upset. This annoying problem will be nicely resolved in Sec. III. 

Finally, to complete the definition of the theory, we must specify the renor- 

malization prescriptions. So far all the fields and the parameters in our Lagrangian 

are the bare quantities and they diverge in perturbation theory. From the general 
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‘7 theory of renormalization of spontaneously broken gauge theories,- we know that 

these divergences dre removed by the following renormalization transformations: 

.qpd = Z3l”A;R , P q ZH1J2$ 

,,” = 7 1/2hd 
“h R , 

g = (zIiz33’2 kR 9 

c” z L =I12 a 
=R 

a = Z3ctR 

I, : i !Z !Z,2)f 
fl !R ’ 

f3 = (Z, i’z ,z )f 3 k,h3R ’ 

2 
mH = mHR 2-6mH2 , 

f, = (Z, /z 2)f 
2 h 2R 

f4 = (Zf /z z )f, Ir H h +R 

2 
mh = mhR 2-6mh2 . (2.15) 

:4s was first pointed out by Appelquist et al)’ and later elaborated by Lee,l’rhe 

use of renormalizable gauge with scalars requires an additional renormalization; 

namely G, 
-L 

dnd hR, defined above still contain gauge-dependent divergent vacuum 

expectation values 6\ 7 and 6: (even in theories without spontaneous symmetry 

breaking) and these must he removed. The necessary counterterms are generated 

by writing 

GR = gR + GR + 6”v (2.16) 

+ 
+ iv 
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where nou’ s R’ 
1: + x, 7 R, ; n are completely finite. Furthermore, one can choose 6? 

and 6; such that the gauge fixing T agrangian retains its form expressed in terms of 

renormalized quantities. To actually fix the counterterms we need to specify the 

subtraction procedure. Although any sensible gauge invariant scheme will do, for 

simplicity and definiteness we shall adopt the dimensional minimal subtraction 15 as 

the intermediate renormalization. After removing the infinities this way, we must 

still find the true vacuum and re-expand around it. This is automatically done by 

demanding that, at each loop order, appropriate sums of the tadpoles vanish. This 

amounts to making .a finite renormalization on Sm 2 2 
H and 6mh . As was 

emphasized in the introduction, we are free to choose \, R ano ‘R to be among our 

free parameters ad insist that VR >> vR.. Then according to our prescription 

above, all the masses will be fixed in terms of V R, vR, and the coupling constants. 

We have now completed the definition of our model and are ready for its analysis. 
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III. P.ES@LCTIOli OF THE LIGHT-l!EAVY MIXING PRCBLEI\! 

4s nas been pointed out, the identification of light and heavy particles made 

at the tree level may appear ephemeral; radiative corrections will introduce 

further mixings and it seems, at first sight, that rediagonalization must be 

performed at every loop level to re-establish correct identification. This vexing 

problem, ihowever, has a neat natural solution to the order of accuracy we wish to 

achieve. This is the subject of discussion of this section. 

The first question to be asked is whether the radiative corrections induce 

patterns of mixings different from those at the tree level. Fortunately this 

situation does not obtain. The key observation is that there exists a symmetry 

obeyed by every individual term (i.e. without even summing over the group indices) 

in the Lagrangian, which we shall call the index conservation. For the theory at 

hand, it can be described as follows. We shall assign the indices to various fields 

0 for x1,n2 

1 for A$, n3, cl, Cl 

2 for Au2 X3’ 2 5’ c 2 

3 for A,,3, x2, n,, c3, C3 (3.1) 

dnd impose the rules of composition 
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Cl.0 = 0 

i-j = k where i,j,k = cyclic 

i,j,k = 1,2,3 (3.2) 

Then one can easily verify that every term in the Ldgrangian conserves indices. 

Some examples are given in Fig. 1. This assures that, by looking at two point 

functions, mixing can occur only among fields with the same index (see Fig. 2 for 

an illustration), demonstrating the assertion made above. 

Having been assured that radiative corrections affect angles, but not the 

pattern, of mixing, let us describe how rediagonalization at each loop level is 

avoided. To do this we must first analyze what are the objects of interest that we 

want to compute. For the sake of clarity of discussion, let us concentrate on the 

mixing in the (X ,, r12) system and suppress all the other fields. Our starting point is 

the generating function 

exp iW(j,, Jll : 
/‘ 

C.ZTi2 CZ g,exp i(S + ij,ii, + iJIiI) 

which, upon tree level diagonalization becomes 

/ 

,. ,. -^ . 
gYi2 gXlexp i(S + ij2n2 + i?,X,) 

(3.3) 

(3.4) 
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This is the form from which we generate perturbation series. Now what we 

eventually xSish to obtain is the effective Lagrangian for the light particles. Thus 

the object of interest is the effective action, defined, as usual, by the Legendre 

transformation 

TIPI(;i2, X,’ = w -7262 - 5,571 (3.5) 

where 

(3.6) 6Y 
Yy2 z - :( = 2 

6j2 ’ ’ - 57 
1 

Because of the radiative mixing, we must re-express this in terms of the true light 

and heavy fields fi, and ji l which are orthogonal linear combinations of the tree 

level fields x2 and xl. (Actually we must do this for each Fourier component. I.e., 

the mixing angle is momentum dependent.) Thus we write 

FIP&, Xl’ = T,p,(;i,,“x ,) (3.7) 

We now wish to “integrate out” the heavy field x,. This means computing yIPI in 

the absence of the source of i,. It is expressed by 

(3.8) 

Hence we can solve for “I in terms of ;i 2, XI = j(,(G,l. We then obtain the desired 

object ? lP& $“z)).. This is nothing but n z (i.e. light particle)-irreducible 

generating function (since Legendre transformation for iI is not effective due to 

the condition 5 , = O), which we denote by F,,,(fi I). 
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Now the question is: how do we compute this object? It turns out that, to 

O(I), this object is exactly the same as the LPI Green’s functional T,,,(?,) = 

Tl,,(n,, 2,) I-J =o defined with respect to the tree level identification. In 
I 

equation, 

T LpI(;;2) = r,,,(;i,) + 0(1/M) (3.9) 

To see this let us consider the actual process of diagonalization of fields. In 
- - 

( X,, rl2) basis, the inverse two point function matrix A-‘(p’) is of the form 

A-‘(p*) : 

i 

p2 _ h,2 _ z 
x1x1 

-1 
x IQ 2 

-z 
XI ‘12 

p* _ m2 _ 1 
C2Q2 

where C 
XIX1 

etc. are the (renormalized) self energy operators. 

diagonalized by an orthogonal matrix 

C(p2) = 
i 

cos e(p2) sin e (p*) 

-sin 8(p*) cos Np2) i 

so that \ve have 

n2 = Yi2 cos 8 - Xlsin e 

x, = TT, cos ti + ii2 sin 3 

The mixing angle fi is easily computed to be 

, 

, (3.10) 

This is 

(3.11) 

(3.12a) 

(3.12b) 
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2c 

tan i - x1n2 

h! 2 2 
(3.1?) 

-m + Z x1x, - 
x 

n2n2 

.At this juncture, we must borrow some results of the power counting theorem PI 

described in Sec. IV. A.pplied to two point functions under consideration it tells us 

that 

c 
XIX2 

= O(M2) , 2 = O(m*) 
‘12Q2 

I., 
,‘.I ‘12 

= O(Mm) 

Substituting them into Eq. (3.131, we find that the mixing angle is small, i.e., 

e = O(E) 

(3.14) 

(3.15) 

Therefore, we can write 

- sin t q 

’ 

(3.16.a) 

cos e = I + 0 
m* c ) 2 

(3.16b) 

Equation (3.16z.j has a nice diagrammatical interpretation depicted in Fig. 3. Let 

us now compute what the true light and heavy two point functions are. By 

elementary calculation one finds 
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-._ I r 
XI Xl ( 

p* - !“I2 - c 
X1X1) (l-C($)) 

-_ 
AAl = p2 -m* _ c 

‘2 2 02n2-,7$F$- + o($) 
XIX1 

(3.17al 

(3.17b) 

Diagrammatically Eq. (3.17b) can be represented by Fig. 4. Equations (3.17a) and 

(3.17b) tell us that, within the accuracy desired, while “true” heavy propagator is 

equal to “tree” heavy propagator, the “true” light propagator is obtained by 

summing all the relevant LPI diagrams, where LPI is defined with respect to “tree” 

diagonal fields. As for the external lines, we learn from Eqs. (3.12a) and (3.16a,b) 

that proper projection of the true light field is done automatically by considering 

tree-LPI graphs. Figure 5 summarizes our findings in the case of d four point 

function. This clearly proves the statement Eq. (3.9). 

Thus, to C(l), we have a very useful conclusion: Simply study the LPI Green’s 

functions. The mixing problem is automatically taken care of. 
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IV. SEPARATIZS OF C(I) AND 0(1/M) PARTS--A NEW ALGEBRAIC IDENTITY 

i1,‘e no!%; come to the main part of the study. With the result of the previous 

section in mind, \l:e can state our objective as follows: Given an arbitrary LPI light 

particle graph, which is made finite by the usual (in our case minimal) subtractions, 

we shall give a prescription to separate its contribution at low energies into the 

part that does not vanish as hl + m(we shall call it 011) part) and the rest which is 

of 0(1/M) in such a fashion that O(1) part is manifestly obtainable from an 

effective light particle Lagrangian with effective coupling constants and effective 

masses. 

To describe the basic idea, let us start with a simple example which well 

illustrates our dpproach. Consider a diagram shown in Fig. 6. Due to the large 

hliggs three-point couplings this diagram contains @(I) part in spite of a heavy 

Higgs exchange. h;oreover, it originates from both low (Z* << !J*) and high 

(Q* s hi21 loop momentum regions. First we look at the low Q* region. In this 

region the dominant piece of the heavy propagator is almost a constant S -l/M*. It 

is thus natural to make a decomposition 

1 

- =( 

I 
.k2 - ,!2 L* - Iv* + $) +($) 

5 Aa+Ab 14.1) 

Upon substituting this expression, the original graph splits into two graphs depicted 

in Figs. 7(a) and 7(b). Because of the improved ! J 1/Fi141 low energy behavior of Aa, 

the diagram 7(s) no longer produces O(I) contribution from low 9. 2 region. To deal 

with high loop momentum region, however, this decomposition is not sufficient; 

2 although the sum is finite, 7(a) and 7(b) individually diverge as 9, -C m. To remedy 
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this we add and subtract the zero momentum values of the diagrams as shown in 

Figs. S(a), lb)? Cc). Ylow each bracketed expression is finite. itoreover, recalling 

Fig. 7, 8(c) is nothing but the original graph evaluated at zero momentum. Notice 

that 8(a) is not only convergent but also is of 0(1/M) since potential O(1) part is 

subtracted away together with the divergent contribution. (Reader can easily 

verify this explicitly.) At the same time the diagrams giving O(1) contributions 

have exactly the diagrammatical structure pertinent to a light particle theory. 

Therefore for this example we have achieved our objective stated at the beginning 

of this section. 

To see how this procedure may be generalized for an arbitrary graph, we must 

rephrase the above result from a different, more systematic point of view. 

Diagrammatically 8(b) and LX(c) can be obtained from the original graph by reducing 

non-trivial LPI light (subjgraphs of mass dimension > 0 to a point. The resultant 

graphs contain light particle lines only and in this sense they are “fully-reduced.” 

On the other hand, 8(a), which is not fully reduced (in fact not reduced at all in this 

case), is overly subtracted. I.e., all of its non-trivial LPI light subgraphs with 

dimemsion > 0 !vere subtracted according to the nomimal naive dimension counting - 

regardless of u:hether they actually diverged. What we have learned is that only 

the fully reduced graphs gave O(1) contributions. These observations will be the 

key to our subsequent analysis--u*e shall make them more precise and express the 

above rule as an exact algebraic identity. 

To handle the complicated combinatorics for arbitrary graphs, EPHZ’* renor- 

malization procedure with Zimmermann’s forest formulation is well-tailored. Let 

us begin by making precise the various key concepts, some of which have already 

appeared in the example above. 
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6) Renormalization operator tY: tY is defined for iP1 graphs only. It 

evaluates the divergent (pole) part of a IPI graph y. 

(ii) Taylor operator ty : This operator will be defined for 2, 3 and 4-point LPI 

light particle graphs (to be defined shortly as partition elements). Given such a 

graph y, it extracts the superficially divergent part of its Taylor series around zero 

external momenta, where the superficial degree of divergence is determined 

according to the naive dimension counting, i.e., by the formula 6 = 4 - B (B is the 

number of external lines). Since the actual superficial degree of divergence is 

given by d = 4 - C - j/3, where V3 is the number of 3-point nonderivative couplings 

in the graph, ty in general effects over-subtraction. Xote that ?y also acts on 

graphs composed of light internal lines only. \!‘hen it does,the difference tY - ry is 

a finite renormalization. This is built into the algebraic identity so that at the end 

the light effective theory is consistently renormalized by zero momentum 

subtractions. 

(iii) Partition element: A partition element TI of a graph is a ncn-trivial (i.e. 

excluding tree light vertices) LPI Jight (sublgraph of mass dimension > 0. The - 

whole graph itself could be a partition element. 

(iv) A reduction of d graph: A reduction of a graph is defined by a set of 

mutually disjoint partition elements { TI I, T*, . ..) Tni . A reduced graph 

T/jn I,...,~ln] is then obtained by shrinking each ~~ to a point. xi’s participating in 

a reduction will be called reduction elements. A reduction is said to be a full 

reduction if the reduced graph contains no heavy particle lines. Note that 

reductions are defined even for a graph that is composed of light particle lines 

only. In such a case every reduction is a full reduction. 

(vl Concepts of type-t (or barred) and type-r (or unbarred) elements: Later 

when we write down the relevant forest formulae we need to assign, for each 

element of the forest, the operator tY or Ty. An element will accordingly be 
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called of type-t or of type-?. For partition elements which are at the same time 

divergent we shall have occasions to include them twice in a forest, once as type-t 

elements and once as type-? elements. This point will become clear later. When 

such a distinction is essential we shall put a bar on top to denote the type-t 

elements. 

We are now in a position to state and prove the crucial algebraic identity. 

Let us first state it as a theorem and give a clear explanation of it. A proof will 

then follow. 

Theorem I. The following equation t,olds identically; 

R = 
” 

voc.+oio(r) y < TJ 
0 

n C-T? 

I.‘c+-(rl[ Tl,..., llm) ) y EI u 

x i ( TTli 1 11 (-tY’) ) 1 Ir . (4.2) 
i-1 ui c go’ ITi) y’ E. u. 1 

Explanation of the theorem I: Consider an arbitrary LPI light particle graph r, 

with its unrenormalized expression denoted by I r’ 
The renormalized expression Ry , 

obtained by the usual Zimmerman& forest formula, is recorded in the first line. 

Here Ye(r) is the collection of all the forests of r . lJo is a forest, Y is a 

renormalization part contained in the forest U. The subscript o means that the 

forests are defined in the ordinary way, i.e. according to the counting 

d z 4 - B - Y3. Now this Ry can be decomposed in the following uay (the second 
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line of Eq. (4.2)). First choose a particular reduction of T, defined by a collection 

of partition elements { nl..., nm} , which are to be reduced. Before reducing each 

ni to a point, all the divergences within it must be subtracted. This is performed 

c Il 
by the Operation lJi E cYo(ai) y’ c ui I-tY’). After this renormalization, T “i acts on 

it to evaluate ri dt zero momentum and produces local vertices of dimension ( 4. 

(This is the precise meaning of the reduction.) Now we have obtained a reduced 

graph r/I TIl,..., “,I . The rest of the operation 

c n C-Ty), where 

ucsU(r/I y,...,yJ) YE u 

ry if y is a partition element of type--r 

TY E 7. t if (y =ly is a LPI renormalization part defined (4.3) 

according to the naive counting 6 = 4 - 6 > 0 I 

renormalizes the reduced graph with consistent oversubtraction for the partition 

elements of the reduced graph. A forest UES(r/{ trI,...,ttm}) is composed of non- 

overlapping elements of the type listed in (4.3). In particular for fully reduced 

graphs all such elements are partition elements and effectively only Ty ‘s are 

operative. We then repeat the same procedure for all possible reduction patterns, 

including no-reduction case, and sum over all such contributions. The identity says 

that the sum reproduces precisely the original renormalized expression Ry. Note 

the complete parallel with the way the example was treated in the beginning of this 

section. 

Proof of the Theorem I: The theorem can be proved most transparently by 

focussing on the contribution, on the right hand side of Eq. (4.2), corresponding to 

the no-reduction case. So let us isolate it and rewrite the equation symbolically as 
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c =1-c z 
&NR -Jb a.Y R J 

(4.4) 

where %, iyNR and=TR are the set of forests pertinent to the original contribution, 
a 

the no-reduction case, and one of the reduced cases respectively. Because of the 

extra subtractions performed for &I of its partition elements,gNR is the largest 

set of forests among them. Our aim is to enumerate the forests in SNR and show 

that their contributions precisely match those of the right hand side of Eq. (4.4). 

Let us take any forest U belonging to .SfNR. Vi-e shall define the set of 

minimal partition elements of U to be those partition elements of type-r which do 

not contain any other partition elements of type-r. This set is uniquely determined 

once U is chosen, including the possibility of being an empty set. Let us then write 

u = In,, lT2, . . . . lln; iyi ! (4.5) 

where { rr,,..., sn ) is the set of minimal partition elements and {y} collectively 

denotes the rest of the elements of U. The operator associated with this U is 

ij (- T’~) u (- Ty) 

i=l Y 

(4.6) 

where Ty is either tY or TT depending on the type of y (see Eq. (4.3)). The crucial 

step now is to write the operator above as a sum of “factorized” forms, namely 
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ir-~~i,,(-~~)...‘~-lll(-T~)] 

+ (1-1121)[(-:1)(-_II...:Tlnl,,-Ty,j 

Y 

+ .., 

+ ((- Tn”))[ 6 A...(- .11”-1)II(-iy)] 

C-1)(- &- rTT2 ) )[ (- T’ 3, . . . . ~“~,n(- Ty )] 

Y 

+ C-1) (all pairs factorized) 

+ (-I)* (all triples factorized) 

(4.7) 

Except for the sign, each term is identical. Alternating sign then assures that the 

sum is indeed equal to the original expression thanks to the simple combinatoric 

identity 

$ (&( ; j = 1 

k=l 
(4.8) 

Note that the overall sign inside the curly bracket { } is always negative. This is 

the correct minus sign appearing in Eq. (4.4). Let us call what is inside { } a 
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factorized part. We now sum over all UEgNr \ and collect terms having the same 

factorized part. It is clear that there exists a one to one correspondence between a 

factorization type and a reduction type. Focus on a particular factorization type. 

Apart from a common factorized part, say 
1 -izl *‘)’ 

fi” (r ‘1 the rest of the expression 

consists of contributions from all possible forests with the properties (i) that they 

appear together with the set IV,,..., trrn} and (ii) that they do not contain any 

type-r elements which are inside aj’s. (This is because these rrj’s were among the 

set of minimal partition elements of a UC;U,,.) Recalling the form of Eq. (4.2), 

we recognize that they are nothing but the set of forests pertinent to the reduction 

defined by [ TT l,..., nm . } What are left behind are those UCC91R which have no 

type-t partition elements in them, but they precisely form go. This completes the 

proof. 

Some remarks are in order: (al The spirit of the proof given above is similar 

to that for the original Zimmerman& algebraic identity, 20 which has been widely 

used in proving so-called factorization Ibf short and long distance physics. Our 

identity may be considered a generalization of it which allows for multiple 

insertions of operators. (bl Another useful interpretation of the identity is to 

regard it as performing a finite renormalization, although the operations are 

performed not only on IPI functions but on a wider class of diagrams, namely the 

LPI functions. In terms of the symbols used in Eq. (4.41, c performs minimal 
x 

subtraction whereas c performs zero momentum subtracotions for the light 

%R particle 2, 3, and 4 pomt functions. The difference then must give us diagrams 

where finite, light particle counter terms of renormalizable type are inserted. This 

is exactly what F $5 represents. 

Let us now turr? to the remaining portion of our analysis--the separation of 

O(1) and 0(1/M) parts. (So far what we have obtained is an exact identity and 

hence involved no knowledge of the fact that hi >> m.1 This naturally requires 
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counting of the maximum powers of hl of a graph. Again for clarity of presentation 

let us first state the result as a theorem and then indicate what sort of procedures 

are involved in proving it. The specific details will be given in the appendix. 

Theorem 2. At low energies O(I) part of an arbitrary LPI light Green’s 

function comes entirely from the fully-reduced portions, in the decomposition of 

theorem I, of the relevant diagrams contributing to such a Green’s function. 

Further, these fully-reduced diagrams can be generated by an effective light 

particle Lagrangian. 

To prove the validity of this theorem, one must first understand the behavior 

of an arbitrary LPI graph as M becomes large, namely the maximum power of A’! 

that a diagram may generate. For tree diagrams this is rather trivial. However for 

diagrams with many loops one must systematically examine all possible regions of 

loop momentum space in order to obtain the correct power. This analysis is 

presented in the appendix. The result is nevertheless pleasantly simple and we shall 

quote it here as theorem PI. 

Theorem PI. The maximum possible power nmax of M for an arbitrary IPI 

and LPI Green’s function with BF, heavy and BL light external lines is given by 

n max = BH 

In particular for light particle Green’s functions (i.e. BH = 0) nmax = 0, meaning 

that dependence on hit is at most logarithmic. 

Remarks: (i) It should be emphasized that the theorem applies to Green’s 

functions (i.e. relevant sum of diagrams) and is not necessarily correct for indi- 

vidual diagrams. This is due to the fact that individually two and three point light 

particle (subldiagrams may contain O(M2) and O(M) contributions respectively. 
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(This is the maximum information one can obtain by power counting procedure 

alone.) However in the sum which comprises the corresponding Green’s functions to 

a certain loop order, these adverse powers cancel. The Ward identities ensuring 

this cancellation are discussed in the next section. (ii) n max is the maximum 

possible power of M, and the actual power may be less. In fact in certain cases 

reflection symmetry of the theory does reduce the power. (See Sec. V for effective 

uses of this fact.) (iii) For purposes of dealing with the BRS-Ward identities, we 

shall have occasions to consider Green’s functions which contain new vertices 

corresponding to the composite operators generated by the BRS transformations. 

(See Eq. (5.21.) Theorem PI is valid for these Green’s functions as well, provided 

that ae regard the sources of these new vertices as effectively being composed of 

two light fields. 

Now the central part of theorem 2 follows if we can prove the following: 

Theorem P2. For any LPI light Green’s function which contains at least one 

heavy internal line, extra zero momentum subtractions upon its partition elements 

(plus associated subtractions of the divergences generated for diagrams containing 

such partition elements) render it vanish as M+ m. 

The proof of this second power counting theorem is again relegated to the 

appendix. It is quite similar to that of theorem PI except that this time one takes 

into account the oversubtractions in counting the powers of 1;: arising from various 

regions of loop momentum space. 

Finally we must show that the remaining fully-reduced graphs can indeed be 

generated from an effective Lagrangian with effective masses and coupling 

constants. This is done as follows: We sum over the O(I) parts of all the diagrams 

making up a Green’s function in a rearranged fashion. Namely, contributions 

represented by a common fully-reduced structure are bundled up first and then sum 
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over the different structures is performed. This is schematically illustrated in Fig. 

9 for a 4 point function. Note that the effective coupling Xx is the 4 point LPI 

Green’s function evaluated at zero momentum. This ensures the symmetry (under 

pi t-f pj) property and leads to the correct combinatorical factor (K;), for example, 

for the second graph. The fact that the combinatorics comes out precisely right is 

easily understood if we recall the remark (b) made immediately following the proof 

of theorem I; from the point of view advocated there, O(1) contributions are made 

up of diagrams generated by the finite light particle counterterms only. 

This then completes the construction of the effective light particle 

Lagrangian. It cannot be overly emphasized that throughout our procedure we 

dealt with finite renormalized quantities. It is this feature that allowed us to take 

the meaningful hl + m limit and obtain the effective Lagrangian accompanied with 

appropriate counterterms. In the next section, we shall utilize the gauge symmetry 

of the theory to completely fix the structure of the effective Lagrangian. 
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V. BRS-WARD IDENTITIES 

The final step of our analysis requires a detailed study of various BRS-Ward 

identities.13 We shall see that the gauge symmetry constraints are sufficiently 

restrictive to dictate that all the desired structure of the theory be present. 

Specifically we shall establish (i) that the light-heavy mixing angle remains small 

(O(v/V)) to all orders, (ii) that the structure of the low energy effective Lagrangian 

is precisely that of spontaneously broken O(2) gauge theory (known as Abelian Higgs 

model), and (iii) that all the light particles remain light. Moreover all the 

parameters of the effective theory will be expressed explicitly in terms of the 

quantities in the full theory. 

Let us first briefly review 21 the basic BRS-Ward identity relevant to our 

theory. Our Lagrangian including the gauge fixing and the ghost terms is invariant 

under the following BRS transformations: 

ab b 6hA; = Du c 6X 

GXHa = -gc abcHccb 6 X 

-a 6 c x = ;Fa6X 

GXca = igc abccbcc 6 x (5.1) 

where 6h is an infinitesimal global anticommuting variable. It is convenient, as is 

customary, to introduce the sources for the composite operators appearing on the 

right hand side of Eq. (5.1). So we add to our Lagrangian, 



33 FEEh:ILA13-Pub-81/1X-TtiY 

&Ad 
gcs = K;‘$+k”$+Kd6$+ Ila og 

= -Ky-+a”b b 
P 

c +gkc a abc a abchccb + gK E HcCb 

- % .PgE abc 
=bCc (5.2) 

Because of the nilpotency, Sx2 : 0, of the BRS transformation, Zcs is by itself 

BRS invariant. Now by making a change of variables corresponding to the above 

BRS transformations in the functional integral representation of the generating 

functional, one obtains 

J &A” - 
.a 6ha d4X< J; -2 + , a 6H” 

6 c 6c. 

TTiJ 6X ‘$Sa-Ta%’ 

= 0 (5.3) 

where the symbol < > denotes the vacuum to vacuum amplitude in the presence of 

the sources. This equation can be easily translated into the one in terms of the 1PI 

generating functional r. Namely we have 

6r dl- 6i- 6r 6r 

-+6ha(x)$m+6H,oq 6 K;(X) 

6r ’ r + 1 F +q3 sq3 CL a 
(x) Al- 

‘G,(x) 
:o . (5.4) 

To make Eq. (5.4) finite we need to perform the renormalization transformation 

listed in Eq. (2.15) and in addition the following resealing of the composite sources. 
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k 
a 

= (=k+h-hkaR 

Ka = (fZ3)‘ZH-!iKaR 

(5.5) 

The Ward identity remains form-invariant. (We shall therefore omit the subscript 

R and consider Eq. (5.4) as already renormalized.) In particular one may choose S$ 

and a? of Eq. (2.i6) so that the gauge fixing term l/n Fa retains the same form 

i ( ali Ai - ga({, tan - g&, t”* ) (5.6) 

when expressed in terms of the renormalized quantities. The Ward identity should 

be supplemented with another informative equation, i.e. the equation of motion for 

the ghost fields. It reads (in renormalized form), 

,z r 
-= a 

6i- 6r 6r 

jca ’ 6K; - - gavEba2 6kb - -gaVEba,q ’ 

Using this one can show that the quantity ? defined by 

/ d4x(Fa)2 

(5.7) 

(5.8) 

satisfies a more compact BRS-\Vard identity 
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= 0 (5.9) 

Equations (5.7) and (5.9) are the fundamental equations that we shall utilize below. 

Let us begin by showing that the light ghost field cl remains light. Consider 

the first component of the ghost equation of motion and apply & . After 

setting all the sources to zero, we obtain 

-m 
gh 

2 : J d4y 
2 

’ r 
2 

’ r 
6Cl(Y)6C,(X) 

q _ gcrv 
/ 

d4y 
6cl(y)6 k3(xj . (5.10) 

The power counting theorem dictates that 

O(v). This gives us 

6’ r 
C,(Y) 6k3(x) 

can be at most of 

2 
mgh = O(v2) (5.11) 

Thus the light ghost field cf remains light. 

Next we shall show that the same is true for the light Goldstone field n3. For 

this and later purposes we must express the Ward identity (5.9) in terms of the 

tree-level diagonal fields. (For n3 this is clearly enough for it does not mix with 

other fields--its mixing with A: is irrelevant for its mass. Further, as was shown in 

Sec. III, it suffices for our subsequent analysis of LPI generating functional.) The 

result of the appropriate rotations is 
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sr 6!. 
+ E-p oI1,o + 

i ) 

6; + i cos o* 6: 6; 7 
6n2(x) + 6rl3(x) Gkjo 

+ c 
ET cost+ y sr “-- 6x1(x) - sin32,sF -gm 

2 
(x) 

i 

sr + cos Cl _ ’ Eq(d + s’nYl - &)ej + ‘I- 6r sqmmp - 1 = 0 . (5.12) 

U’hat u-e need to prove in fact is the Goldstone theorem 22 for then 3 field. Let us 

“PPJY d4Y 
l- 

6 6 
6Gip 6cl(z) to Eq. (5.12) and set the sources to zero. hlany terms 

seem to be produced but thanks to the index conservation discussed in Sec. III all 

except one term vanish. We thus obtain 

d4xd4yc;n 6 2r 2- 

3() 3 y 617 (x) 6c “z :k (x) 
I() 3 = ’ 

Using the translation invariance, this can be written as 

/ d 
4 6 2r 

y6n3(Y)6n3(oJ ’ s 

4 ‘s2r 
d ’ 6c1(x)6k3(Ol = ’ 

. (5.13) 

. (5.14) 

Since d4x 
62r” 

&y(x)6 k3(0) has a nonzero tree level contribution it cannot vanish and 

we get the Goldstone theorem 

s 

4 62r 
d y 6113(Y)6r13(0) = O . (5.15) 

Recalling Eq. (5.8) this implies 
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2 n =- 
s 

.4 62r 
G y 6r13(yh5n j(o) = + / d 

4 62 
y sr;,(yks:j3(0) 

I 
‘; 2 , EJ [ Fa(x)l 2d4x Isources=o 

22 = llg " (5.16) 

i.e. the mass of the Goldstone boson I- 
? is not renormalized and afortiori n 3 

remains light. 

Demonstration of the smallness (O(v/V)) of the light-heavy mixing angle 

requires slightly more complicated analysis. This time we apply to Eq. (5.12) the 

operation s d4yd4z ’ 6 6 
6rl3(yJ ag qm 

and then set all the sources to zero. 

Again most of the terms vanish due to the index mismatch and to the Goldstone 

theorem just proved, and the surviving terms are 

/d4Yd”Zd4X { ( cose2 ,i2(f;;2,x) - .%~23;~~lix) 

63 r + 

G2(z) 6 l130@ n ,(x) 

+ c costi _ g2i- 6n2W6X,(x) 
= 0 

s2 r 
6 cl(u)6 k3(x) 

ti2r \ 
- sins, 63r 

‘6ri2(2)6Ti2(x) 
&n3(y)6cl(u)EKI(x) 1 

(5.17) 

In momentum space this is a relation between various Green’s functions at zero 

momentum. We shall use obvious notations such as r for 

/ 
d4Yd4X 63 r 

n3Clk2 
bn3(yl bclCu,bk2txJ, etc. From the power counting theorem we know that 
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r 
C3C11’2 

= O(1) , r- 
‘2’3’3 

= O(V) 

r 
=lk3 

= O(v) , r- - = O(vV) 
n2x1 

r 
n3Clkl 

= O(i) (5.18) 

But the reflection symmetry under ha + -ha, v + -v, k,+ -ka, tells us that r- 
n2n 3” 3 

Cannot be of O(V) but only of O(v), and likewise the symmetry under Ha+ -H a’ 
V‘L -V, Ka+ -K a, dictates that rri c k 

311 
can actually be at most of O(v/V). Putting 

all the informaTion into Eq. (5.171, we can deduce the order of magnitude of the 

two point function r- - . From 
‘12’12 

0 q ‘[r- - cosg2- O(VvJsinE2 O(1) 
- Q2’12 I 

+ O(v)O(v) + ( O(Vv)cosH2- rfi2n2sin32)C(;) (5.19) 

we get 

r - - = CQ) 
‘12’12 

(5.20) 

This then is enough to secure the smallness of the full mixing angle and justifies the 

discussions of Sec. III. 

What remains to be done is to derive the BRS-Ward identity satisfied by the 

O(1) part of the LPI generating functional r Lp1 which, as \vas shown in Sec. III, is 

nothing but the IPI generating functional TX for the effective light particle theory. 
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The Ward identity for rLPI is obtained by setting all the heavy particle sources to 

zero in Eq. (5.12). \Ve obtain 

6 rLP1 6rLPI 6 r LPI * TLPI 

EAjx) GKi(x) +6cl(x)np 

+cos82 ;;‘yi) 6rLp* + 6rLp1 6rLpr 

2 
6k2(x) an,(x) 6zp 

6 rLP1 6 rLP* LPI 
-sine2 - sy Eqm + $- FI(x) “- 

I 
(5.21) 

2 
(x) 

6 c,(x) 

As a matter of fact 6 rLP’/6kI(x) identically vanishes for the following reason: 

The ghost number conservation requires that the nonvanishing Green’s function one 

can obtain from 6 TLPI/6 k,(x) is of the general form 

6 2n+2 rLPI 

611 (6c )%C 6 11 I1 c )” sources = 0 
(5.22) 

This, however, is incompatible with the index conservation. (Total index number 

for (5.22) is I, not zero.) Furthermore the next to the last term in Eq. (5.21) can 

also be eliminated since it is down by v/V: Ghost number and the index 

conservations dictate that the allowed Green’s function of lowest dimension 

involving 6 r Lp’/6K, is (63TLpr)/(6”36 cI6 KI), which by the power counting 

theorem, is of C(I). Green’s functions with more legs are also at most of O(1). 

Therefore the presence of sinG2fl O(v/V) allows us to drop this term within the 

accuracy of our approximation. 

With the above-mentioned two terms eliminated thus, TX, the O(1) part of 

r LPI , satisfies the equation 
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s I * * or* dr* 

d4x & e:pr(x) + - 

6r* 6r* 

li 1 67 ,(x) 
6Tp + 6Gip qd 

* 

+; Ff(x) L 

I 

= 0 
6 C,(x) 

(5.23) 

For completeness let us record the relevant light ghost equation of motion below 

(obtained from the first component of Eq. (5.7)). 

6 r* 
* 

- : 
bCl(X) 

-& - gcrv Er* 

ux 
6k3(X) 

(5.24) 

As we may have anticipated, these are identical in form to the BRS-Ward identity 

and the ghost equation of motion for O(2) gauge theory known as Abelian Higgs 

model. These equations must be satisfied, in particular, by the effective light 

particle Lagrangian (or more accurately the tree action). By writing down a most 

general light particle action of dimension zero and substituting it into the above 

two equations (we leave this as an exercise to the reader), we can easily fix the 

structure of the action of the effective theory. The result can be conveniently cast 

into the following form: 

@* = -+Z3FiVFpv*+fj (au +gftAAi) 
2 

- & a,, A? - gavn3 2 - Zcla2c1 - m2 C c gh I I 
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-?K;&l - :g* 

+&*( z,,2/Zn3)hk3(ii2+v*kl 

+ counter terms defined at zero momentum (5.25) 

In the above equation various parameters and finite wave function renormalization 

constants can be precisely identified in the full theory in terms of LPI Green’s 

functions and their derivatives at zero momentum: 

= L rLPr 
ap2 rln 

= O(1) (5.26) 
2 2 p=o 

a racy 
=q3 = 2 I 

= O(I) (5.27) 
ap n3n3 p=o 

i*z2 = rLpl 
n2 n2n2’12n2 

= O(I) (5.28) 

pi=0 

rAiAtP1 = i 
2 

” v guvp -pppv 

23 = s1 ( = O(I) 
p=o 

4z gf2gpv 
LPI 

n2 = rA;+2”2 p.=. 
= O(1) 

1 

g = LrLPI = O(1) 
ap 2 =lcl p=o 

(5.29) 

(5.30) 

(5.31) 
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2 
mgh = 

_ rLPJ 
I clcl p=o 

= Oh21 (5.32) 

(5.33) 

The masses of Ai ~, and T2 (those of n3 and cl are already given in Eq. (5.16) and 

Eq. (5.32)) can be read off from Eq. (5.25) as 

2 “2 

mAl 
= g*2z 

172” 

m:2 n2 = ;A*$ “*2 

(5.34) 

(5.35) 

Thus we see that all the light particles remained light. One can of course bring 

A?* mto the standard form (i.e. without the finite z factors) by making appropriate 

finite resealings. Note that counter terms of the effective theory are the ones 

corresponding to zero momentum subtractions, in spite of the fact that the full 

theory is renormalized by minimal subtraction. This is due to our procedure of 

separating O(1) and 0(1/M) parts at zero momentum. If one wishes to obtain the 

light theory which is renormalized also by minimal subtraction, all one needs to do 

is to simply make a finite renormalization within the light effective theory. 

This completes the demonstration of all the three results announced in the 

introduction. 
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VI. DISCL~SSIONS AND COMMENTS 

In this final section we shall discuss an important application of our result, 

namely the renormalization group equations governing the heavy mass dependence 

of the effective parameters. There have been many discussions on 

this subject 23 but our emphasis will be on the all order 

aspect, especially a systematic method of computing the 

appropriate boundary conditions, which results from our 

analysis of previous sections. Also included in this section 

is a comment on the gauge fixing procedure recently proposed 

by WeinbergI In the context of effective Lagrangian. 

As was described in the previous section, our general analysis has enabled us 

to make a precise identification of the parameters of the effective theory in terms 

of the zero momentum values of appropriate LPI Green’s functions of the full 

theory. Among other things this will in turn allow us to write down exact 

renormalization group equations satisfied by these effective parameters. Although 

conceptually clean and unambiguous, direct execution of this procedure is not quite 

practical due to the fact that the effective theory, as was derived in the last 

section, is the one renormalized at zero momentum. Specifically, in such a scheme 

the effective parameters contain two different types of logarithms, namely 

(In M im)” and (In b!/u)“, and this makes the integration of the equations 

cumbersome. For the purpose of actual computation, it is more advantageous to 

work with the effective theory made finite by minimal subtraction (especially the 

so-called E scheme ‘?, which can b e obtained through finite renormalization 

within the effective theory. 

Now a point we wish to make here is that there exists an algorithm to go 

directly from the full theory to the minimally subtracted effective theory without 

going through the intermediate stage of zero momentum subtraction. Let us 

briefly describe this algorithm. Suppose one wants to compute an effective 
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coupling constant, call it g;, in terms of the coupling constants gi of the full 

theory. With g; are associated appropriate LPI diagrams of the full theory. (For 

example, if g; is the coupling constant X* of our model O(3) theory, the relevant 

diagrams are LPI four point graphs with four 7, particles in the external legs.) At 

the tree level g; is simply the sum of the relevant tree graphs evaluated at zero 

momentum. (Of course we may need to extract appropriate tensor structure before 

setting the momenta to zero depending on the type of the vertex. This procedure 

will always be tacitly understood when we say “evaluate at zero momentum.“) At 

the one loop level, we shall do the following: Take the sum of all the one loop LPI 

diagrams relevant to g;, renormalize (via minimal subtraction), and evaluate it at 

zero momentum. At the same time we use the effective Lagrangian previously 

obtained at the tree level to compute the relevant IPI Green’s function, at zero 

momentum, to one loop order with renormalization performed also via minimal 

subtraction. The difference of the two then gives gf* at one loop level, which we 

“(I) shall denote by gf *Cd . To obtain gf , m general, repeat the same procedure as 

above except (i) that we must use the effective Lagrangian obtained up to n - 1 

loop level (with g; = gI X(O) + g *(I) *(n-l) 
u + *-* + g1 , etc.) and (ii) that “n loop” contri- 

bution to be subtracted is defined by the compounded loop number, i.e., including 

the loop number associated with the coupling constants, masses and the wave 

function renormalization factors, in addition to the actual number of loops of the 

diagrams. One can easily convince oneself that the above procedure precisely 

effects, order by order, finite renormalization relative to the effective theory 

constructed previously by zero momentum subtraction. 

Now an important feature of minimal subtraction algorithm is that the 

infrared structure of the full theory is precisely inherited by the effective theory 

due to the purely ultraviolet nature of subtractions. This manifests itself in the 

fact that the contribution to the effective parameters come solely from the 

ultraviolet region of the overall loop momentum space and hence they are free of 
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singularity as m + 0. In other words they do not contain logarithms of the type 

(In M/m)“; they are functions only of dimensionless coupling constants of the full 

theory and (In M/u )%. 

Another point of immense significance is that in the minimal scheme 

decoupling takes place irrespective of the magnitude of u --u may be taken as large 

as one likes. (The only requirement is M2 2 ’ >> pi , m .) This is in sharp contrast to 

the momentum subtraction scheme, where u2 must also be much smaller than h.12 

to have decoupling. 

With these understandings in mind we can formulate how to compute g; by 

renormalization group equations to any desired accuracy. Let us start from the 

statement of decoupling at low energy for an arbitrary Green’s function. We have 

[pi}, {g;], {m;}, u + Off/M) * (6.1) 

where z r is a finite wave function renormalization factor, and the starred 

quantities are those for the effective theory. (We have suppressed the dependence 

on the gauge fixing parameter, which is inessential for subsequent discussions.) By 

the standard procedure we can derive the renormalization group equations satisfied 

by r LPI and T ypf, viz., 

i 

a agi a aM am. 
-- 

piiTi+pau ag.+pT$-&+ u5-;!a++~r 1 1 ) 
rLPI = O 

c 
6gT a 

* 
6 - 6mI a -- ‘G + p 61.1 agX + u &l.l am* + Yr * rypI=o 

I I ) 

(6.2) 

where y r and yr* 
* 

are the usual anomalous dimensions associated with rLPI and 

rlPI respectively, and we have used the symbol 6 /Su to indicate that the 

derivative is taken in the effective theory. Now by substituting Eq. (6.1) into Eq. 
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(6.2), we obtain another equation for rTpI valid at low energy. This equation can 

be compared with Eq. (6.3) above, after using simple chain rules such as 

6 agY a am; 
_- -- 

lJ$j = P&j + 1-I au ag*+ 1J all at* 

I I 
(6.4) 

and this gives us renormalization group equations satisfied by the effective para- 

meters. The one satisfied by g; reads 

c a agi a arda * 

J 

635; 
-- - 

uc +pa, agi +PxaaM gI =u 5~ * 

This, however, is nothing but 

d * 
pd&gI =8; 

(6.5) 

(6.6) 

where d/du is the total derivative and 6 ; is the B function computed in the 

effective theory. As emphasized before, in minimal subtraction scheme, 

decoupling is independent of u and Eq. (6.6) is exact for any p. Thus it is a matter 

of supplying the correct boundary conditions to integrate Eq. (6.6) and the 

previously described algorithm precisely allows us to do so to any desired accuracy. 

To be a little more specific, we shall choose to make contact with the full theory 

at a scale u = M’, which is of the order of h?. (It does not matter whether one 

chooses h:’ = M or M’ = 2M as long as In M/M and gi(hl’) are small so that the 

perturbation theory is reliable.) We then apply the minimal subtraction algorithm 

to compute g;(M% in powers of gi(M)‘s and use them as the boundary conditions in 

solving Eq. (6.6). To our mind this is the most systematic and unambiguous method 

of computation. 

Finally in connection with the effective light particle Lagrangian, we shall 

make a comment on the gauge fixing procedure recently proposed by Weinberg. i6 
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Consider a scenario in which a simple gauge group G is spontaneously broken 

down to a smaller group G by a large vacuum expectation value V along a certain 

direction in G. Now it would certainly be nice if the effective action? for the light 

particles, obtained after “integrating out” heavy fields, is gauge invariant under G. 

Weinberg contends that it can be done by choosing the gauge fixing term for the 

heavy gauge bosons to be invariant under G. Namely he proposes to choose 

heavy 
z gauge fixing = - 

A 
(6.7) 

where 

FA = au6AB A\ + ig<(V, tASS) (6.8) 

Here capital (small) Latin indices refer to broken (unbroken) generators, 5 is the 

gauge fixing parameter, fABa is the structure constant, S is a scalar field, and t AS 

is a generator in the representation of the scalar S. It was then argued that the 

Fadeev-Popov determinant / 6 F, /68B 1 3 ) MaB 1 (Creek indices refer to both 

broken and unbroken generators) associated with this gauge fixing effectively 

factorizes into a product of determinants / blab 1 ) MAB 1 where 1 MABl is invariant 

under G, and that this ensures invariance of I under G. 

This apparently nice procedure, however, is correct only for 5 = 0. To see the 

inapplicability of Weinberg’s prescription for nonzero 5, it is better to start from 

the very beginning, i.e., the Fadeev-Popov procedure. For clarity of argument Jet 

us suppress all the fields except the gauge field and study the generating functional 

z = 
s 

L8 A”e 
is, 

IJ (6.9 
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Since Eq. (6.9) is ill-defined, %ve appeal to the u.ell-known trick of inserting the 

expression 

1 = A(A,,) 
J 

ndgc” (F&$)-c, (6.10) 

in order to extract out the field independent infinities. Here $ denotes a gauge 

transform of A /~ c, exp i _ ~ gaj;14xis an arbitrary function. (Later we shal:,olr;;; 

to get the usual covariant gauges.) 

gauge invariance of themeasure ndg, ACAp,) is gauge invariant. To compute A (A,,,) 

we perform infinitesimal transformations around the configuration defined by 

F,(AU ) z Ca. Then we have 

-Co) (6.11) 

(6.12) 

If we perform the integration all at once we of course get the usual result 

A(Ap) = det ( “F:i;’ i 5 / MaB/ 

Instead, the idea of \Veinberg is to separate out the indices corresponding to broken 

and unbroken generators and to factorize the above determinant. So let us write 

I = A(Av) 
s 

p deb f deB I,I &(Mabeb + MaBeB) . (6.13) 

x F 6(MAbBb + MABdB) 

IJsing the second set of C-functions first, we get 
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: q A(AJ 
J 

F dRb F c!@ fl GWabe b + kcaB5 B) 
J 

x +-& Ij a, + “‘;D”‘Eb8 b) 

A(Ap) 
q IR!E\B 

/ 
‘,’ dOb v G(hlabHb - C?aBhi&+IDb6 b) 

= A(AU)/ 1 MAB 1 1 LCiab - h!&&MDb 1 (6.14) 

Thus $ve obtain a factorized form 

A@& = / MAB / IMab - M~~M-&,~ 1 (6.15) 

This is a completely general result. Now if we choose the Weinberg’s gauge, FA 

transforms covariantly under the unbroken group, i.e., 

&FD 
“lDb = ~5’ b 

- = - fDBbFB (6.16) 

If the gage fixing condition were FB = 0, which corresponds to the Landau type 

gauge (5 = O), this vanishes and hence we obtain A(Au ) = I MAB 1 1 h:,b j as Weinberg 

advocates. But for 6 f 0, we must take FB = CB and integrate over C B with a 

Gaussian weight. Then Eq. (6.15) does not simplify and one can only achieve block 

diagonalization of ghost sector at the expense of introducing an unpleasant, if not 

disastrous, non-local object like M-Ah. 

What if we use the Landau type gauge? There are still some complications 

worth mentioning. First the non-linearity of the gauge makes renormalization 

program more tricky: As was sho%:n by a recent study, 23 in quadratic gauges it is 
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not possible to renarmalize the theory without breaking BRS invariance. Secondly, 

at least in the context of our formalism, it is not useful, since the ghost and the 

Goldstone fields, in particular the ones associated with heavy gauge fields, are no 

longer massive. This makes proper diagrammatic separation of heavy and light 

sectors difficult to perform. Besides, one would have to take due caution for 

infrared divergences with such massless particles present in the theory. 
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APPENDIX. POWER COUNTING THEOREhlS. 

In the following we shall establish the power counting theorems PI and P2 

quoted in Sec. IV. 

First let us classify the type of vertices that occur in a renormalizable theory 

with bosonic fields, such as our model. (Inclusion of fermions is straightforward but 

we shall not bother to do it here.) From the point of view of power counting, 

Lorentz and group indices are irrelevant and we only need to distinguish heavy (H) 

and light CL) fields. Then different types of vertices and the number of such 

vertices occurring in a given diagram can be denoted by 

non-derivative 

(single) derivative 

we 
n-m m H L 

(Hn-mLm)d 

No. of vertices 

V nm (02 rnc nc 4) 

D nm (02 rnc n( 3l.CA.l) 

In addition to these ordinary types of vertices, we have special vertices corres- 

ponding to the composite operators that appear in connection with the BRS-Ward 

identities discussed in Sec. V. (See Eq. (5.2I.l For the purpose of power counting, 

however, we can treat them as ordinary vertices provided we count the dimension 2 

sources K” ,,, k”, K”, R”, as L2 and allow them to appear only as external legs. We 

shall also employ the following notations: 

PIJPL) = number of heavy (light) propagators 

BH(BL) = number of heavy (light) external legs . (A.21 

Now by counting the number of heavy and light fields respectively, we obtain two 

topological relations 
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2P +B H H = $ (4 - m)\j4m + 2 (3 - m)(V ?m + D3,) 

m=G m=o 

(A.3) 

4 3 

2PL + EL = 1 mV4m + 1 m(V3m + D3,) . (A.4) 
m=O m=O 

The rraximum power of Fv: coming from the overall high loop momentum region is 

intimately related to the superficial degree of divergence d of a graph. Noting that 

4 3 

i- l’o. of A(‘) functions : 1 V4m + 1 (V3m + D3m! 
m=O m=O 

I 

i’ 

‘I,, 
FJo. cf derivatives = ‘3, 

m=O 

l- No. of integrations = Pfi + PL (A.5) 

d is easily computed to be 

d : 4 - (BH + BL) - 
i . “3m (~.6) 

m=O 

(This of course is the maximum possible superficial degree cf divergence. The 

actual degree may be lower due to gauge invariance and/or explicit appearance of 

powers of external momenta.) 

To count the maximum power of til, we must examine every possible subinte- 

graticn--both high momentum (*h!) and low momentum (<< U) regions. Let us 

start with the tree graphs. 
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Tree level: Let the maximum power of 3.: be denoted by nL, where R signifies 

low momentum. X:e must attach M to every 3 point non-derivative vertex, except 

for the completely light particle vertex L3, for which the coefficient can only be of 

order m. (One can check this either explicitly or by recalling the reflection 

symmetry of the theory under ha+ -ha, v + -v, ka+ -k,.) Clearly nL is given by 

nil = i ?‘3m -2PH 

m=O 

Using Eq. (A.31, we may rewrite (A.71 as 

n.k 
= BH - 1 $ (4 - mlV4m + 2 (2 - mN3m 

m-0 m=O 

+ i (3 - m)D3m 1 ( BI+ 
m=O 

(A.71 

(A.81 

The equality holds only when the diagram consists of vertices of type L 4, L3, (L3),, 

HL’ alone. In particular for light particle graphs (i.e. BP = 01, n k~ 0 holds. 

One loop level. For low loop momentum region, counting is identical to the 

tree case and (A.8) holds without modification. For high loop momentum, except 

for L3 vertices, counting should go by naive dimension counting. (In other words, 

each derivative should contribute a power of hi.) In this way we get 

nh = 4 - (BH + B,) - V33 7 (A.91 

where the subscript h stands for high loop momentum. Let us examine the special 

case where B h’ = 0. Then nh > 0 only for two and three point functions. For a two 

point function, the Ward identity tells us (see Sec. V) that it is actually of C(m*) 
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when all the relevant diagrams are added. On the other hand a light three point 

function cannot have a power of hd due to the reflection symmetry which has been 

mentioned many times already. Thus for light Green’s functions, nh( 0. For the 

general case, similar consideration shows that nh 5 BH. Combining this with (A.8) 

we obtain 

n = max{ na, nh} < BH - (A.10) 

Two loop level. Two loop level presents a new situation, the understanding of 

which will then lead immediately to all order formula. Let the loop momenta be 11 I 

and R 2’ There are three regions of momentum space: (i) El, I. 2 << M. Here we 

may apply overall low energy counting, which is the same as the tree level 

counting. (ii) 11,’ e2 J h:. This is the overall high momentum region and the 

counting is the same (including the use of Ward identity and the reflection 

symmetry) as for nh in the one loop case. (iii) RI << (1* S h,l (or X2 << !Zl S M). 

This is the new situation alluded to above. Here the counting should go as follows. 

First do the high momentum counting for the subdiagram through which 11* s h? 

flows. Shrink this to a point with the power M 
nh(k2) 

attached and then perform the 

low momentum counting for this reduced graph. Suppose the effective vertex is of 

the type HaLb. Then fih(R2) = a. The topological relation of type (A.3) for the 

reduced graph gives 

2PH + BH = t (4 - m)V4m + i (3 - mKV,, + D3m) 
m=O m=O 

+ aV a+b,b (A.ll) 
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where V a+b b is the number of vertices of type H”Lb (here it is one). Now the 
, 

maximum power of hl for the reduced graph is 

a+ 
t v3m - 2P H 

m=O 

= ~~ - { $ (4 - m)V4m + 2 (3 - m)D3m + i. (2 - m)V3m 1 

m-0 m=O 

< *H (A.12) - 

which is identical to Eq. (AS). Putting all three cases together, we easily obtain 

n< B - H (A.131 

Figher loop level. It should now be clear how to proceed. A particular 

hierarchy of loop momenta corresponds to a particular way of reducing the 

diagram. At every stage of reduction, counting is always n’ BH for each 

subdiagram reduced. This persists throughout the entire procedure and hence we 

have n 2 BH for any IPI Green’s function. 

This result can be readily extended to LPI Green’s functions. A typical LPI 

graph is depicted in Fig. 10. It consists of LPI blobs and heavy propagators 

connecting them as in a tree graph. Let each IPI blob be of the type H 
a. bi 

‘L . The 

number of heavy propagators appearing in the diagram is clearly lS( 1 ai - BH). 
i 

Since each blob can carry, according to the result obtained above, maximum power 

ai, the maximum power of the whole graph is given by 

15-2x Yz( Cai-BH) q BK . 

i i 

(A.141 

This completes the proof of theorem PI. 
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Remarks: (i) The power counting should best be done by Wick-rotating the 

integrals into the corresponding Euclidean version. (ii) Renormalization subtrac- 

tions do not interfere with our power counting. This is because we have been 

counting the maximum possible powers of M without any resort to “improvement” 

which might arise from such subtractions. (Besides in minimal subtractions, such 

improvement does not occur.) 

Proof of theorem P2. The spirit of the proof is quite analogous to that for 

Theorem PI just described. We must examine all the regions of loop momentum 

space, this time with oversubtractions taken into account. Let us organize the 

argument in the form of a mathematical induction in the number of loops. 

Tree level. Let the maximum power of M of a graph be n. A LPI tree graph 

with at least one heavy line does not contain any light propagators. Therefore we 

may apply simple dimension counting to get 

n = 4-BL (A.151 

This shows that for BL 2 5 the graph is already of 0(1/M) without any subtraction. 

Now there exists no 2 and 3 point relevant graphs at the tree level. The only 4 

point function is the one shown in Fig. 11. For this, obviously an extra subtraction 

at zero momentum renders it to be O(I/!v!2). Thus the assertion is proved for tree 

graphs. 

Inductive proof to all orders. Suppose the theorem is correct for up to n loop 

graphs and let us study an arbitrary n + I loop graph. If the graph consists entirely 

of heavy propagators, there is only one relevant scale, namely M, and the naive 

dimension counting Eq. (A.15) applies. For BL = 2, 3, and 4 (the actual n is zero 

because of previous arguments), an oversubtraction performed to the whole graph 
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renders it to vanish as hl + -. If the graph contains (at least one) light propagator, 

they must occur in loops. (Remember we are dealing with a LPI graph.) A useful 

classification of the loop momentum space is as follows: (a) the momenta flowing 

through these light propagators are all very large, fl M. In this region, from the 

power counting point of view, they may as well be regarded as heavy and the 

argument reduces to that for the case already discussed. (b) We are left with the 

case in which there is at least one light propagator through which a small 

momentum flows. In this case, however, as far as the power counting goes, we may 

split open such a graph into two pieces illustrated as in Fig. 12. The number of 

loops is now reduced to n and we may apply the induction hypothesis. One may 

wonder if oversubtractions applied to those partition elements which contain the 

particular loop split open might upset the result. This does not happen because 

what one is subtracting is a piece which is already of 0(1/M). This is illustrated in 

Fig. 13. We have thus proved the validity of the theorem to n + 1 loop level and 

hence to all orders by induction. 
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Table 1. Spectrum of the theory at the tree level. 
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Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6: 

Fig. 7: 

Fig. 8: 

Fig. 9: 

Fig. 10: 

FIGURE CAPTIONS 

Examples of composition of indices. 

An illustration of “index conservation” for n2 - XI two point 

function. 

Graphical interpretation of the mixing angle sin 8. Shaded 

round blobs represent IPI two point functions. 

Graphical depiction of how LPI two point light function is 

formed. Shaded blobs and square carry the same meaning as in 

Fig. 3. 

Diagrams illustrating the equality of four point LPI light 

functions defined with respect to true fields (double lines) and 

tree fields (single lines) to O(I) accuracy. 

A simple example, analyzed in Sec. I\‘, in which suppression 

due to a heavy propagator (solid line) is offset by large (s h,I) 

Higgs self couplings. 

A decomposition of the diagram in Fig. 6 as explained in the 

text. 

Complete decomposition of the diagram in Fig. 6 in which each 

bracketed expression ((a), (b) and (c)I is finite. 

An example of how the O(1) part of the full LPI light function 

is reproduced from diagrams of effective light particle theory 

according to the rules of the algebraic identity. Effective 

coupling constant and light particle (inverse) propagator are 

explicitly identified. 

A typical LPI light function. Shaded blobs represent IPI 

functions. 
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Fig. 12: 

Fig. 13: 
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The only non-trivial four point LPI light function at the tree 

level. 

Illustration of how power counting is done for the case in 

which low (CC h?) momentum flows through a light propagator. 

Illustration of why an “oversubtraction” does not upset the 

power counting procedure depicted in Fig. 12. The key point is 

that the subtracted piece is of order 0(1/M). 
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