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ABSTRACT 

An inverse-scattering algorithm is used to construct 

the interquark potential from the masses and leptonic widths 

of vector mesons. There is substantial agreement between 

potentials constructed from the 1s and 2s levels of the J, 

family, and those based upon the lS-4s levels of the T 

family. This agreement provides evidence that the 

quark-antiquark interaction is independent of heavy-quark 

flavor for interquark separations between about 0.1 and 

1 fm. Self-consistency of the various determinations is 

explored at some length, and the uncertainties inherent in 

the method are investigated in detail. Predictions are made 

for electric-dipole transition rates in the T family, and 

the significance of future measurements for refining and 

extending present knowledge of the potential is discussed. 

PACS Category Numbers: 12.4O.Qq, 14.40.Pe 
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I. INTRODUCTION 

The properties of bound states of heavy quarks and 

antiquarks reflect the character of the interquark 

interaction. It has been established that many features of 

the $ and T resonances may be understood in the context of 

nonrelativistic quantum mechanics with a static central 

potential. 1 For the purpose of describing these quarkonium 

systems, the problem of determining the interaction between 

quarks thus may be framed as that of determining the 

interquark potential. Since the discovery of the charmonium 

($1 family in 1974,2 much effort has been devoted to this 

task. 

Exploration of the interquark potential has taken many 

forms. The asymptotic freedom of quantum chromodynamics 

suggests that at very short distances the potential is 

Coulomb-like. 3 At distances exceeding 1 fm, the relativistic 

string picture makes plausible a linear form for the 

potential.4 Numerous interpolations, with varying degrees of 

theoretical motivation, have been advanced for the 

intermediate regime in which all the known levels lie. 5 

Other work has been directed toward establishing the form of 

the interaction in the region of space occupied by the 

quarkonium levels, without particular regard to what may 

happen at much shorter or much longer distances. These 

methods, which rely on scaling properties of power-law 

potentials6 or on the application of inverse-scattering 
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techniques, have the advantage of being free from 

theoretical biases about short- and long-distance behavior. 

They are correspondingly unable to test such biases 

effectively. 

In this paper, we continue the program7 of using 

inverse-scattering methods to construct the interquark 

potential from experimental information on the masses and 

leptonic widths of 3 S1 quarkonium levels. In the charmonium 

family there are two such levels, $(3097) and $(3686), below 

the charm threshold. In the upsilon threshold there are 

three 3S1 states below flavor threshold [T(9434), T(9994), 

and T(10324)) and one, T(10545), just above threshold. In a 

previous publication, a a "best" potential constructed from 

the two $-states was compared with a potential implied by 

the 1s and 25 T levels, the only ones for which detailed 

information was then available. In the spatial region where 

such a comparison makes sense, the close agreement between 

the two potentials may be taken as evidence that the force 

between quarks is independent of flavor. 

Experimental study of the higher T levels' now makes it 

possible to extend the comparison to larger interquark 

separations, and to make more decisive tests of the 

hypothesis of flavor-independence. 10 On this basis we find 

that the JI and T potentials agree well in the interval 

0.1 fmLr$l fm. Quantitative measures of the similarity 

are found by using the potential constructed from $-data to 
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compute T-observables, and vice versa. 

The inverse scattering method relies upon experimental 

information about the quarkonium levels and about quarkonium 

wavefunctions at the origin. The latter are deduced from 

measured leptonic decay widths, but the precise connection 

between the two is uncertain. We therefore vary the 

constant of proportionality between the square of. the 

wavefunction and the leptonic width, to study the effect 

upon our results and conclusions. It is found that the 

major effect of this variation is confined to short 

distances (rc0.1 fm), so that charmonium and upsilon data 

have little to say about this coefficient of 

proportionality. Other methods are also subject to this 

ambiguity, but less directly. 

Using the potentials constructed from the 3S1 
quarkonium levels, we may make a number of predictions which 

will serve to test and refine our knowledge of the strong 

interaction. Under the assumption that odd- and even- 

angular momentum levels are determined by a common 

interaction (which is to say that exchange forces are 

absent), it is straightforward to compute the positions of 

orbital excitations and to estimate electric dipole 

transition rates between levels. In common with other 

authors,5'11 we arrive at predicted transition rates which 

seem too large, compared with measured rates in charmonium, 

by a factor of two to four. The predictions for the upsilon 
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family are yet to be tested, but seem to indicate that 

electromagnetic transitions are more readily observable than 

simple scaling arguments 12 would suggest. 

The inverse-scattering method provides a representation 

of the potential in the region of importance for existing 

data. No less significantly, it helps to define the regions 

in space in which, on the basis of quarkonium information, 

we are ignorant of the interquark interaction. This 

information in turn helps us to judge the potential value of 

a variety of measurements which may be carried out in the 

future, and to sharpen questions to be asked of experiment. 

The body of this article is organized as follows. In 

Section II we give a very brief review of the inverse 

scattering algorithm and apply it to the construction of JI 

and T potentials. Ambiguities (principally arising from 

uncertainties in the connection between leptonic widths and 

wavefunction normalization) in the determination of the 

potentials are investigated, and the consistency of the 

various potentials is judged. Calculations of the El 

transition rates and a discussion of their implications 

occupy Section III. In the concluding Section IV we discuss 

the extent to which the interquark potential is known and 

where the uncertainties lie, and assess the importance of 

additional experimental information. 
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II. CONSTRUCTION OF POTENTIALS 

A. Review of the Method 

The familiar "direct" problem of the quantum mechanics 

of nonrelativistic bound states consists of solving for the 

eigenvalues and eigenfunctions of the Schrodinger equation 

V2 - 5 + V(r) Y (rJ 1 = W’(g t (1) 

for a specified central potential V(r) and reduced mass u. 

The inverse-scattering (or, more aptly, inverse-bound-state) 

method,13'7 which we shall employ, is a technique for 

constructing the potential from information about the 

S-matrix. 

For orientation, let us consider the problem of 

determining a one-dimensional potential V(x) which 

approaches a constant at infinity, 

V(+=) + Eo, (2) 

and supports N bound states of a system with reduced mass u. 

Limited information about the bound states does not, in 

general, suffice to specify the potential. For example, 

many different potentials yield the same spectrum of 

bound-state energy levels. In the most general 

circumstances, two pieces of information about each bound 
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state (e.g. the energy level and a wavefunction 

normalization as x++m) and knowledge of the scattering phase 

shifts throughout the continuum are required to determine 

the potential. However, a specific class of potentials 

which are both symmetric, 

V(x) = V(-x) , (3) 

and reflectionless in the continuum are determined 'uniquely 

by the positions of their bound states. 14,7 The restriction 

to symmetric potentials means that only a single piece of 

information is required of each bound state. The absence of 

reflection for one-dimensional scattering eliminates the 

need for explicit phase-shift information, and reduces an 

integral equation for the potential to an albegraic 

equation. 

If the bound state energies are Ei(i=l,...,N), then the 

symmetric, reflectionless potential which satisfies (2) is 

uniquely given by 16 

V(x) = E. -.L L ln D(X) 
p dx2 

, (4) 

with 



and 

D(x) = ,+.-Sh [X(& Km - z3 Kn)]v 

K +K 
lI(S,3, = n m-2 , 

mCS I I Km-K n 
KS 

(5) 

(6) 

where 

2 
K. 

1 = 2u (EO-Ei). (7) 

In equations (5) and (6), S denotes a subset of the integers 

1 ,...,N, and s is its complement. Algebraic expressions 

have also been given for the bound-state wavefunctions. 

The foregoing results are exact, but limited to 

potentials with a finite discrete spectrum which satisfy the 

asymptotic condition (2). It has been proposed" that 

symmetric confining -,-- potentials, which possess only a 

discrete spectrum, can be systematically approximated within 

a limited region of space by symmetric reflectionless 

potentials. In practice, a symmetric reflectionless 

potential which binds the first N levels of a confining 

potential and approaches a value 

(8) 
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is found to reproduce the confining potential within the 

classically-allowed region for the N levels. Specific 

illustrations for the linear, harmonic oscillator, and 

infinite square well potentials are presented in refs. 15 

and 16. 

The symmetry requirement (3) ensures that the 

one-dimensional problem will be the analog of the s-wave 

problem for a central potential in three dimensions. 

Corresponding to the three-dimensional s-wave solutions 

Y,(r) are the odd-parity solutions 

Jl,,(x) = - JI,,(-xl, (9) 

in one dimension. With the usual normalization conditions, 

/ 
d3r IY,(r)I' = 1 

and 

dx jJl,,W I2 = 1, 

(10) 

(11) 

the relation between the three-dimensional s-wave solution 

and the one-dimensional solution is 

(2n,)lj2 Y,(r) = $2n(r)/r. (12) 
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So far as the three-dimensional s-wave problem is 

concerned, the even-parity levels which lie at E1,E3,... are 

unphysical so that information about them is not directly 

accessible. However, in symmetric reflectionless 

potentials, the properties of even-parity and odd-parity 

solutions are intimately connected, especially when the 

number of even- and odd-parity levels is equal. Consider a 

symmetric, reflectionless potential which supports an even 

number N=2L of bound states, and define the function 

f(E) : kbl( z:;::-l) . (13) 

Then it may be shown 16 that in a symmetric reflectionless 

potential for which the continuum begins at Eo, as in 

eq. ,(2), 

f(E) = 1 + 2 
il i.,-;;;;@: ;;-E2,i - 

(14) 

Thus, if the positions of the odd-parity solutions and the 

slopes at the origin of the odd-parity wavefunctions are 

known, the function f(E) may be evaluated as the 

right-hand-side of eq.(14). The definition (13) shows that 

the zeroes of f(E) are none other than the positions of the 

"unphysical" levels, E2k-l. 
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In the (N=ZL)-level s-wave problem in three dimensions 

it is necessary to choose,the continuum energy EO(2L) in 

accord with the condition (a), w.ithout knowing the position 

of the unphysical level SZL+l. If E2L+2 is known, we 

interpolate: 

E0(2L) = '3EZL+EZL+2 
4 . 

Otherwise, an extrapolation 

(15) 

(16) 

will yield a suitable estimate. 

The slope of the odd-parity, one-dimensional 

wavefunction at the origin, which is required for the 

evaluation of f(E) by means of (14), is related by eq.(12) 

to the s-wave wavefunction at the origin as 

IJl~,C0,i2 = 2alYnm12 . 

For n3Sl bound states of heavy quarks and antiquarks 

P,(O) I2 is related to the leptonic decay rate by 17 

(17) 

CQa t 
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IYJO) I2 = (3/16rrNca2e~).poM~r(Vn+e+e-) , (ia) 

where N is 
C the number of colors of the Q-quark and eQ is 

its charge, awl/137 is the fine-structure constant, and M n 
is the mass of the vector state Vn. The multiplicative 

correction factor p is equal to unity in the nonrelativistic 

limit. In a purely Coulombic quarkonium system, quantum 

chromodynamics yields a correction 

C 16a 1 -1 
p= l- + + @(B2) I 

where a 
S 

is the strong-interaction coupling constant and 6 

is the speed of the bound quark. Although the known 

quarkonium families are decidedly non-Coulombic, the belief 

that the strong coupling constant may be as large as 

as=0.2-0.3 for $ and T has led many authors to suspect that 

P may be appreciably greater than one. A detailed argument 

for extending (19) beyond purely Coulombic systems has been 

given in ref. 11. 

.B. Applications to Quarkonium 

Using the techniques recalled above, we construct 

potentials from the experimental observations summarized in 

Table I. Ours choices of the parameter E. are guided by 
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eq. (151, for potentials deduced from charmonium, and 

eq. (161, for those based upon upsilon data. We take as 

representative values of the multiplicative correction to 

the Van Royen-Weisskopf formula (18) p=l (which corresponds 

to no correction), and p=1.4 and 2. We believe, but cannot 

prove, that p=2 represents a larger correction than is 

plausible, and intend that the extremes p=(1,2) bracket the 

true value. For the upsilon family, the parameter p can 

also be regarded as allowing for variations in the still 

uncertain absolute scale of leptonic widths. 

In the case of charmonium, the potential constructed 

under the assumption that p=l has been discussed extensively 

in earlier publications. i9,a Although only s-wave 

information is used systematically in the inverse-scattering 

algorithm, information about other partial waves may be used 

to discriminate among potentials constructed under varying 

assumptions for E. and the quark mass. To employ p-wave 

data in this manner entails the assumption that exchange 

forces can safely be neglected. The value of the charmed 

quark mass which reproduces the observed center of gravity 

of the p-wave J, levels, <M(x)>=3.52 GeV/c', is rather low: 

m,=l.l GeV/c'. For choices other than p=l, it is possible to 

adjust the quark mass to maintain agreement with experiment, 

as shown in Table II. Also shown in Table II are the 

properties of the T states implied by these charmonium 

potentials. In each case, the mass of the b-quark has been 
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chosen to give an T mass of 9.434 GeV/c'. The three 

potentials are depicted in Fig.l(a)-(c). On the 

left-hand-side of each plot are shown the input 13S1 and 

23s1 JI levels (solid lines) and the calculated positions of 

the first p-waves, 20 the 23PJ levels (dashed lines). On the 

right-hand-side of each graph are plotted the 3S1 T levels 

(solid lines) and the 23PJ (xb) states (dashed lines). 

The three charmonium potentials are compared in Fig.2. 

In the range 0.5 GeV-' sr 25 GeV -1 , the potentials depend 

approximately logarithmically upon the interquark 

separation, as expected on the basis of scaling arguments. 6 

The local fluctuations are artifacts of the reflectionless 

approximant technique. 'The small systematic difference 

between the three charmonium potentials is that the 

potentials corresponding to larger values of p and mc are 

somewhat more spatially compact. This is reflected in the 

sizes of states, listed in Table II. Also shown in Fig.2 

(as the dotted line) is the shape of the QCPinspired 

potential of Buchmiiller and Tye, 11 which is typical of 

explicit potentials that provide a good representation of J, 

and T data. In the region of space to which charmonium 

observables are sensitive, it provides a smooth 

interpolation of the inverse scattering results. 

The potential constructed from the T data collected in 

Table I under the assumption that p=l has also been 

discussed before." Only 3S1 levels of the upsilon family 



are known at present, so 

p-wave spectrum to select a 

it is not yet poss ible to use the 

best value of the b-quark mass 

for a particular choice of the parameter p. We find, as 

shown in Fig.3, that within reasonable bounds the value of 

mb does not appreciably affect the shape of the potential. 

The potential constructed for p=l, mb=5 GeV/c 2 (dashed line) 

is slightly shallower at very short distances than that 

constructed for p=l , mb=4.5 GeV/c2 (solid line). The p-wave 

(bij) levels are only mildly sensitive to this difference: 

15 

142 MeV/c', for mb = 4.5 GeV/c' , 

MO') - 'M(xb)> = 

148 MeV/c2, for mb =5GeV/c2 * 

This lack of sensitivity persists for larger values of p, 

and we conclude that the exact choice of mb is of little 

consequence. 

To facilitate comparison with the charmonium 

potentials, we select values of m b close to those shown in 

Table II. The results are given in Table III. As P 

increases, the $'-x, (2S-2P) spacing decreases. With a 

suitable choice of the charmed quark mass, properties of the 

charmonium system are reproduced satisfactorily. A slight 

increase in the assumed values of mb would improve the 

agreement, but we see no need to engage in such fine-tuning. 
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The potentials based on parameters in Table III are 

shown in Fig.4(a)-(c). On the right-hand side of each graph 

are plotted the input 13Sl -43Sl upsilon levels (solid lines) 

and the calculated center of gravity of the 23PJ(xb) states 

(dashed lines). The calculated positions of the +, $', and 

XC levels are plotted on the left-hand side of each diagram. 

The three upsilon potentials are compared in Fig. 5. 

They are essentially indistinguishable for interquark 

separations larger than 0.4 GeV-' (0.08 fm). They also 

approximately coincide with other potentials that reproduce 

the data, such as the Buchmbller-Tye potential 11 which is 

shown by the dotted line. Like the charmonium potentials in 

Fig. 2, the upsilon potentials behave approximately 

logarithmically in the interval 0.5 GeV-'Zrr5 GeV-'. At 

distances smaller than 0.4 GeV-1, there is considerable 

variation among the potentials. This provides a gauge of 

our current ignorance of the interaction between quarks at 

short distances. In the companion to this article21 we 

explore the degree to which the range of possibilities can 

be narrowed by observations of more massive quarkonium 

families. 

The potentials constructed from the $ and T families 

are compared with one another for equal values of the 

parameter p in Fig. 6, where they have been superposed by 

requiring that the $(3097) levels coincide. The agreement 

in each case is excellent for ra0.5 GeV -' (0.1 fm), where 
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both quarkonium systems provide information. The comparison 

provides direct evidence that the strong (quark-antiquark) 

interaction is flavor-independent in the range 

0. 1 fm 2 r 5 1 fm. This conclusion is supported by the 

quantitative agreement of predictions from $-potentials with 

T-observables shown in Table II and of predictions from 

T-potentials with $-observables shown in Table III. 

III. ELECTRIC DIPOLE TRANSITIONS AND 

HIGHER (bs) LEVELS 

With quarkonium potentials and Schrodinger 

wavefunctions in our possession, we may elaborate other 

consequences of the nonrelativistic description. Assuming 

that the 3Sl potentials constructed using inverse scattering 

techniques give, when supplemented by the appropriate 

centrifugal potential, reliable descriptions of the orbital 

excitations, it is a simple matter to compute the quarkonium 

spectrum in detail. The positions of the 23PJ levels of 

charmonium, computed in the this manner, provided a 

nontrivial test of the potentials. The results of an 

analogous calculation for the excited T states, using the T 

potentials, are summarized in Table IV and Fig. 7. 

Predictions for these excited states are rather insensitive 

to the variations explored in Table III. Also given in 

Table IV and Fig. 7 are the predictions of a representative 
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explicit potential 11 which are, for the most part, similar 

to those of the inverse-scattering technique. We shall have 

more to say about this comparison below. 

Further tests of the nonrelativistic description are 

made possible by the experimental study of electric dipole 

transition rates, which are sensitive to the spatial 

structure of the wavefunctions. For the S +P transitions of 

interest, the transition rates are given by 

r ( n3Sl+nm 3pJ+-Y) 4a2e2k3 

r(n3PJZV3Sl+~) 
= Q I- (2Jf+l)l<flrli>12 , (20) 27 

where e Q is the quark charge, ky is the photon momentum, and 

Jf is the spin of the final quarkonium state. The matrix 

element of the coordinate between initial and final states 

can be evaluated given any set of wavefunctions, and in 

particular those implied by the potentials constructed in 

Section IIB. 

The masses" of the 23PJ(xJ) levels of charmonium have 

been determined from the observation of electromagnetic 

transitions. For this family, the fine-structure splittings 

are therefore known (although not entirely understood22), 

and it is possible to estimate El transition rates involving 

the individual p-wave states with masses 
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3551 MeV/c2, x2(Jpc=2++); 

3507 MeV/c2, xl(Jpc=l++); 

3414 MeV/c', xo(Jpc=O++). 

The matrix elements and transition rates computed using the 

potentials characterized in Table II and Table III are 

presented in Table V. As noted before, larger values of the 

parameter p (which are correlated with larger quark masses) 

correspond to systems which are more spatially compact. The 

dipole matrix elements are therefore smaller, and so are the 

predicted transition rates. The predicted rates for the 

2S-2P transitions are nevertheless far above the measured 

values of 16t5 keV, even for the case ~'2, m,=1.7 GeV/c'. 

This failure, by factors of two or three, is common to most 

potential models and is not appreciably improved by the 

inclusion of coupled-channel effects. 23 

The uncertain position of the 23PJ levels in the T 

family introduces an additional variation in the predicted 

T'+xb+y and xb+T+y transition rates. These are computed in 

Table VI, neglecting fine-structure effects. The J, and T 

potentials lead to quite similar matrix elements, but the 

transition rates differ appreciably. Most of this 

difference derives from the variation in xb positions as 

reflected in the k : factor in eq.(20). The predictions for 

the 2S-2P transition rates are expected to be particularly 

sensitive to fine structure. One estimate of these effects 
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is given in ref. 12. 

If relativistic effects should be responsible for the 

discrepancy between predicted and observed El transition 

rates in charmonium, it would be reasonable to expect that 

the predictions of Table VI would be more reliable for the T 

family. This would bode well for observation of the 2s-2P 

transitions. As an example, from Table VI we expect 

r(T'+xl+y) to range between 0.8 and 1.2 keV if the 2s-2P 

splitting is approximately 100 MeV, as given by the 

$-potentials, or between 1.6 and 2.6 keV if the 2S-2P 

splitting is close to 130 MeV, as given by the T-potentials. 

(The J pc,1++ state is expected to be least displaced from 

the 23PJ center of gravity.) Even if the total width of T' 

is as large as 50 keV,24 a 5% branching ratio for the 

T '+x 1+~ transition is entirely within prospect. This 

estimate is much more favorable for observation than the 

value of 1% deduced12 by scaling from charmonium. 

Because the predicted positions of the higher (b6) 

levels are similar in the three potentials constructed from 

upsilon observables, we expect that photon energies for 

transitions involving these levels can be estimated fairly 

reliably. The rather narrow range of predicted El 

transition rates (neglecting fine structure) is exhibited in 

Table VII, where predictions of the extreme p=l and 2 

potentials are tabulated. Of special inerest is the 

expectation that the 3S-3P transition rate, 



T(T(10.32 ,) + XJ(10.22 ) + y) = (2J+l) x 1 keV , (21) 
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should exceed the corresponding 2S-2P transition rate, 

r(T(9.99) + xJ(9.86) + y) * (2J+l) x 0.7 keV . (22) 

This is a consequence of the fact that the dipole matrix 

element is larger for the 3S-3P transition than for the 

2S-2P transition, which in turn reflects the larger size of 

the n=3 states. 
25 

An intriguing possibility exists for placing rather 

tight bounds on the b-flavor threshold, given by twice the 

B-meson (G) mass. There is considerable evidence that 

T(45, 10.545) lies above flavor threshold. The narrowness 

of T(3S, 10.324), many explicit calculations, 26 and general 

theorems27 all suggest that 2MB 2 M(T(3S)). However, if the 

hadronic production of T(3S) proceeds by a cascade from the 

4P-level, the indications for T(3S) in pp collisions 24 would 

require the 4P also to lie below flavor threshold. Thus we 

would have 

M(T(4S)) 2 2% 1. MV(4P)) , (23) 

or 

2 
5.272 GeV/c 2 MS ) 5.23 GeV/c' 28 . (24) 

The estimate26 ’ 27 
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(25) 

then leads to the conclusion that the quark mass difference 

is 

fmb-mc) = 3.38 f 0.03 GeV/c' . (26) 

This difference is lowered by at most 1% if reduced mass and 

hyperfine effects are taken into account as suggested in 

ref. 27. The quark masses in Table II and III satisfy (26) 

for p=1.4 and 2. For p=l, the quark mass difference is just 

slightly too large. Literally applied, these arguments 

would imply that in the case p=l the 4s level should lie 

just below flavor threshold. 

IV. OUTLOOK 

We have shown that charmonium and upsilon data 

determine the interquark potential at distances between 

0.1 fm and 1 fm, without recourse to theoretical prejudices 

for the form of the potential at very large or very short 

distances. What are the prospects for extending the range 

over which.the form of the interaction is known? 

At distances exceeding 1 fm, corresponding to states 

above flavor threshold, there is as yet little support for 

the popular linear potential from the (cc) and (b6) systems. 
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The inverse scattering method does not now address this 

issue, because it is restricted to distances smaller than 

the classical turning point of the highest level included in 

the determination of the potential. This situation is 

unlikely to improve significantly, because the inclusion of 

higher excited states extending well above flavor threshold 

would be a questionable procedure. Above the threshold, a 

single-channel analysis is surely inadequate, and the 

meaning of a static potential becomes obscure for 

short-lived states. What can be said is that the expected 

linear behavior does not appear to set in at such small 

distances as suggested in the potential of Buchmiiller and 

Tyell (dotted line in Figs. 2 and 5). This judgment is 

based upon the position of the T(4.S) level shown in Fig. 7, 

which lies some 50 MeV/c2 below the prediction of ref. 11. 

To invoke shifts associated with coupled-channel effects23 

to dispose of this discrepancy seems to us to undercut the 

notion of a static potential. The utility of the 

higher-lying charmonium states Q(4.03), $(4.16), and (~(4.41) 

is limited by the uncertainty of their spectroscopic 

assignments and by the difficulty of measuring their 

leptonic widths. The positions and leptonic widths of the 

T(z5S) levels may be a superior probe of the onset of linear 

behavior. 
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At distances between about 0.01 and 0.1 fm, our 

ignorance of the quark-antiquark interaction may be assayed 

from Fig. 5. The position of the T(23PJ) center-of-gravity 

can help to discriminate among the possibilities, because 

the 2S-2P splitting is predicted to be different in the 

three T-potentials shown: 

142 MeV/c2, p=l : 
MU') - <M(xb)> = 132 MeV/c', p=1.4 ; (27) 

121 MeV/c', p=2 . 

Better determinations of the JI and T leptonic widths can 

also sharpen our knowledge of the interaction. However, the 

decisive information on quark-antiquark interactions at 

shorter distances must be supplied by new, heavier quarks. 

It is known from electron-positron annihilations 29 that if 

another charge-2/3 quark ("t-quark") exists, its mass must 

exceed about 18 GeV/c2. It is conceivable, but unlikely, 

that another charge (-l/3) quark could have escaped 

detection at lower masses. In the following paper we 

explore the degree to which the next quarkonium family can 

provide new information on the force between quarks at short 

distances. 
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Table I. Quarkonium observable2 used 
in constructing potentials. 

Level Mass (GeV/c2) r ee (kev) 

6 (1s) 3.097 4.8 

JI (25) 3.686 2.1 

[X,(Wl 3.521 --- 

-----~-- -__-__-----.- - - - _ __ 

T(lS) 9.434 1.0 

T (25) 9.994 0.45 

T(3S) 10.324 0.32 

T(4S) 10.545 0.25 

a)The values chosen are taken from Refs. 2,9, and 18. 
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Table II. Potentials constructed from charmoni 
Quantity 

EO (GeW 
mc (GeV/c2) 
~1 (GeV/c) 

k2 
k3 
"4 

_---- - - _ __ 

<M(x& > (GeV/c2) 
(M(JI')-<M(x~)>)/(M(JI')-M(~)) 
1s: <r>,<r2>1/2 (GeV-l) 
2s: <r> ,<r2>l12 (GeT') 
__ - ----- 

y) (cev/c2)a 
1s: Ice (keV)b 

<r>,<r2>l12 (GeV-') 
2s: M (GeV/c2) 

r (2s) /r (1s) 
<r>,<r2>1/2 (GeV-') 

3s: M (GeV/c2) 
r (3s)n (1s) 
<r>,<r2>1/2 (GeV-') 

4s: M (GeV/c2) 
r(4s)/r(ls) 
<r> ,<r2>li2 (C&V-l) 

(M(T')-M(T)) GeV/c2) 
(M(T')-<M(Xb)>)/(M(T')-M(T)) 

p=l p=1.4 
3.8 3.8 
1.1 1.4 
1.3636 1.5246 
0.8794 0.9921 
0.6659 0.7496 
0.3541 0.3995 

--- --- 

3.517 3.516 
0.287 0.289 

2.2,2.5 2.0,2.2 
5.0,5.5 4.4,4.9 
- -- - -- 

4.541 4.797 
1.16 0.87 

1.0,l.l 1.0,l.l 
10.021 9.992 

0.28 0.32 
2.6,2.8 2.5,2.7 
10.361 10.353 

0.28 0.28 
3.5,3.9 3.5.3.8 
10.61 10.57 

0.15 0.10 
5.5,5.9 6.4,6.8 

0.587 0.559 
0.174 0.179 

a)Chosen to give M(T)=9.434 GeV/c2. . 

33 

urn. 

p=2 
3.8 
1.7 
1.71.99 
1.0932 
0.8305 
0.4402 

--- 

3.519 
0.284 

1.8,2.0 
4.0,4.5 

--- 

5.080 
0.77 

0.95,l.l 
9.999 
0.31 

2.4,2.5 
10.375 

0.25 
3.4,3:7 

--- 
--- 
--- 

0.564 
0.158 

DJ Assuming that the parameter p has the same value for (CC) 
and (b6) systems. 
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Table III. Potentials constructed from wsilons. 

2 
2 
i? 
2 
8 
ci 
2 
: 

. 
*. 
t 
2 
s 
z 
: 
8 

3. 
,. a 
P J 
i-i 
5 
; 
3 

Quantity p=l p=1.4 p=2 

EO (GeW 10.6 10.6 10.6 

s (GeV/c2) 4.5 4.75 5.0 

~1 (GeV/c) 3.0513 3.4108 3.8823 

"2 2.2916 2.3544 2.4155 

"3 1.9628 2.0455 2.1210 

K4 1.6514 1.6966 1.7410 

'c5 1.4120 1.4659 1.5173 

'6 1.1140 1.1446 1.1743 

Kc7 0.8706 0.9033 0.9343 

'8 0.4970 0.5107 0.5239 
-------. - - --- ---, 

<M(Xb) > (GeV/c2) 9.852 9.862 9.873 

(M(T')-<M(Xb)')/(M(T')-M(T)) 0.254 0.236 0.216 

1s 'r> , <r2>lj2 (GeV-l) 1.1,1.2 1.1,1.2 1.0,l.l 
2s: <r>,<r2>1/2 (GeV-') 2.5,2.7 2.4,2.6 2.3,2.5 

3s: <r>, cr2>li2 (GeT') 3.8,4.2 3.7,4.0 3.6,3.9 

4s: <r>, <r2>1/2 (GeT') 5.3.5.8 5.1,5.6 4.9,5.4 
----- -__ --- --- --- 

m, (GeV/c2)a 1.082 1.359 1.626 

1s: ree (keV)b 4.5 4.8 4.7 

<r>, <r2>li2 (GeV') 2.2,2.5 2.0,2.2 1.8,2.1 

2s: M (GeV/c2) 3.678 3.676 3.672 

r ee (keWb 1.6 1.8 1.8 

<r> ,<r2>1/2 (GeTl) 5.4,5.9 4.6,5.0 4.1,4.5 

(M(JI’)-M($)) (GeV/c’) 0.581 0.579 0.575 

<M(xc)> (GeV/c2) 3.521 3.523 3.516 

(M(~')-<M(x=)')/(M(~')-M(JI)) 0.270 0.264 0.271 

ajChosen to ~give M($)=3.097 GeV/c2. 
n)Assuming that the parameter p has the same value for (cE) 

T 
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Table IV. Masses (in GeV/c') of upsilon states 
in potential models. 

Inverse scattering 

Level p=l p=1.4 p=2 Ref. 11 

1s input: 9.434 9.434 

2s input: 9.994 9.994 

3s input: 10.324 lo.,324 

4s input: 10.545 10.594 

2P 9.852 9.862 9.873 9.864 

3P 10.211 10.219 10.228 10.224 

4P 10.462 10.469 10.476 10.504 

3D 10.113 10.120 10.128 10.114 

4D 10.393 10.400 10.406 10.404 

4F 10.307 10.314 10.320 
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Table V. Electric dipole matrix elements 

Potential 

$ potentials: 

p=l 

and transition rates in charmonium. 

<lSlrl2P> r (x~+$+Y) <2Plr12S> 

(GeV-') (kev) ( Gev-1) 

(J=2) 674 

2.47 (1) 505 -3.06 

(0) 242 

0=1.4 

p=2 

----T-- 
T potentials: 

p=l 

p=l.4 

p=2 

(2) 531 

2.19 (1) 398 

(0) 190 

(2) 422 

1.95 (1) 316 

(0) 151 
- - -- 

(2) 663 

2.45 (1) 497 

(0) 238 

(2) 533 

2.20 (1) 400 

(0) 191 

(2) 482 

2.09 (1) 361 

(0) 173 

-2.71 

-2.47 

.-- 

-3.21 

-2.86 

-2.59 

r (JI ~+x~+Y ) 

(kev) 

(J=2) 52 

(1) 71 

(0) 80 

(2) 41 

(1) 56 

(0) 63 

(2) 34 

(1) 46 

(0) 52 
-- -_ 

(2) 57 

(1) 78 

(0) 88 

(2) 45 

(1) 62 

(0) 70 

(2) 37 

(1) 51 

(0) 57 
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Table VI. Electric dipole matrix elements and 
transition rates in the upsilon family. 

Potential 

$ potentials 

p=l 

P'1.4 

p=2 

----. 

T potential: 

p=l 

p=1.4 

p=2 

:lSlrl2P: : (xb+T+y: 

(GeV-') (kev) 

1.07 

1.07 

1.00 
-- 

1.19 

1.15 

1.10 

44 -1.78 

37 -1.76 

36 -1.74 
--- --- 

35 -1.63 0.87 

35 -1.63 0.70 

34 -1.62 0.53 

:2Plrj2S> r(T'+Xb+Y)/(2J+1) 

(Gev-1) CkeV) 

0.39 

0.36 

0.26 
,---_ 
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Table VII. Predicted rates for electric dipole 
transitions among spin-triplet (bb) states, 

in two T-potentials. 

Transition 

2-1s 

k 
Y 

(MeV 

409 

p=l 

<fJrJi: 

(GeV-l') 

1.19 

r/(2Jf+l 

(keV) 

11.6 

kY 
(Me\ 

428 

p=2 

<fl r/i> 

(GeV-l) 

1.10 

r/(2Jf+l) 

(keW 

11.3 

2s+2p 140 -1.63 0.87 119 -1.62 0.53 

3P+2S 216 2.12 5.4 232 1.88 5.3 

+lS 747 0.24 2.8 761 0.25 3.2 

3S-t3P 

+2P 

4-3s 

+2s 

+1s 

4S-+4P 

+3P 

+2P 

112 -2.65 1.17 95 -2.65 0.72 

460 -0.042 0.02 440 0.018 0.003 

139 3.12 3.1 152 2.73 

460 0.29 1.0 471 0.32 

978 0.115 1.48 989 0.110 

83 -3.80 1.00 69 -3.78 

330 -0.147 0.09 313 -0.038 

671 0.025 0.02 651 0.015 

3.1 

1.3 

1.41 

0.57 

0.005 

0.007 

T 7 

> 

7 
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FIGURE CAPTIONS 

Fig. 1: Potentials constructed from charmonium data 

collected in Table I, using the parameters given in 

Table II. (a) p=l, mc=l.l GeV/c2; (b) p=1.4, mc=1.4 

CeV/c2; (c) p=2, mc=1.7 GeV/c2. Levels of the 

charmonium (upsilon) system are plotted on the left 

(right). Solid lines denote the 3Sl states; dashed 

lines indicate the mean mass of the 23PJ states. 

,The right-hand scale (for the upsilons) is shifted 

by an amount 2(mb-mc) ~with respect to the left-hand 

(psion) scale. 

Fig. 2: Comparison of the charmonium potentials of Fig. 1 

and Table II. Dot-dashed line: P’l, mc=l.l GeV/c2; 

solid line: p=l.4, mc=1.4 GeV/c2; long-dashed 

line: P'2, mc=1.7 GeV/c'. The short-dashed line is 

the "asymptotic freedom" potential of Buchmiiller 

and Tye, ref. 11, with the scale parameter chosen 

as As=509 MeV. 

Fig. 3: Comparison of two potentials construc.ted from the 

,upsilon data in Table I, with the assumption that 

p=l. The solid line is for a b-quark mass of 4.5 

GeV/c'; the dashed line corresponds to mb=5 GeV/c'. 

Fig. 4: Potentials constructed from the upsilon data given 

in Tablet I, using the parameters listed in Table 

III. (a) p=l, mb=4.5 GeV/c2; (b) p=1.4, mb=4.75 

,GeV/c'; (c) p=2, mb=5 GeV/c2. Levels of the upsilon 
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(charmonium) system are plotted on the right 

(left). Solid lines denote the 3Sl states; dashed 

lines indicate the mean mass of the 23PJ states. 

The left-hand scale (for the psions) is shifted by 

an amount 2(mc-mb) with respect to the right-hand 

(upsilon) scale. 

Fig. 5: Comparison of the upsilon potentials of Fig. 4 and 

Table III. Dot-dashed line: p=1.4, mb=4.5 GeV/c'; 

solid line: p=1.4, m=4.75 GeV/c2; long-dashed 

line: p=2, mb= 5 GeV/c2. The short-dashed line is 

the "asymptotic freedom" potential of Buchmiiller 

and Tye, ref. 11, with the scale parameter chosen 

as A==509 MeV. 

Fig. 6: Comparison of potentials deduced from the J, and T 

families. The energy scale is appropriate for the JI 

spectrum. In each graph, the label on the left-hand 

ordinate refers to the potential constructed using 

upsilon data (solid curve). The label on the 

right-hand ordinate refers to the potential 

constructed using psion data (dashed curve). 

(a) p=l; (b) p=1.4; (c) p=2. 

Fig. 7: Upsilon level schemes in four potentials. Arrows 

indicate the positions of the observed 3 S1 levels. 

The consequences of the potentials of Table III, 

constructed from the 3S1 levels of the T system 

according to inverse scattering methods, are 

plotted as the dot-dashed lines: p=l, mb=4.5 
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GeV/c2; solid lines: P=1.4, mb=4.75 GeV/c2; dashed 

lines: P=2, mb=5 GeV/c 2 . Shown for comparison are 

the predictions (dotted.lines) of the Buchmbller- 

Tye potential of ref. 11. 



I- 
_ (a) 

0 
-10 -8 -6 -4 -2 0 2 4 6 IO 

x (GeV-‘) 

-10 -8 -6 -4 -2 0 2 4 6 IO 
x (GeV-‘) 

4 

------ -_ 

- IO 
3- 

I- 
_ (b) 

I- 

910 t 
7 

-6 I -6 -4 -2 0 
2 4 6 8 IO 

x (G&4-‘) 
4 

- i 

O-10 I -8 -6 -4 -2 0 I 2 4---- 6 
I I Cd’) 

Fig. 1 



L 

I I I I I I I I I I I I I 
d- m 

d-l WA 



7’ I I I 
0 

I 2 4 6 
I 

8 IO 
x (GeV’I) 

Fig. 3 



N _ 
+ 

I- 
- (a) 

95 _ s _ T - 5 -9 

- 
01 I 1' 
-10 -8 -6 -4 -2 0 2 4 6 8 IO 

x (GA’-‘) 

O-IO I 1 -9 -6 1’ -4 -2 
0 2 4 6 8 IO 

x(GeV-‘) 

Fig. 4 ~ 



Lr I I I I I I I I I -1 I I I I 1 ’ - 

lcl 

“‘I l- 



O&---H-d! 

(a) _ (a) 
0 2 4 6 

xlGeV -‘I xlGeV -‘I 
4, 4 ,4 4 

-3 

Fig. 6 
F+ , _ 3 

I -- I 

(bt _ 

c 

0 2 4 6 
x(GeV-‘) 

4 4 

-3 

l - * 

3 - - 2 
I 

P & 

I- IH !I 1 

(c) - 

J-+---J 0 2 4 6 4 6 8 8 IO0 IO0 

1: 1: Ge” -11 Ge” -11 



10.6 . . . . . . . . . . . . . . . . . 

- - 4s . . . . . . . . . . . . . . . . . 
-.-.-.-. 

10.4- 4P B 

-- 3s 
4D. 

lO.2- r J -.-.-. - 

-ip- 
-F 

30 
lO.O- - 

2s 

9.8 - 
d a 

IS L* 

9.4 - 

Fig. 7 


