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ABSTRACT 

A quarkonium potential constructed by inverse- 

scattering methods from the masses and leptonic decay widths 

of the upsilon vector mesons provides a basis for 

extrapolation to heavier quark-antiquark bound states. 

Level spacings and leptonic widths are predicted for systems 

with ground-state masses up to 60 GeV/c2. It is found that 

present uncertainties in the potential at short distances 

would be most conclusively resolved by measurement of the 

13Sl leptonic decay rate. Less definitive but still of 

value muld be determinations of the 2S-1s or ZS-2P level 

spacings, and measurement of the ratio of 25 and 1s leptonic 

PACS numbers: 12.4O.Qq, 14.40.Pe 
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widths. Other properties of the next quarkonium family are 

less sensitive indicators of short-range behavior, and can 

be anticipated with some confidence from experimental 

results already in hand. These serve to test further the 

flavor-independence of the interquark potential. 
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I. INTRODUCTION 

Interest is high in families of heavy mesons beyond J/JI 

and T both for what they would divulge about constituent 

spectroscopy and for the unique insight they could provide 

into the quark-antiquark interaction at short distances. ' In 

this paper we use inverse scattering techniques2 to explore 

the nature of the information that heavy quarkonium states 

can reveal about the strong interaction, and to refine our 

expectations for the properties of such systems. 

In the preceding paper, 3 experimental information on 

quarkonium levels was used to construct, interquark 

potentials. The agreement between potentials constructed 

independently using either charmonium states or upsilon 

states constitutes evidence that the force between quarks is 

flavor-independent at distances between 0.1 fm and 1 fm, 

where the potentials are well-determined. A natural 

extension of this work is the extrapolation to systems 

composed of heavier quarks. A similar extrapolation from 

the charmonium system successfully anticipated the 

properties of the upsilon% 4 As we shall see in greater 

detail below, projections to heavier masses involve the use 

of potentials not only where they are reliably determined, 

but also at shorter distances, where the form of the 

potential is considerably less certain. 
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To illustrate, let us summarize briefly what was 

learned from the J/J, family about the upsilons. It was 

found that any potential which reproduced (by construction) 

the masses and leptonic widths of $(3097) and $(3686) and 

which gave correctly the spin-averaged mass of the 23PJ 

levels, <M(x)> = 3.52 GeV/c', would lead to approximately 

the observed T-T' spacing. The leptonic decay width of T' 

was also predicted with sufficient precision to allow an 

early determination5 of the b-quark charge as eb=-l/3. In 

contrast, the potentials constructed from charmonium allowed 

considerable latitude in predictions for the leptonic width 

of the T ground state. Of the observables we shall 

consider, the 1s leptonic width has the greatest sensitivity 

to the short-range part of the potential. 6 

Extrapolating from JI to T involved a three-fold 

increase in the quark-mass scale. Although the mass (not to 

mention the existence) of the next quarkonium system is in 

doubt, no less a factor seems required for extrapolation 

from the b-quark to the sixth quark. 7 However, given the 

shape of the interquark potential determined by inverse 

scattering methods, we believe that it is prudent to 

extrapolate no more than sixfold in the quark mass. Our 

caution is motivated by experience with known potentials. 

From the 10 GeV/c‘ upsilon family, we therefore limit our 

considerations to (&) systems below 60 GeV/c'. 



While our chief interest here is the pursuit of the 

inverse scattering program, this exercise also illuminates 

comparisons of new data with predictions of explicit 

potential models. It helps distinguish predictions dictated 

by previous data from those that are explicitly consequences 

of hitherto untested theoretical hypotheses. 

We begin by reviewing in Sec. II some useful 

observables and their significance for the determination of 

potentials. Elementary scaling arguments8" are' used to 

illustrate the probable range of these parameters. In 

Sec. III, we choose a representative set of potentials 

constructed from upsilon data, with the aid of a minimal set 

of constraints from charmonium. Details were presented in 

the preceding paper,3 so we can be very brief. Results for 

systems composed of heavier quarks are presented in Sec. IV. 

These are compared with the consequences of a representative 

explicit potential. lo This permits an assessment of how 

restrictive such a theoretically-inspired potential is, in 

comparison to the model-independent and theoretically 

unbiased inverse scattering approach. Our conclusions are 

summarized in Sec. V, where we recapitulate the predictions 

which are most stable and those which are most sensitive to 

the terra incognita of short distances. An Appendix 

addresses technical matters regarding the reliability of the 

inverse scattering method for extrapolation to higher masses 

in potentials which are singular at the origin. 



II. OBSERVABLES 

Many properties of quarkonium levels give immediate 

information about the form of the interquark force in a 

particular distance regime. 9 We recall here some of the ways 

in which the potential can be characterized by quarkonium 

observables. 

A. 25-15 Level Spacing 

Comparison of the charmonium and upsilon levels led to 

the conclusion that if the interquark potential could be 

represented as a power-law, 

V(r) = X r", (1) 

over the region probed by $,$',T, and T', then the effective 

power v was close to zerO S,g,ll-13 . (The nontrivial 

potential corresponding to v=o is V(r)=C In(r).) This 

conclusion follows from the scaling behavior 

AE = mQ 
-v/(2+v) 

(2) 

appropriate for a fixed potential, and the observed 

near-equality of $ and T level spacings, 

MN')-M($) = M(T')-M(T). (3) 

In any potential with a short-range Coulomb-like singularity 

(which may be anticipated on the basis of one-gluon 
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exchange), heavier quarks will probe the singularity more 

deeply, the effective power v will decrease below zero, and 

the 2S-1s level spacing will increase from its value in the 

upsilon family,14 

M(T')-M(T) = 0.56+0.01 GeV/c'. (4) 

B. 2S-2P Splitting 

The splitting between 15 the 25 and 2P levels (which are 

degenerate in the Coulomb problem) gives another measure of 

the shape of the potential. The ratio 

R M(2S)-M(2P) 
SP a M(2S)-M(lS) ---- , (5) 

which is independent of the potential strength X, is a 

convenient parameter. Its behavior as a function of the 

effective power V is given in Fig. 13 of Ref. 9; 

representative values are RSp=(0.5,0.255,0) for v=(2,0,-1). 

Experimentally, RSP =0.28 for charmonium, consistent with our 

earlier inference that the effective power is near zero. If 

v=O also characterizes the upsilon spectrum, we would expect 

the center-of-gravity of the 23PJ states to lie at 

<M(xb)> = M(T')-140 MeV/c2. (6) 

Any smaller 2S-2P spacing would be suggestive of more 

singular behavior of the potential at short distances. For 



still heavier quarks, the presence of a Coulomb-like 

singularity would manifest itself in a value of RSP rather 

less than 0.255. 

C. Leptonic Decay Widths 

The square of the wavefunction of an n3Sl bound state 

at zero quark-antiquark separation is related to the mass 

and leptonic width of the state by 16 

IYn(O )I2 = (3/16nNca2e$*p*M~ r(V,+e+e-), (7) 

where NC 1 .s the number of colors of the bound quark and 'Q 
is its charge, a=1/137 is the fine-structure constant, and 

Mn is the mass of the vector state Vn. The multiplicative 

factor p is equal to unity in the nonrelativistic limit. 

The quantity IYn(0)12 has simple dependences upon the quark 

mass and the principal quantum number in power-law 

potentials. 8,9 If the variation of p with principal quantum 

number is neglected within a specific quarkonium family, the 

ratio 

M'(2S)r 
R =-- -dI"_'_ 

21 - M2(lS)ree(lS) 
(8) 

will be equal to 



R21 = [Y,(O) 12/1~,(0) 12r 

9 

(9) 

for which the dependence upon the effective power v is 

plotted in Fig. 15 of Ref. 9. Representative values are 

R21=(1, 0.51, l/8) for v=(l,O,-l), independent of the 

potential strength A. Experimental values are 

0.62 2 0.17 NJ) I 

R21 = 
0.51 2 0.08 CT), 

(10) 

consistent with each other and with v=O. 

The magnitude of the 1s leptonic width is also 

indicative of the short-range character of the potential. 

The quantity ree(lS)/ei is known to be approximately 

universal (see Fig. 17 of ref. 9) for the vector mesons 

PO r~,$tJIt and T or equivalently for the u,d,s,c, and b 

quarks. Neglecting what might be expected to be a 

significant variation of the parameter p from the lightest 

family to the heaviest, one would infer from eq. (7) that 

I‘rco)12 = 4. (11) 

If in addition we neglect binding energies compared to quark 

masses (an unwarranted assumption for p",w,$,$) SO that 

Mv Qr =m then elementary scaling arguments 8,9 which imply 

that 



lY(0)12 = mi'(2+v) 

10 

(12) 

lead us to conclude that the effective power is v=-l/2. Both 

of the questionable approximations in this line of argument 

should be more trustworthy in the comparison of the upsilons 

and the next heavier family. 

Leptonic widths of the higher s-waves are less 

sensitive to new short-range physics, and are more stably 

determined by the physics of $ and T. Thus they are 

well-suited for measuring new-quark charges. 5 

D. Flavor Threshold 

The threshold for pair production of mesons bearing the 

flavor carried by a heavy quark Q will be marked by a rise 

in the quantity 

R ~ o(e+e-+hadrons) 
u (e+e-+p+u-) e 

(13) 

This threshold energy, Eth(&), can be related very simply 

to the threshold energy Eth (bE) for production of b-flavored 

particles, as 17 

Eth(ti) = Eth(bi;) + 2(mQ-mb). 

In the preceding paper, 3 the flavor threshold in the upsilon 

system was estimated as 
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10.46 GeV L Eth( 

This implies that 

quarkonium family wil 

bb) f M(T"') = 10.545 GeV. (15) 

the flavor threshold for the next 

1 lie at 

Eth(fi) = 10.5 GeV + 2(mQ-mb). (16) 

The relation (14) implies that flavor threshold occurs 

at a fixed "dissociation radius" for all heavy-quark 

systems, which is to say at a fixed position in the 

potential. The interval between the ground state 13Sl level 

and flavor threshold therefore is directly related to the 

shape of the potential, and in particular to the depth of 

the well. In a potential V=C*ln(r/rO), which with C=O.7 GeV 

approximately reproduces the properties of the upsilon 

states, one expects 

*th 

For mor 

6) - M(lS:Qa) = Eth(bE) - M(T) + $ ln(mQ/mb) 

= (1.07 + 0.35 ln(mQ/mb)) GeV. (17) 

singular potentials, corresponding to effective 

powers v CO, the 1s bound states of heavy quarks will lie 

still deeper in the well, and the flavor threshold-1S 

interval will exceed the estimate (17). 
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E. Electric Dipole Transition Rates 

We shall not calculate the El transition rates 

explicitly, because they depend cubically (thus 

sensitively!) on as-yet-unknown photon energies. Let us 

note, however, that they can provide useful information on 

the spatial sizes of quarkonium states, which do have simple 

scaling properties in power-law potentials. 8,9 Some specific 

examples have been given elsewhere 18,3 for charmonium and 

the upsilons. 

III. POTENTIALS CONSTRUCTED FROM THE UPSIIONS 

The inverse-scattering methods that have been developed 

for the quarkonium problem2 have been recapitulated in the 

preceding article. 3 The T(U)-T(4S) levels have been shown 

to permit the reconstruction of the interquark potential 

with a degree of confidence in the interval 0.1 fm - 1 fm. 

In this region, the shape of the potential depends little on 

the assumed value of the b-quark mass, mb. The other 

parameter of reflectionless approximants to confining 

potentials, the energy at which the continuous spectrum of 

the approximant begins, has been chosen as EO=10.6 GeV, 

slightly above the position of T(4S). 

Once E. and mb have been selected, the potential is 

completely specified by the masses and wavefunctions squared 

at the origin of the four 3 Sl levels of the upsilon family. 
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According to eq. (7), the square of the wavefunction at the 

origin is known, up to a factor p, in terms of the mass and 

leptonic decay width of the vector meson. This factor has 

not been calculated from first principles for quarkonium. 

In the nonrelativistic limit p is equal to unity, but in the 

presence of strong interactions it is expected to exceed 

one. We have taken3 the values p=l, 1.4, 2 as 

representative of the plausible range of values. 

Although the choice of mb has little effect on upsilon 

physics, it does influence slightly the shape of the 

potential, especially at short distances. To specify the 

mass of the b-quark we may appeal to the charmonium system, 

at the price of assuming the flavor-independence of the 

potential expected in theory and demonstrated in the 

preceding paper. 3 Observables in the charmonium system have 

a considerably greater sensitivity to the assumed value of 

the charmed-quark mass. The difference m,,-mc is constrained 

in potential 

which we have 

models to lie within rather narrow limits, 19 

argued in ref. 3 are given by 

3.32 GeV/c2 c mb-mc (. 3.41 GeV/c'. (18) 

Thus, a variation in mb from 4.5 to 5 GeV/c' induces a shift 

in mc from about 1.1 to 1.6 GeV/c2. This has a marked effect 

upon the J, and JI' leptonic widths, which vary approximately 

as ,312 
C 

for potentials characterized by veff=O. Guided by 

the charmonium leptonic widths, we have taken the values 
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mb=4.5, 4.75, and 5 GeV/c2 corresponding to p=l, 1.4, and 2 

(see Table III of Ref. 3). Slightly higher values of the 

b-quark mass (by perhaps 0.1 GeV/c2) would also be 

satisfactory. 

IV. EXTRAPOLATIONS IN THE HEAVY-QUARK MASS 

Extrapolations based upon the three upsilon potentials 

constructed in the previous paper3 are summarized in 

Figs, l-3. For comparison, the consequences for heavy-quark 

systems of representative QCD-inspired explicit potentials 10 

are also shown there. 

We first draw attention to quantities which . are 

relatively indifferent to the variations from potential to 

potential. The level schemes of Fig. 1 show that the 2S-3s 

interval,~ the 3S-4s interval, and the position of the 2s 

level with respect to flavor threshold each are predicted 

similarly in all six potentials. For any quark mass in the 

interval considered, the threshold-2S interval differs from 

potential to potential by no more than 80 MeV. These 

exemplify the class of predictions that depend on physics 

already known from charmonium and the upsilons, and do not 

test the short-distance part of the interaction. Important 

departures from these predictions would call into question 

the flavor-independence of the interaction or, within the 

framemrk of QCD, the assumption that the heavy quark is a 

color triplet. 
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More variation occurs in the predictions for the 2s-1s 

level spacing shown in Fig. 1 (and therefore in the thresh- 

old-1S interval), the ratio R,,=(M(2S)-M(2P))/(M(2S)-M(W) 

plotted in Fig. 2, and the ratio of leptonic widths of the 

2s and 1.3 levels depicted in Fig. 3. A rough correspondence 

may be noted between the consequences of the p=l, 

mb=4.5 GeV/c2 potential (designated by (a) in the figures) 

and the Buchmuller-Tye potential for Ae=O.2 GeV (e); and of 

the p=1.4, mb=4.75 GeV/c' potential (b), the Richardson 

potential Cd), and the Buchmhller-Tye potential for 

A% =0.5 GeV (f). For this range of heavy-quark masses, the 

predictions of the P =2, mb=5 GeV/c2 potential (c) are those 

of potentials more singular near the origin than any of the 

potentials of Ref. 10. Note, however, that while the 

behavior of RSP is monotonic for the (smooth and bottomless) 

explicit potentials, it is not for the potentials 

constructed using inverse-scattering techniques. For all of 

these observables, the predictions of the p=2, mb=5 GeV/c‘ 

potential (cl lie outside the range delimited by the 

explicit potentials. 

Among the observables we consider, the 1s leptonic 

width alone can provide a sensitive probe of the potential 

at short distances. Thus, for inverse scattering 

constructions the 1.9 leptonic width predicted by the deepest 

potential (c) is greater by a factor of about two than that 

implied by the shallowest potential (a).20 Similarly for the 
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explicit potentials, ree (1s) is controlled by the strength 

of the Coulomb-like singularity, which is weakest for (e) 

the Buchmtiller-Tye potential with A==O.2 GeV. For 

potentials which other observables have led us to place in 

correspondence, the inverse scattering method consistently 

leads to still smaller 1s leptonic widths than the explicit 

potentials do. There are two reasons for this difference. 

First, the potentials constructed from the upsilon are, by 

the nature of the inverse-scattering method, finite at the 

origin, whereas all the explicit potentials considered here 

are singular. A nonsingular power-law potential of the sort 

advocated by Martin, 13 which otherwise yields observables 

similar to those of potentials (a) and (e), leads to still 

smaller 1s leptonic widths than the potentials discussed 

here. Second, we have computed leptonic widths for the 

upsilon potentials assuming that the factor p of eq.(7) 

relating /Y(O) I2 to the leptonic width is independent of the 

heavy-quark mass, whereas Buchmiiller and Tye have adopted 

the form21 

16a - 2 +@ m2) 1 -1 
,3a (19) 

analogous to radiative corrections in positronium. In 

eq. (191, as is the running coupling constant of the strong 

interactions and B is the velocity of the bound quark. This 

form and the evolution of as suggest that p should decrease 



17 

toward unity as the quark mass increases. Through eq. (7), 

this behavior implies a gradual augmentation of the 

predicted leptonic widths, as the quark mass increases. 

For quark masses exceeding about 12 GeV/c2, which is to 

say greater than approximately 2-l/2 times the b-quark mass, 

the inverse-scattering potentials display an aberrant 

pattern of leptonic widths: the predictions do not decrease 

monotonically with increasing principal quantum number n. 

We regard this deportment as an artifact of the local 

oscillations in the reconstructed potentials. Similar 

characteristics were observed earlier4 in analogous 

predictions for the upsilons, on the basis of potentials 

constructed from charmonium. The data (ref. 14) exhibit the 

conventional pattern, ree(ls)~ree(2s)~ree(3S)>re,o. The 

explicit potentials manifest no unusual symptoms. 

In Fig. 4 we depict the relative positions of the T and 

(QQ) levels for mQ=20 and 30 GeV/c' in the p=1.4, mb=4.75 

GeV/c2 potential, which was denoted (b) in previous figures. 

Flavor threshold for the bs system, estimated in ref. 3 to 

lie between 10.46 GeV/c‘ and T(4S;10.545), is indicated by 

the shaded band. Extending it to the right-hand side of the 

figures, as prescribed by eq. (14), we are led to expect 

seven narrow 3s1 (QG) levels if mQ=20 GeV/c2, and eight or 

nine if m =30 Q GeV/c2. These are in accord with 

model-independent expectations. 28 
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Within the inverse-scattering formalism, it is a 

technical convenience to represent the input information on 

s-wave wavefunction normalization in terms of energy 

eigenvalues of even-parity bound states in a symmetric, 

one-dimensional potential. 23 By displaying the positions of 

these levels, which are unphysical from the point of view of 

the three-dimensional central potential problem, we gain a 

further appreciation of the distance scales that are 

important for determining the potential. The fictitious 

upsilon levels are indicated by dotted lines in Fig. 4. The 

position of the lowest-lying even-parity level is quite 

sensitive to the value of the parameter p, and to the 

absolute scale of the T(lS) leptonic width. It serves as a 

crude index of how large an extrapolation in quark mass is 

likely to be trustworthy. To extrapolate to a quark mass 

for which the 13S 1 level lies deeper in the potential than 

the lowest even-parity level used in the reconstruction 

would be rash. We refrain from doing so: the closest 

approach among the examples we present is for the case P'l, 

mb=4.5 GeV/c2, mQ=30 GeV/c2, for which the 13Sl (QG) level 

lies 230 MeV/c' above the lowest even-parity (bb) level. 
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V. CONCLUSIONS 

Inverse scattering techniques have been used to 

extrapolate from the observed attributes of the upsilon 

family to heavier quarkonium systems. Results of this 

program have been presented for (QG) states with masses up 

to 60 GeV/c2, and compared with expectations derived from 

specific potentials. 

One category of predictions is common to all reasonably 

smooth potentials that describe the upsilons. For example, 

the 2S-3s and 35-45 intervals are essentially determined by 

known physics. Any experimental departure from these 

predictions would indicate that the new systems are not 

composed of ordinary quarks, or that the strong interaction 

is not flavor-blind. 

A second class of predictions primarily depends, within 

the context of the inverse scattering 'method, on the 

connection between the leptonic decay width and the square 

of the wavefunction at the origin. More generally, these 

observables are sensitive to the absolute se ale of the 

leptonic widths of the upsilons. Quantities of interest 

include the 2s-1s level spacing, the ratio 

(M(2S)-M(2P))/(M(2S)-M(lS)), the ratio of 25 to 1s leptonic 

widths, and the distance between flavor threshold and the 1s 

level. Measurement of any of these quantities in heavier 

quarkonium systems would shed light on the quark-antiquark 
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interaction at somewhat shorter distances than probed by 

charmonium and the upsilons. 

Finally, the magnitude of the 1s leptonic width of 

heavy quarkonium emerges as the quantity uniquely sensitive 

to the structure of the strong interaction at short 

distances. That this should be so is particularly clear 

within the methodology of inverse scattering, as we have 

seen in 5 IV. The 1s leptonic decay rate can thus 

distinguish among potentials which agree in the interval now 

explored experimentally (0.1 fm - 1 fm), but differ at 

smaller quark-antiquark separations. 

The inverse scattering approach has the virtue of 

relying in very direct fashion upon experimental data, and 

delimiting the region of space in which the potential is 

established. It clarifies the issue of what predictions 

follow from existing observations, and what predictions rely 

upon theoretical assumptions not yet implied by experiment. 

Many extrapolations based upon reconstructed potentials 

depend smoothly and systematically upon the quark mass. For 

other observables limitations and idiosyncrasies of the 

method become apparent. Artifacts of this technique are of 

two sorts: oscillations and finite depth-of-well. The 

inverse scattering algorithm leads unavoidably to potentials 

finite at zero quark-antiquark separation, and does not 

guarantee that potentials will increase monotonically with 

the separation. Ratios of leptonic widths are sensitive to 



local oscillations in the potential, while the magnitude of 

the 1s leptonic width is influenced by the finiteness of the 

reconstructed potential at the origin. Explicit potentials 

and elementary scaling laws both can avoid the oscillations. 

Explicit potentials also make definite predictions for the 

very short distance behavior. Of course, they need not be 

correct. 

The present exercise has two aims. One is to identify 

a set of stable predictions which may serve as guides for 

experiment and for testing whether a new family of quarks 

obeys familiar dynamics. The other is to focus attention on 

observables which can only be predicted within wide limits. 

These will provide new information about the quark-antiquark 

interaction and significant tests of theoretically-inspired 

potentials. We thus regard the inverse-scattering method as 

a means for determining the interaction from quarkonium 

data, and as a tool for determining the extent to which 

predictions of specific potentials are explicitly dependent 

upon the underlying theoretical assumptions. 
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APPENDIX. QUALITY OF EXTRAPOLATIONS IN CONSTITUENT MASS FOR 
REFLECTIONLESS APPROXIMATIONS TO SINGULAR POTENTIALS 

If the interquark potential is indeed singular at the 

origin, it is expected to be more singular than 

V(r) = ln(r/rU) (A-1) 

and less singular than 

V(r) = -l/r. (A.21 

It is therefore of interest to test the reliability of the 

inverse-scattering method for mass extrapolations in these 

two potentials. The quality of the extrapolation in 

quarkonium is likely to be intermediate between the results 

found for these two cases. 

Following the procedure we have used for quarkonium,3 

we approximate the Coulomb and logarithmic potentials by 

(symmetric) reflectionless potentials constructed from the 

four lowest-lying s-wave levels. With the parameter E,, 

chosen by interpolation as 

EU = 3E(4S)+E(SSL 
4 I (A.3) 

and the constituent mass ~1, the parameters 'i of the 

reflectionless approximant are determined as usual from the 

positions and wavefunctions at the origin of the input 

levels. The input data and derived parameters are collected 

in Table I. 
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We next solve the Schr'odinger equation in the 

reconstructed potentials for various values of constituent 

mass m' exceeding the mass m for which the potentials were 

constructed. Results are shown in Figs. 5 and 6 as 

functions of ml/m. Extrapolations in the reconstructed 

logarithmic potential are faithful over a wider range than 

those in the Coulomb potential. Over the range l<m'/mL6, - 

the 2s-1s spacing is reproduced within 3% for the 

logarithmic potential, but only within 20% for the Coulomb 

potential. Similarly, the quality of the computed ratio 

R,P=(E(2S)-E(2P))/(E(2S)-E(1.5)) deteriorates rapidly when 

ml/m>4 for the Coulomb potential, but remains accurate for 

the logarithmic potential. The ratio 1~2(0)12/1~,(0)12 is 

reproduced within 25% in the logarithmic potential, but only 

within 50% in the Coulomb potential throughout the interval 

studied. Finally, the 1s wavefunction normalization 

I'yl(O) I2 is given within 5% of its true value for the 

logarithmic potential, for m'/m<6, but is quite unreliably 

predicted in the reconstructed Coulomb potential throughout 

the entire interval. 

The decision to limit our quarkonium predictions to 

mQ/mbc6 is clearly a subjective one. Even within this range 

certain quantities can be predicted with more confidence 

than others. 
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Table I. Parameters entering reflectionless approximations 
to Coulomb and logarithmic potentials. 

n 

1 1.0443 0 -0549 

2 1.8474 0.0280 

3 2.2897 0.0191 

4 2.5957 0.0146 

5 2.8299 

Eo=2.6543 

'i 
1.7199 

1.2689 

1.0829 

0.8983 

0.7631 

0.6038 

0.4666 

0.2421 

V(r)=ln(r/ro) 

E(nS) Iy-(0) I2 

T V(r)=-l/r 

E(nS) Pn(0) I 2 

-0.25 0.039789 

-0.0625 0.004974 

-0.02778 0.001474 

-0.01563 0.000622 

-0.01 

Eo=-0.01422 

K. 
1 

1.3572 

0.4856 

0.3232 

0.2197 

0.1654 

0.1164 

0.0840 

0.0375 
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FIGW CAPTIONS 

Fig. 1: Level spacings for heavy quarkonia in several potentials. 

Flavcr thlTShOld has bean estimated using q. (16). 

(a) Inverse scattering, P'L mo=4.5 GeV.c2; (b) inverse 

scattering, p=1.4, %=4.75 GeV/c2; (c) inverse scattering, p=2, 

“b=5 Gsv/c2 ( all from ref. 3). (d) Richardson potential, 

ref. 10. (e) Buchniiller-'Iye potential, with Ago.2 GeV; 

(f) Buzhniillerqe potential, with Ago.5 GeV (b&h fran 

ref. 10). Theparanmteril~ is not well-determined, and rmybe 

varied between thevalues for which re+tsaredisplayed. 

Fig. 2: Ihe ratio R$[M(25)+4(2P)]/[M(2S)+i(lS)] is plotted as a 

function ofheavy-quark mass for the sixpctentials identified 

in the cwtion tD Fig. 1. Also &CWI on the right-hand 

cP-dinate is the effectivepwrwhich correvrdstoparticular 

values of RSp. 

Fig. 3: Leptonic widths of the lS-4s levels of a heavy quarkonium 

family are displayed as functions of heavy-quark mass for the 

six potentials identified in the cation to Fig. 1. 'Ihe heavy 

quark is asjunmd to be a color triplet, with electric charge 

eQ=2/3. 

Fig. 4: Relative positions of T and (ti) levels in the p=1.4, 

mo=4.75 G&J/c2 potential. !l%e 3Sl levels are indicated by 

solid lines. The "even-parity" levels of the upsilon problem, 

t&i& are explained in the text, are dcwnasdotted lines. 

Shaded bards denote the flavor t&e&old. (a) mq=20 Gf2V/c2; 

(b) "b=30 @V/c'. 
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Fig. 5: Extrapolations in constituent nass for the reflectionless 

apprcPtims.tion to the logarithmic potential determine3 from the 

parameters in Table I. (a) The ratio of 2.5-E spazing to the 

true value. (b) The ratio of 2%2P to 2S-1s intervals.: the 

true value is shown by the dashed line. (c) The ratio of 

=vefunctions squared at the origin for the 25 an3 1s levels; 

the true value is shcwn by the dashed line. (d) The ratio of 

extrapolated no true values of the square of the 1s 

wavefunction at the origin. 

Fig. 6: Extrapolations in constituent mess for the reflectionless 

approximation to the Coulonb potential determined fromthe 

parameters in Table I. (a) The ratio of 2S-1s spacing to the- 

true value. (b) The ratio of 2S-2P to 2S-1s intervals; the 

truevalue is shown by the dashed line. (c) The ratio of 

wavefunctions squared at the origin for the 25 and 1s levels; 

the true value is shcw~ by the dabed line. (d) The ratio of 

extrapolated to true values of the square of the 1.9 

wavefunction at the origin. 
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