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ABSTRACT 

Unified electroweak gauge theories based on the gauge group 

SU(2jL x su(2)R x IJ(lIB-L, in which the breakdown of parity invariance is 

spontaneous, lead most naturally to a massive neutrino. Assuming the neutrino to 

be a Majorana particle, we show that smallness of its mass can be understood as a 

result of the observed maximality of parity violation in low energy weak 

interactions. This result is shown to be independent of the number of generations 

and unaffected by renormalization effects. Phenomenological consequences of this 

model at low energies are studied. Observation of neutrino-less double beta decay 

will provide a crucial test of this class of models. Implications for rare decays such 

as u +ey, u + eee, etc. are also noted. It is pointed out that in the realm of 

neutral current phenomena, departure from the predictions of the standard model 

for polarized electron-hadron scattering, forward-backward asymmetry in 

e+e-+u+p- and neutrino interactions has a universal character and may be 

therefore used as a test of the model. 
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I. INTRODUCTION 

The nature of weak interactions appears to be intimately connected with the 

properties of the neutrino. The celebrated V-A theory’ of charged current weak 

interactions, which enjoys resounding phenomenological success at low energies, 

was motivated on the basis of y 5 -invariance of the Weyl equation of a massless 

neutrino and its generalization to charged fermions. The standard SU(2jL x U(I) 

gauge model of weak and electromagnetic interactions2 provides a sound 

mathematical basis for the (V-A) theory of charged current weak interactions and 

predicts the existence of neutral current weak interactions which have also been 

confirmed3 within present experimental accuracies. In the standard electroweak 

model, as in the current-current V-A theories, a massless neutrino and a maximally 

parity-violating weak Lagrangian seem to go hand in hand. 

In recent years, an alternative approach’ to electro-weak interactions has 

been proposed according to which the basic weak Lagrangian is invariant under 

space reflections, as are electromagnetic and strong-interactions. It therefore 

involves both V-A as well as V+A charged currents. The observed predominance of 

left-handed weak interactions4 at low energies is understood as a consequence of 

the fact that vacuum is not symmetric under space reflection. More precisely, the 

weak Lagrangian prior to symmetry breakdown is given by 

ywk = &?uL*uL + ?uRGRk) where ?,,L = ?uR(v5 -f -y,) and GL and GR are the 

left and right-handed gauge bosons, respectively. The non-invariance of the 

vacuum under space reflection results in mW >> mW and, as a result, all low 

energy weak processes appear the same as in Phe SUI2)kx U(I) theory, with small 

corrections (proportional to cm, /m, j2), undetectable in experiments done up to 
L R 

date. 
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In the left-right symmetric models, 5 since both left and right-handed 

helicities of the neutrino are included, the neutrino naturally has a mass.6 The 

important question can then be raised as to why the neutrino mass is so small? 

There appears to be a growing conviction among many physicists that a satisfactory 

understanding of small neutrino mass requires the neutrino to be a Majorana 

particle.8-10 This point of view was, in the context of left-right symmetric 

theories, advocated by us in aprevious paper, 10 where we have shown that for 

neutrino being a Majorana particle, one can obtain the following qualitative 

relation 

I m zo- 
Vf2 c j mWR 

(1.1) 

The precise form of (1.1) depends, as we shall see, on the unknown, free parameters 

of the Lagrangian. We suggest a class of models where eq. (1.1) takes naturally an 

interesting form 

(1.2) 

relating the mass of the neutrino to the mass of the electron. We believe, however, 

that the importance of eq. (1.1) (and (1.2)) lies not so much in the precise value of 

mu, but rather in the fact that it provides a deeper physical insight into the 

connection between the small neutrino mass and the maximality of parity violation. 

In particular, note that in the limit of m 
wR 

-L m, m + 0 and weak interactions 
‘em 

become pure V-A type. If the recent experimental results from Irvinel’ and Soviet 

Union,12 Indicating a nonvanishing neutrino mass are confirmed, they would provide 

a support for the line of reasoning presented above. 
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In this paper, we analyze in detail the question of small neutrino masses and 

mixings in the left-right symmetric models in which eq. (1.1) holds true. We study 

the naturalness of eq. (1.1) and extend it to include the neutrinos at higher 

generations, i.e. v 
u 

and vT. We also study the implications of our model for 

various low energy weak interactions. In particular, we discuss the predictions for 

rare decays such as i-1 + ey and 1-1 +eee and for neutrino-less double B-decay, 13 

whose observation, we argue, would be a crucial test of the model. 

The rest of this paper is then organized as follows: section II describes the 

basic ideas behind this work, i.e. emergence of neutrino masses and their natural 

smallness in the particular SU(21L x SU(2JR x U(1) gauge theory. In section III we 

discuss the phenomenology of the model, paying special attention to the realm of 

neutral current phenomena. Section IV deals with the generalization of the model 

to the case of three generations of fermions. Section V presents the estimates for 

rare processes that violate lepton number, in particular neutrino-less double f3 

decay, p +e y and p + eee decays. It turns out that neutrino-less double 8 decay is 

the most interesting prediction of the model, since its observability requires two 

main features of our model to hold true: Majorana character of the neutrino and 

reasonably small value for mW . Finally, we summarize our work in section VI. 
R 

Some of the technical details of the paper are left for two Appendices A and 8: in 

Appendix A we show how the particular choice of the Higgs sector forces neutrinos 

to be two-component Majorana particles. In Appendix B we discuss a major aspect 

of symmetry breaking in our model: we show how parity gets broken spontaneously, 

and more than that, how the vacuum expectation values of left-handed Higgs 

scalars which give masses to neutrinos are necessarily small (fl mW R‘i). That in 

turn leads to the main conclusion of this paper: in the limit mW +m, neutrino 

masses vanish naturally. 
R 
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II. LEFT-RIGHT SYMMETRY AND SMALL NEUTRINO MASS 

In this section, we will derive eq. (1.1) relating the small neutrino mass with 

the strength of the V+A charged currents in left-right symmetric models. For the 

purpose of simplicity, we will work in an SU(2jL x SU(2)Rx U(l)B-L model.4”o 

‘Here, we have used the recent observation I4 that in contrast with the U(l)- 

generator of the standard model, that of the left-right symmetric models can be 

interpreted as the B-L quantum number. As we show below, this observation 

provides physical insight Io9’5 into eq. (1.1). To see this, note that in left-right 

symmetric models, the formula for the electric charge reads as follows: 

B-L 
Q = 13~ + $R + 2 (2.1) 

Since AQ q 0 and if we are above 100-200 GeV, A13L 2 0, eq. (2.1) leads to 

*I3R I -&A.(B-L) (2.2) 

This implies that breakdown of parity and breaking of local B-L symmetry are 

related. Since for the neutrino B = 0, eq. (2.2) makes it clear why the neutrino 

ought to be a Majorana particle (since then AL & 0) and in particular why its mass 

must have something to do with mW -1 . An explicit realization of this intuitive 
R 

picture is provided by specifying the Higgs and fermion content of the left-right 

symmetric model. We illustrate our procedure with one generation of fermions and 

extend it subsequently to include higher generations. 

Fermions are assigned to left-right symmetric representations4 of the group 

as follows 
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*L = ($, 0, -1) ; $R = (0, $, -1) 

Q, q (0 I L, ’ 2’ 3 (2.3) 

To implement the physical picture outlined in eq. (2.2) we will choose a 

particular set of Kiggs multiplets, 16 some of which carry B-L quantum numbers. 

The minimal set with this property is (see Appendix B for detailed discussion of the 

Higgs sector) 

AL z (1, 0, 2) , AR = (0, 1, 2) . (2.4) 

Note, incidentally, that the above Higgs multiplets have the same representation 

content as the following bilinears in fermionic fields: o z TL@R or o,Q, and 

A; i E $&2ri+L and A k,i = $iC~~r~$~. Therefore, the conclusions of this 
7 

paper are likely to remain valid even if symmetry breaking is dynamical and there 

are no elementary Higgs scalars. 

The various stages of symmetry breaking are: 

<AR> fO,<A,> = 0 

sumL x SWR x uB-L(I) b- SU(21L x U(1) . 

At this stage parity as well as local B-L symmetry are broken. The subsequent 

breakdown of SU(2)L x U(1) down to U,, (1) is achieved via < $x> f 0. Switching an 

<@> f 0 induces a non-zero 17,18 value for <A, >, but as we show in the Appendix 8, 

<AL > = O(<@> 2/VR) < < <@> (see also ref. 17). 
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We now proceed to discuss the fermion specirilm, paying special attention to 

neutrinos. One can imagine two, physically distinct situations: 

(i) There is only one o in the theory, whose vacuum expectation value sets the 

mass scale for both left-handed gauge mesons and fermions. One then attributes 

tiny fermion mass (mf <<rnW ) to the arbitrarily chosen small Yukawa couplings. 
L 

Although being the simplest alternative, we don’t find this particularly appealing. 

As we shall see later, neutrino mass then tends to be somewhat larger than 

acceptable for reasonably light mW . 
R 

(ii) It has been speculated that the small fermion mass may originate from a 

different mass scale than the masses of gauge bosons. This is simply achieved by 

postulating the existence of two Q’s, with one of them coupling to the fermions and 

providing their small masses through its small vacuum expectation value. We would 

then have oW and @f with <QW> 2 O(mW/g) providing the gauge meson mass and 

< $f > = O(mf/h) giving the masses to fermions. In this case, we can imagine 

<of > = 100 MeV, so that h need not be much smaller than g. Of course, if such 

models are right one still would have to explain why < ef > << Q$W>. In this case, 

however, we obtain more reasonable values for the neutrino mass, on the order of 

me2/mw . 
R 

Below we analyze the implications of these two cases on the neutrino mass 

question. 

Case (i). The pattern of symmetry breaking that follows from the 

minimization of the potential takes the form (see Appendix B for details) 

<AR’= (;R :), <AL;=(rL 1)) <+>z(; ;,) (2.5) 
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with K’ << K in order to suppress WL - WR mixing 19 and AS q 2 Higgs induced 

processes 20 

VR >> K 

where y is the ratio of Higgs self-couplings determined from (8.13) in Appendix I?. 

We postpone the discussion of the gauge meson sector to section III and go 

directly to fermions, paying of course special attention to neutrinos. The most 

general Yukawa couplings are given by 

- -- 
LY = h,$,oJ1, + h2+L44 R ’ 

- 
+ h3QL@CR + h&Li Q, + 

JlfCr,A,$ L + “iCt2ARJIR) + h.c. 

where o 2 r2$*t2 and C is Dirac charge conjugation matrix. This gives rise to 

the following masses for charged fermions 

me 
= hIKq + h2K 

m 
U 

= h3K + h4K’ 

md = h3K’ + h41c (2.8) 
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For the v L, v R sector, we get 

-i;azass = h> T VLCVL + v;c+, v;CvR + “;iC+V; 

- - 
+ (hlK + h@(vLvR + vRvL) (2.9) 

The eq. (2.9) looks like a mixture of Majorana and Dirac mass terms. The situation 

becomes much simpler if we rewrite (2.9) in terms of two component spinors 

V 5 VL and N - C(U,)T. Using the properties of charge conjugation matrix 

CT = -c , C2 = -I and cyvCT = -yuT (2.10) 

we easily obtain 

* 
v+C+vR = -NTCN R 

UV RL = NTCv = vTCN (2.11) 

so that eq. (2.9) can be rewritten as 

9 Lass = h+ vL vTCu - vRNTCN) + (h,K + h2P) vTCN + h.c. . (2.12) 

The above expression is a significant simplification: now all the mass terms are of 

the Majorana type (remember that v and N are effectively two component complex 

spinors--that is most simply seen in the representation of Dirac matrices where 

Yg = (:, -0,)). w e now summarize the situation with the following form of mass 

matrix 
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9 mass + h.c. 

where 

M = 

and 

a = h5vL , b = -hsvR , c = K(h,K + h2K’) 

The eigenstates of this matrix are therefore given by 

. (2.13) 

‘e = vcos~ + Nsin 5 

IN e = -vsin < + Ncos 5 

with 

2c tan 25 = G z 2 c/b (2.14) 

In Appendix A we show that v, and Ne are Majorana spinors, i.e. they satisfy the 

equations that the spinors defined through the abbreviation $ ’ z c@jT: + do.19 

There also we discuss some of the useful properties of Majorana fields (the 

discussion there is presented in terms of manifest two-component spinors). 

We now study the eigenvalues of (2.13), assuming as before K’ CC K only for 

the purpose of simplicity. Now, since b >> a,c, we get 



11 FERMILAB-Pub-80/6I-THY 

% ^I a- c2/b 
e 

mNe z b (2.15) 

Using eqs. (2.6) and (2.13) one gets for the light and heavy Majorana neutrino 

masses 

mVe = (h51+i g) $R 

mNe 
= -h5vR (2.16) 

We remind the reader that K 2 O(m wL/g) and vRz O(mW R/ ). g A n important 

feature of the above expression is noteworthy stressing: in the limit mW + m (i.e. 
R 

vR + 4, obviously mN + - and mv + 0, in which case the weak interactions 
e e 

become purely left-handed. That is the main result of our paper, promised in the 

introduction: the V-A limit of this theory leads naturally to vanishing neutrino 

mass, thus providing (at least qualitatively) a rational for the smallness of the 

neutrino mass. Unfortunately, the quantitative character of eq. (2.16) is definitely 

less clear: h5, h, and y are free parameters of the Lagrangian. Namely, T is an 

unknown ratio of various Higgs self-couplings (see eq. (B.13)), hl is not determined 

by the electron mass (me = h2K in the limit K >> K’) and h5 would only be 

determined by the value of mN . To be specific, let us for simplicity assume the 
e 

natural value y = I and hl -< h5. In this case it is easy to show that the ratio of 

m 
“e 

and mN is approximately given by 
e 

0 
2 

mu 
.-sZ mWL 

mNe rnWR 
(2.17) 
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NOW, even if we choose mN 11 GeV, in order to get my < 10 eV one requires 

> 104m 
e e- 

rnWR - wL’ 
This is admittedly a rather large value of mW . However, this 

still leads t,o interesting predictions for N-R osJlIations15 (i.e. 

tN-N = lo5 - IO5 set, which is well within the accessible range of present 

experiments). 

In conclusion, in this case, for reasonably light mW (m, 2 3 mW ), the 
R R L 

natural value for neutrino mass tend to be quite larger than experimentally 

allowed. We should mention, though, that if y is small (more precisely if 

y << h12/h5’) and if h, * h2, we would get m 
‘e 

I O(me2/m, 1, which is definitely 
R 

a reasonable value. For example, if mW z 3mW (a safe lower bound) 21 we would 
R L 

get rn”_c 1 eV. 

Next we turn to case (ii), which, as we shall see, predicts naturally more 

reasonable values for the neutrino mass. 

Case (ii). This is the case where gauge boson and fermionic masses originate 

from different mass scales. Now, <I$~ z = 
i 1 

0” ,“, and <$W> q 
@Lo 

( ) 
0 Kw’ 

, where 

K w = O(mmL/g) and K sO(mf/h) (we assume for simplicity ic ’ < < K , although now it 

is not needed, since <of > << co,>). The fact that in this case ow doesn’t couple 

to the fermions, means that the form of neutrino mass matrix (eq. (2.13)) is 

(unchanged, since v L 2 O(K’/vR) as before (see ;Appendix 8). The main difference 

from the previous case is that a natural value for K is now in the 100 MeV region, 

and will therefore lead to much smaller values for m 
‘e 

. For example, if we assume 

hl 2: h2 = h,? 2 II in order to be specific, we obtain 

h 
mN e 

= gmWR 

2 
?” 

% 
E -2 h 

e g mWR 
(2.18) 
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If h/g 2 1, substitutirg hgain m,,! 
” R 

2 jr,;! , leais to the predictions 
L 

mNe > 230 CeV , mue _< 1 eV (2.19) 

Clearly, this case leads naturally to a small my . Also, the value for mN is safe 
e e 

concerning the somewhat stringent bounds coming from the neutrino-less double f3 

decay (see section V). 

Before closing this section, we rewrite the new left and right-handed doublets 

in terms of physical fields (mass eignestates) ve and Ne 

(left-handed doublet) 

(right-handed doublet) (2.20) 

where we have assumed Majorana condition N = C(mT (since N satisfies Majorana 

equation) and the tiny mixing between v, and N, is given by (5 - tan 5 c< 1) 

1 hl” 
f 1 g = -2% 

It is clear from (2.20) that the right-handed currents are very small until very high 

energies E > mN. Thus, the analysis at low energy charged current data 19 ceases 

to be useful in determining bounds on mW . We would like to add that in this 
R 
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model, since the right-handed neutrino is extremely heavy, the astrophysical 

considerations2’ do not restrict the mass of the right-handed charged gauge boson. 

III. NEUTRAL CURRENT SIGNALS OF THE MODELS 
AND CONSTRAINTS ON mW 

R 
AND mZ 

R 
Whether our approach can be experimentally distinguished frorn the standard 

model in the near future depends on the right-handed gauge boson masses. In this 

section, we therefore analyze the mass spectrum for WE , ZL, Wi and ZR, the 

eigenstates of the gauge boson ~nass matrices and remark on the constraints that 

follow from the available neutral current data. As we mentioned before, charged 

current data does not prove helpful in tllis regard due to the large mass of the 

heavy neutral leptons (N), which is ttie right-handed counterpart of “. 

We give below the gauge meson eigenstates and their masses. First, in the 

charged sector 

W1 = WLcos E + WR sin E 

W2 = -WLsin E + WRcos c 

with 

mil = $c 2 K + Kf2 + 2v L2) 

2 

mW2 
I {(,2+K2 t2v R2) 

(3.1) 

(3.2) 

We shall, in what follows, assume negligible WL-WR mixing (i.e. E << 1 or K’ << K). 

In that approximation, WL and W, become the eigenstates of the mass matrix. 

As for the neutral gauge meson sector, we obtain (in the limit K << vR) 
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A 
u 

= sin o w(~~& + u’&) + mBc 

ZLp I cos 0 u,WLU 3 - sin 8 wtan eWWRP 3 - tan 8 ,#COS 28 WB,, 

ZRp 2 
Jcos 2e,g 

co5 8 W w&- !.l tan ewB 

where tan o w = g’/(m) and 

2 2 2 m, 2 21 
iL 

(K +K’ +4VL. 

2 2(g2 + gt2!v R 2 m, = 
‘R 

(3.3) 

(3.4) 

In the above expressions e W has been defined in such a way that it can be identified 

with the Weinberg angle of SU(2jL x U(1) (hence, the subscript W) i.e. 

e2 = g2sin2 e W’ Also, note that the celebrated relation of rhe standard model 

2 2 2 

mWL = mzLCoS ew 
is preserved to the lowest order (compare (3.2) and (3.4)); it 

gets corrections of order K’/V R2 and v L2/~2, but these corrections will be small. 

Now, let us proceed to analyze the structure of effective neutral current 

Hamiltonian in this model. We will show that there exists a remarkable feature of 

universality of strength in various neutral current processes, which may be used as 

a test of the model, once the desired accuracy of experiments is reached. 

To make computations simpler, we employ the method of Georgi and 

Weinberg.‘? Let us briefly recall their result: the effective neutral current 

Hamiltonian can be written in the following form 
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H N = % 1 (fv,nif)~ypnif’)tdij-2 

ij 
(3.5) 

where f, f’ stands for any fermions; i, j counts all the neutral generators but one 

(arbitrary) corresponding to any U(l) subgroup of an original gauge group; 

CiTi - 3 2 $Q 
j gi 

where Ci are defined from the expression for the charge 

Q = DZ,To 

(3.6) 

In (3.7) {To} = {To, Ti} (To being left out of computations). 

We are now equipped to present our results. We will apply the above method 

to the three distinct, important classes of neutral current phenomena: neutrino 

interactions, parity violation in electron-quark scattering (applicable to polarized 

electron-hadron scattering and parity violation in atoms) and forward-backward 

asymmetry in e+e- + u+ui- processes. 

A. Neutrino scattering 

In this case one obtains for the relevant piece of the neutral current Hamil- 

tonian 

HV = #‘%F~yp(l + y,)v (1 +cr)~v’(T3-2Qsin2b)J, 

(3.7) 

+ (I + B)$‘Y ‘I- Q 1 53 -I 

where 

(3.8) 
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ZV‘2 2VL2 
a =-- K2 +2$ ’ a= -7 (3.9) 

(recall That we work in the approximation K’ << K 1. 

8. Parity violating electron-quark scattering amplitude l_-_--__l 

Using the same technique, we find that a piece of the Hamiltonian responsible 

for parity violation in atoms and in the SLAC experiment on polarized electron- 

hadron scattering can be written as 

$.V. = :;(I + 6) ?y,,(-I + 4sin2 eW)eiyuYgT3q 

- GI-IY5e4Y ‘1(T3 - 2Qsin’ 0 w)q 
3 (3.10) 

Note that (I+@) denotes the departure from the predictions of the standard model 

and is the same factor as the one accompanying the axial vector piece in neutrino 

scattering (eq. (3.8)). 

C. Forward-backward asymmetry in e+e- + $u- 

In this case, the relevant piece is the eyl,Y5ei;YuY+ four-fermion 

interaction. A simple calculation gives 

H ee-tp ii= 
23 (1 + 6) Guy5eT? y5ii (3.11) 

Again, the same departure from the standard model prediction. 

It is therefore clear that once the desired experimental accuracy is reached, 

the above universality of coupling strength may be used as a test of left-right 

sytmmetric models. Let us now analyze it slightly more quantitatively. We have 

seen that the departures from the standard model are of the form: v;/K’ and 
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2 K /VR2. The latter ratio is directly related to the ratio of left-handed and right- 

handed gauge meson masses, and so its measure would determine the relevant 

parameter ,sf the model. The situation with the vL/~ term is more complicated 

and it depends on whether case (i) or case (ii) introduced in section II are realized. 

Namely, in case (i) K I O(mW /g) and so V~/K again measures the ratio of 

mWLjmWR. (Recall that v L - L 2 - O(K /vR)). In case (ii), however, K = O(mf/h) and 

therefore is expected to be of order I-100 MeV and therefore completely negligible 

and so vL -- O(lc2/vP) can te taken practically to be vanishing. \ 

Let us now, in passing, describe the situation in terms of heavy right-handed 

gauge meson eigenstates. From (3.4) we have the following relation between WR 

and ZR masses (we ignore for simplicity the tiny mixing between WL and WR) 

(3.12) 

Analysis of the neutral current state including these effects have been carried out 

by several groups. Ecker21 grves the following bound (using I standard deviation) 

mZL/mZR 2 .29 (3.13) 

Taking mZ 
L 

z 90 GeV, (3.13) implies mZ > 300 GeV. Now, for sin2 Bw = .22, 
R- 

from (3.12) we get 

2 

mWR 
= .7 m2 

zR 
(3.14) 

which gives then a lower bound on mW 
R 
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mW 
R 

2 240 GeV 
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(3.151 

or m 
wR 

1 3mW . 
L 

IV. HIGHER LEPTON GENERATIONS AND LEPTON MIXING 

In section II, we discussed the neutrino mass for one generation only and 

showed that its smallness is related to the smallness of V+A charged current 

couplings. In this section, we extend this result for neutrinos of all three 

generations and discuss the implications of neutrino mixing. To begin, we denote 

the leptonic doublets, which are weak eigenstates 

Ql = (“1) , $2 =(“;) , 4 = (J) . (4.1) 

Working with the same set of Higgs mesons (i.e. AL, AR and $1, we get the 

following most general Yukawa coupling allowed by renormalizability 

py = i ihij($TLr 2ALC$jL i- $TRT 2ARC$jRl 

i,j=l 

+ i (fii;GiL @QjR + iij~iL&$R) + h.c. 

i,j=l 
(4.21 

Notice that nothing would change if there are both of and @w as in the case (ii) of 

section II, since it is only af couples to the fermions and so (4.21 follows again. If 

we assume K’ << K and introduce fields Vi z ‘JiL and Ni = C(viRIT as before, one 

obtains the following mass matrix for the (u,, v,, , utl sector 
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??1= (;qN JYJj 

where m “” 8 hJv N and MNN are 3 x 3 matrices given by 

(mvVjij = y $ h.. 
R ‘I 

(MyN$ s K Fij 

(MNN)ij 2: vRhij 

(4.3) 

(4.4) 

Again, we see that all three neutrino masses vanish separately in the limit vR+ co 

(or mW em). This is the generalization of the main result of this paper for higher 
R 

generations. This, in particular, implies that the predominant left-handed nature of 

the leptonic weak currents, as well as the corresponding hadronic currents at low 

energies is due to the smallness of neutrino masses. 

We now give the general method for diagonalizing 24 eq. (4.3) and present 

rough estimates of the various mixing angles in our case. To do this, we write the 

mass eigenstates as 

vl 

#2 

v >A 

i,j= 

v3 

NM 

I 

N1 

N 2 

N3 

(for three generations) 
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They are related to the weak eigenstates, described by 

as follows 

(r;:) = (: :i(i;) 
Using eq. (4.31, we can write 

mX+ MZ = XD, 

mY+MU = YDN 

nrx+.bfZ = ZD, 

MY +./U = UDN 

(4.4) 

(4.5) 

where 
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mv2 ; DN = crnN1 “),J2 mN,) . (4.61 

Of course, in our model rnN. >> mV,. 
1 J 

Since we expect Xij and Uij to be in general 

of order 1 (or at least not small), eq. (4.51 then implies that, 

1 Zij ( < O(m” im,) (Xij ( , ( Uij ( and lYij I 5 O(m ,/mN) I Uij( , where mQ is a typical 

parameter in the mass matrix of a charge lepton, expected to be of order (me, m 
I! 

or mT). As a result, in general, we expect very small mixing between the heavy 

and the light Majorana lepton. 

V. LEPTON NUMBER VIOLATING PROCESSES 

In this section we discuss the rare processes which do not conserve the lepton 

number. We divide such processes in two categories: processes which violate the 

total lepton number and those which conserve the total lepton number, but violate 

electron, muon or tau lepton number. The example of the first class of processes is 

the neutrino-less double 13 decay (n+n + p+p+e+el in which the lepton number is 

charged by two units, and the second class of processes are the often discusssed 

muon decays: u +ey, u +3e, etc. for which AL(total1 = 0. We shall discuss both 

~~:lasses in some detail. 

A. Neutrino-less double B decay ((BBl’-process) 

This process can take place in the second order in the Fermi coupling if 

neutrinos are Majorana particles (see Fig. Il. To see this ‘we write the charged 

weak current Lagrangian in terms of physical lepton fields (for simplicity we first 

discuss the case of one generation and generalize it subsequently) 

2;; = r (.J(‘)w~~ + ~(*lW(-l + h.c 1 
7211 !.2v * (5.11 



23 FERMILAB-Pub-80/61-THY 

where 

+I) ’ + Yg 
=eYu 2 

1 - Y5 
!J 

--Cue + CN,) + sey 
v 2 

-(Ne - Sv,) 

$2) l-y5 
= Gyp2 

1 +Y5 

!J 
(Ne - <v,) - ceyll -+ve +< Ne) (5.2) 

where 5 = me/my (See (2.22)) and E is WL-WR mixing, i.e. WI = WL + cWR, 

w2=-Ew +w L R’ 

We first note that in the lowest order the (BB), process has to go through 

mass insertions of the type ?u or ??N or through currents of opposite chirality. 

From (5.1) and (5.2) it is immediately clear that the latter type of contributions are 

proportional to ~5. Now, from the usual 8 and k decay, we know that E is small 

(c < IO-‘) in order not to conflict with the predominantly left-handed character of 

such processes. We will present our estimates in terms of the usual parametri- 

zation of the (f3B,) process, that is in terms 3f the admixture of left and right- 

handed neutrino-electron currents (denoted n hereafter), i.e. 

eyll((l+y5)/2 + q(l-y5)/2)v. We then obtain for the contribution involving WL-WR 

and v-N mixing 

n (5.3) 

for mN > 100 GeV. To compare this with experiment, we use the analysis of 

Halprin et al. 2.5 who obtain 

11 < 5 x 10-4 (5.4) 
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on the basis of the present data in Ca 48 + Tiii8, t?e76 + se76 and ses6 +KrS6. For 

illustration, note that the bound in (5.4) corresponds to the half-life of Se 86 : 

Tjyo >- 4 x 1021t2years. Clearly then, such effects are extremely small in our 

model and in what follows, we ignore the tiny WL-WR(E) and v-N(c) mixing. 

As we shall see next, the situation is quite different with the first type of 

processes which go through TV and $N mass insertions. It turns out that the 

model predicts amplitudes which ought to be observable in the next generation of 

experiments. Due to the tiny neutrino masses, the exchange of heavy right-handed 

leptons Ni (i = e, U, T) will obviously dominate and we discuss it first. It can be 

shown that in this case n will be given by 25 

(5.5) 

where f nuC is the nuclear factor, estimated by Halprin et al. 25 for A = 100 (BB) 

nuclei to be about 35 GeV. If we take Cm,, /m, )’ < l/IO, as experiment 
L R- 

dictates, and mN > 100 GeV, eq. (5.5) then yields 

” < (3.5) x 1o-5 (5.6) 

Detection of this effect would require measuring Ty, m3)” to an accuracy better 

than 1024’2 years, which can hopefully be reached in the next generation of 

experiments. In all fairness, we should admit that the above estimate depends 

sensitively on mW . However, if m is light, as we believe, then the estimation 
R wR 

is fairly good, since N cannot be much heavier than what we take, since otherwise 

Yukawa couplings would be too large and the perturbation theory would break 

down. Namely, using mN = hvR, mW 
R 

= gmw , we get mN = h/g mw . Requiring 
R R 
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h 5 1, leads to the estimate mN -( 2mW , since g z .5. If m = 240 GeV, then 
R JR 

clearly rn% ( 480 GeV and we have a strict bound 17 I< 7 x 10 . In conclusion we 

iave slxxn that for low m ,_ ‘J 

q z (10e4-iOm5). 
l? 

cur r.odel predicts neutrinc-less double B decay with 

Y/e believe ttat it makes future experiments even more called for. 

In passing, we comment on the upper bounds on neutrino masses which can 

follow from the analysis of (6~)’ decay. Namely, the requirement that 

n< 5 x10 -4 can be shownz5 to lead to the following bound 

c o:,i% < 1 keV 
i I 

(5.7) 

where OL is the Cabibbo-like rotation in left-handed leptonic c:cJrrents. To see 

what (5.7) implies, let us first recall the laboratory upper limits on m : 7 

“i 
mv < 35 eV, mv < 500 keV and mv < 250 !,leV. We should also mention the 

e lJ 26 T 
cosmological bounds which result from the requirement that neutrinos do not 

dominate the matter content of the universe: 1 mv 2 50 eV, where the above limit 

(quoted somewhat conservatively) applies to stable (T”, > IO3 set) neutrinos only. 
I 

Now, one can easily be convinced that v 
u 

is practically stable. Namely, from 

5 < 500 keV, its possible decay vp -L v, +y leads to at least T > 101’sec. 
I-J ” 

Therefore, the cosmological bound applies to vv and we conclude: ,,J < 40 eV, in 

xk,ich case (Et3)’ doesn’t provide any new limit on m . 
5 

Ho%:ever, sir&e vT could 

be rather heavy (250 MeV), it can sufficiently fast decay into vee& so that the 

cosmological bound doesn’t apply to it. Therefore, we can conclude that 

1 keV (5.8) 

which for heavy vr then implies rather small mixing angle with the first generation 

of leptons. 
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8. Electron and muon number nonconserving processes 

We present here simple order of magnitude estimates of the various muon and 

electron number changing processes: u + ey, 11 +3e, muon capture by nucleus 

etc.27 We start the discussion by analyzing p +ey decay. The dominant diagrams 

for such processes are depicted in Fig. 2. To set up the notation, we write the most 

general form of the amplitude for u + ey 

m(u + ey) = F(f + f5T5)im uoXvqvuc x 

where m 
IJ 

is the muon mass. From (5.:‘) one derives the decay width 

r(li +ey) = J&f I2 + If5 12) 

(5.9) 

Our task is then to estimate the leading expressions for f and f5. We separate the 

neutrino and heavy lepton contributions. By the analogy with previous models and 

computations 

(5.10) 

(5.11) 

where 6v and 6~ are the GIM factors 28 
“\I 
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6” = 1 !C_)il(or)i; 5 

i 
ia .~~~ 

R 

AN = 1 (oR)i,(oR)i2 2 
i R 

(5.12) 

where i = e, u, T is the generation index and OL and OR are the Cabibbo-like 

rotations in the leptonic sector introduced in eq. (5.1). For example, for the case 

of only two generations 

6v = sin BL cos@L 
m” 2-m”u2 e 

mwL 

2 

2 2 mN - mN 

6N = sin8Rcos8R e 2 ’ 

mWR 

(5.13) 

since in this case 0 
cos 8 L,R sin 8 L,R 

L,R = -sin 8 L,R cos e LR i 
(we ignore the tiny mixings 

between V’S and N’s, since it doesn’t affect the generality of our results). The 

result stated in (5.12) and (5.13) is the well-known statement of the GIM 

mechanism: the amplitude vanishes for vanishing neutral lepton masses or 

vanishing mixing angles. 

Using the formula for the usual lepton number changing muon decay 

r(i.I +evpFe) q 

GF2m F15 

192lr3 

we get for the branching ratio E( p ‘Cd+~j 

B(p +ey) = B~JJ(u +ey) + B”(u +ey) + B vN (jd +ey) 

(5.14) 

(5.15) 
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where 

B”(p +ey) = % 6v2 

BN(p +ey) = % 6N 
2 

(5.16) 

From the limit in (5.2), coming from double 6 decay it is clear that 6” is 

desperately small, so that clearly either BN(u +ey) dominates in the above 

equation or the whole amplitude is negligible. Continuing our assumption that WR 

is reasonably light, we present some estimates for B(u + ey) 2 B”( u +ey). Its 

precise value is obviously obscured by the lack of knowledge of the GIM factor 6N 

even if mW is of order of few hundred GeV. 

F? 

Taking for definiteness 

13~ = 1f1-~-10- , eq. !c.i6; gives then 

2 
mWL I 

2 =iT Bfp +ey) 2 10 -9 _ ,o-ll 

mWR 

mWL 

2 

I 
2 =im B( u + ey) = 10-l' - 1O-13 

mWR 

(5.17) 

Needless to say, varying 6 N would produce different values for B(F( + ey). The 

above estimate can, therefore, at best be taken as suggestive. 
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We now briefly’comment on some other muon and electron number changing 

processes. The interesting possible decay model in our model is obviously ~.r +eee. 

This process is suppressed by additional power in the coupling constant, as is clear 

from a typical graph as depicted in Fig. 3. When compared to u +ey process, the 

branching ratio B(u +eea = $$$$e%$ becomes free of any lincertanties and 
1-1 e 

one simply obtains the order of magnitude estimate 

N, +eG) = 0. 
sin2 0 v, 

B(p + ey) (5.18) 

For sin’ 9w = .22, this would give B(u +eee)/B(n -+ev) = (l-10Y?~.26 This is an 

important prediction of our model: p +ey and u -+eee are tied up to each other 

and the simultaneous observation of both could be used as a crucial test of the 

ideas discussed in this paper. J.acking the hint from experiment, we satisfied 

ourselves by order of magnitude estimate given in (5.18). It is clear, however, that 

a calculation of B(u + ee;;)/B(p + ey) is called for. 

Other possible muon number ,:hanging processes are eji+ JIG and muon 

capture by the nucleus: p + (A,Z) + e + (A,Z). It can be readily checked that their 

evaluation is similar to p + eee and the amplitude for all three processes are of the 

same order of magnitude (see the typical diagrams in Fig. 4). 

In conclusion, the node1 we suggest predicts muon number changing 

processes. In particular we estimated that B(u +ey) 2 10-9-10-13 for reasonable 

values of mWR: 102 m2 /m2 

csN = 10-2-10-3. 
wR wL 

I< 100 and (somewhat arbitrary) input 

Other processes such as u + eee are also possible, with typical 

ratios B(u + ee&/B(u + ey) 2 (a few 96) (a feature typical of models involving heavy 

neutral loPtons as sources of muon number changing decays). Hopefully, future 

searches for such decays (with improved sensitivity) will be able to serve as a test 

of this and similar models. 
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VI. COMMENTS AND CONCLUSION 

The main result of our work, as we emphasized repeatedly is the explicit 

connection between the smallness of neutrino mass and the naximality of parity 

violation in low energy weak interaction. Precisely, we have shown that the 

neutrino mass is inversely proportional to the mass of the right-handed charged 

gauge boson WR, which means that the V-A limit of left-right symmetric theories 

corresponds to the vanishing of neutrino mass. The crucial ingredient which was 

responsible for our result is the Majorana character of neutrinos, i.e. the fact that 

the left-handed and right-handed neutrinos acquire very small and very large 

Majorana mass, respectively. That in tilrn is dictated by the choice of the Higgs 

sector, which reduces the amount of arbitrariness ill the theory. The same choice 

of Higgs multiplets leads to definite phenomenological predictions in the realm of 

neutral current phenomena and therefore ties the nature of neutrino states and the 

value of their masses with the properties of gauge bosons. We have discussed at 

length the experimental i.nplications of our model and concluded that the most 

interesting ones, which also characterize the model most uniquely, are the 

processes which violate lepton number conservation. In particular, the neutrino- 

less double 8 decay (with AL = 2) turns out to be the definite prediction of the 

theory. We folmd that the relatively small mW 
R 

(m, > 3mW 1 leads to 
R- L 

appreciable values for such amplitudes which ought to be observable in the next 

generation of experiments. Our analysis also showed that the strength of neutrino- 

less double 8 decay is tied up to the strength of various lepton flavor changing 

processes (with total Jepton number conserved), such as ;I +ee, u +eee and others. 

Again, it is the rnd~ of WR which affects such processes most and for low WR we 

predict B(u + ey) s 10~v-10-‘3 and B( v +ee;;) = (a few %)B(u + ey). The experi- 

ments now in preparation 29 are likely to be able to observe the amplitudes of such 



31 FERNLAB-Pub-80/6I-THY 

strength and combined with neutrino-less double 5 decay can serve as crucial tests 

of the ideas presented in this paper. 

Now, what about the actual values for neutrino masses? As we have 

discussed at length in section II, the precise quantitative predictions of our model 

are still lacking at this point, mainly due to our lack of knowledge of the values of 

various Yukawa and Higgs self-couplings. It turned out that typically expected 

values of my’s depend crucially on whether there is only one mass scale in the 

theory from which both left-handed gauge bosons and charged fermions receive 

their mass (in which case the small values of me, mu, md, m , mS is attributed to 
P 

very small Yukawa couplings) or maybe it is the existence of hierarchy of mass 

scales which is responsible for rather different values of fermion masses in 

different generations and gauge boson masses. 30 The latter case admittedly 

requires rather complicated Higgs sector with probably four Q’s: $I,, $I~, $r and 

@W with subscripts e, !.I, T and W denoting the fact that they give the mass to the 

first, second and third generation of fermions and WL and ZL bosons, respectively. 

However, we find it more appealing on several grounds. First, the smallness of 

first generation fermion masses is not attributed to arbitrarily chosen small 

Yukawa couplings, but rather would be related to the smallness of mass scales 

<@e’. it is ,?ot inconceivable that one may eventually construct natural 

hierarchies, in which case the situation <$ e> << <tP> << <$I~> << < ew> would 

emerge as a prediction of the theory, rather than to be postulated ad hoc. Also, 

from the point of view of our \-iork, this case leads to much more plausible 

predictions for neutrino masses as compared to the case of single Q, when their 

natural values tend to get larger than experimentally allowed. Finally, we should 

add that in this case the Cabibbo-like angles which characterize quark flavor 

mixings are necessarily small. Take for example the case of two generations and 

let us for simplicity, concentrate on d and s quarks only. We then expect the 

following mass matrix: 
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d S 

d 

i 

J- <@e> * <$e’ 

s 3 co,> d- <4Ju’ ) 

Since md =c$~>, ms= cop>, then clearly the Cabibbo angle is bound to very small 

(the reasonable value for Bc can be obtained using the suggestion which forbids the 

term ad). 

In summary, we have shown how left-right symmetric theories naturally lead 

to small mV, linking it to the parity violation in nature. These models agree with 

the predictions of the standard theory at low energies, while at the same time 

predict small and urrix/,ersal departures in the neutral current processes. The main 

characteristic of the :nodel is the Majorana character of neutrinos (dictated by the 

proposed Higgs sector) which leads to the prediction of neutrino-less double 8 

decay. We believe, in view of our results, that the experiments devised to search 

indirectly for low mass W R are even more called for. 
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APPENDIX A. &lAJORANA MASS OF NEL’TRINO 

In this appendix, we briefly recapitulate some salient features of the theory 

of a &!ajorana mass 19 and also remind the reader how in the limit of zero neutrino 

mass, both a ?v!ajorana and Weyl neutrino are identical. As is well known, for a 

given four component spinor $ transforming under Lorentz tran\formations as 
i/2 c 

5 + SQ, where S = e wcw , (with C+ = C W TV and E+ TV = (-:u ‘(-1 u4 euV) there 

exist two possible Lorentz-invariant bilinears involving the JI: (a)$ +y4$ and 

(b) QTC-lJ, where C is the Dirac charge conjugation matrix, which satisfies the 

[ In our basis, Yi= ( iI. -iii);Y4=( y a); and 

The important differen& between the type (a) and (b) 

mass terms is that case (al term is invariant under a phase transformation of J,: 

lJ+ ei% whereas case (b) is not. Therefore, for a spin % particle without any kind 

of conserved charge associated with it, one may choose either (a) or lb) and in 

particular it is more economical to choose (bl. The reason this is so is that one may 

then work with only two component spinors. The reduction from four components 

to two is usually done by requiring the Majorana condition $ C, C(qT :$I in which 

case (a) and (b) become identical. The above condition yields 

(A.0 

where o is a two component complex spinor. The free particle equation satisfied 

by 4 is3’: 

(Z .C-at)~$-mu~+* = 0 

6. 9 + at)02G* + m + = 0 (A.21 
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These two equations have been ana!yzed in detail in ref. A.1 and the Majorana field 

0 quantized in this paper. The decomposition in terms of the creation and 

annihilation operators can be written as follows: 

Q = 1 /~~,(~)U,&eik’x + A;(c)VX(k)e-ik’X] 
X=1,2 

k 

(A.3) 

where A h and A; are annihilation and creation operators respectively satisfying 

the canonical anticommutation relation 

A;,(&) = “Xh,6c ;, 
, (A.4) 

q and Vx are two component spinors which can be expressed in terms of the 

orthonormal basis: a(k), B(k) satisfying the relations: CL+C( = B ‘B = 1 and a+B = 0 

andG.$lil( i) = (Ti). In terms of a and B, we can write 

U&i;) = V,($ = v’%$ cr(k) 

and 

and 

” (i;, = -&m B(k) 
1 

kg+ 12 1 
(A.51 
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where 

N(k)-’ : 1 + m2 

k. + IL 1)’ 

From eqs. (A.3), (A.4) and (A.5), it is clear that in the limit of m + 0, we have 

$ = z ,4 ( AI&U,(k)eik’X + A;&V2(k)e-ik’X ) . (~.6) 

It is clear that in this case, particle and antiparticle states are different and they 

restore lepton-number as a conserved quantity. From this also, it follows that, for 

the massive ?,lajo:ana neutrino, the violation of lepton number is always propor- 

tional to the factor (mV/Ev). This in particular implies that 31 : 

i i 

2 
u(v+ +e++ ) -10 

a(v + +e-+ ) 
= ,2 210 (A.7) 

The present experimental bound on the ratio of corresponding cross sections 

obtained by Davis 32 is at the level of 10%. 

The discussion of this appendix also makes it clear why double B-decay ampli- 

tudes (see sec. V) are also proportional to the lepton mass. 

Next, we would like to show that ue and N, introduced in section II satisfy 

hlajorana equation (A.2). We remind the reader that we have defined v z vL and 

N 5 C(FiR)T. In turn, that leads us (see (2.13)) to the following Lagrangian for v 

and N 

2 = yyr- a’“+ uYUauN + (vTNT)MC “, 
U 

+h.c. (A.x) 
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In obtaining the above form we had to use the simple equality 

sRyu aVNR = Ryii aUN which follows from the properties of c’large conjugation 

matrix stated before: CT= -C = C-I, CyI,CT = -Y,,~. Since M is symmetric and 

real, it can be diagonalized by an orthogonal transformation: 

” 
i i=( 

SOS 5 sin &, 

N -sin 5 cos 5 

” 
e 

i( J. Ne 

That in turn diagonaiizes the kinetic part of the potential, so that we get 

27 = -Tuapv + %mv(vTCv +v +C+v*) 

+ flyp a liN + hmN(NTCN + N+C+N*) (A.9) 

The peculiar factor of 15 is just a definition of mV and mN at the moment; its 

meaning will be clear from the discussion we now present. Obviously, and N will 

satisfy the same equations of motion, so we will analyze just one of them, say V. 

From v = uL, where L =Ya(l + y5) = h “0 
( ) 

in our representation, we get: 

v= where $ is a two-component spinor. Therefore 

6”, = (@+O)(: i)[(i:i -ri) ‘i+ (y i)a4] (1) * 

+imV6$+Oi(i~2 -ii2)( y i) ( ,“) +h*c* (A.10) 

It is then a simple exercise to arrive at the following form of the free Lagrangian 

for i$ 
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(A.1 1) 

where ai are the usual Pauli matrices and o3 = -i, as before. Varying the 

Lagrangian in I$*, we obtain the equation that $I satisfies 

cp$ = mL,02$* (A.12) 

This completes our proof: ve dnd N, obviously satisfy the Majorana equation (A.2), 

i.e. free particle equation satisfied by spinors for which +’ =$J.~’ We went 

through the little exercise described above with an aim to show that we do not 

impose the conditions that neutrinos are CMajorana particles, but rather that such a 

condition is the consequence of the particular Higgs sector and the pattern of 

symmetry breaking. Namely, choosing triplets of Higgs scalars AL and AR to break 

left-right symmetry led automatically to the physics of neutrinos as described in 

this paper. 
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APPENDIX 6. THE HIGCS POTENTIAL AND 
THE PATTERN OF SYMMETRY BREAKING 

As we saw in section II, the Higgs sector in our inodel consists of the 

following types of multiplets 

AL& 0, 2) , AR@, 1, 2) 

$#2, Yz*, 0) , 4 f T *$*T2 !Y2, ii*, 0) (B.1) 

with the numbers in brackets denoting SU(2jL, SU(2)R and UB-L(l) quantum 

numbers, respectively. We give their transformation properties <under SU(2)L and 

su(2)R, choosing the matrix form for AL and AR (A 5 l/nT ii\,) 

AL + ULALUL+ , AR -. URARUR+ 

@’ uL4JuR+ 9 i + lJ,;u,+ 

Their charge decomposition is easily shown to be 

6++ 
‘L,R = 

l 6+ 
-z 1 

@ = [;y ;;;j , r=[-;f 

(8.2) 

LR 
-$2+ 

I . (8.3) 

$1 
0* 
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We present first :he analysis of symmetry breaking for the case of single 4 (i.e. 

case (i) of section II). Towards the end of this section, we shall see how the 

analysis given below simply carries to the case of two $5 (case (ii) of section II): 

$W and I$~, with 4 w providing the gauge boson masses and only bf coupling to the 

fermions and being responsible for their masses. 

Now, consistent with the transformation properties of AL, A R,~ and i and 

left-right symmetry (for simplicity and without losing generality we forbid the 

trilinear couplings by an appropriate discrete symmetry) 

V = - iufjtr:i+@j + t 
i,j=l 

hijkp,tr (@i +4j)tr ($,+$,) 

i,j,k,il=l 

+ i “ljka tr ~i’~j~k’~a - U2tr (AL’AL + AR’A R) 
i,j,k,ll=l 

+ P, 
C 

(tr A L+A L)2 + (tr A R+AR)2 1 + p2(tr AL+ALAL+AL + tr A R+A RA R+A R) 

+ Irr3tr AL+ALAR+AR + i ctijtr @i+$j(tr AL+AL + tr AR+AR) 

i,j=l 

+ i Bij(tr A,+A,$$j+ + tr AR+AR$if$j) 
i,j=l 

+ i yijtr ALf$iAR@j+ 
i,j=l 

03.4) 
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where $, f I$ and I)~: G. The symmetry of the potential under parity conjugation 

(left-right) symmetry is recovered by the following constraints on the Higgs 

couplings (some of them being equivalent to conditions for hermicity of the 

potential) 

uij = !J ji , A 1212 = A 2121 ’ A iijk = ‘iikj ’ ‘ijkk = A jikk 

x ! 1lk.Q. q x kijk = hLkij = x;kki 

CL.. = ct.. 
‘J I’ 

, Bij = Bji ) yij = yji . (8.5) 

The most general form of vacuum expectation values of the above fields consistent 

with U em(l) electromagnetic invariance is 

‘4’= co O), <AR>= (’ 1) 
“L O VR 

qI > = <y = (8.6) 

We shall assume, for simplicity in what follows, that all the vacuum expectation 

values are real (it can always be made true for a proper range of free parameters 

of the potential). 

Our aim here is to show the relationship between vL and vR, without entering 

the lengthy but otherwise straightforward exercise of proving that the extremizing 

solution is also an absolute minimum (that was discussed before). We then 

obviously need to discuss the potential as a function of vL, vR, ic and K’ only. We 

get 
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V(A,, AR, K, K’) = -p2(VL2 + “> 2) +vL4 + vR4) +$yL2”R2 

+ (aI, +a22 + B22)~c12 + (4~~~2 + 2B12)KK’ 1 

+ terms which depend on K, K’ only (8.7) 

where 

P = 4(Pl *P2) , P’ = 2P3 (8.X) 

As previously, we will work in the approximation K’ <.c K , so that (8.7) becomes 

v($, AR, K) = -p 2( 2 VL2 + VR2) +$(v~~ + VR4) +$Y~ vR2 

2 +E(,, +v 2 I R2)K2 + BVLV RK2 (8.9) 

with 

CI = 2(oL,, +ct22 + BII) 

B = 2Y,2 (8.10) 
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From the extremizing conditions 0 = &‘/avL = a’,:/8 vR, we obtain 

u2v 3 
L = PVL + P~VLVR2 

2 
+ ar “1 + BK *vR 

2 
,.i VR = P b’R3 + P’VRV L2 2 +CXK 

2 
vR+BK v L (B.1 I) 

It is a simple exercise (we multiply the first equation (B.11) by vR and second by 

?L and then to subtract them) to obtain 

[(P - P’hLV R - Brq(YL2 - \’ R2) = 0 (8.12) 

It is clear that the possible solutions to CR.121 are 

a) v 2 2 
L =\‘R 

bl yL b yR2, in which case 

YLYY = 4.2 
P-P (8.13) 

Now, under a choice of the parameters of the Lagrangian one can show that 

solution bl is a minimum (in that case solution al becomes a local maximum). That 

is a solution which we seek--we wanted from the beginning parity to be 

spontaneously broken. The relevance of (8.13) is now manifest, if we write 

2 

“I- = Yet 
(B.14) 

where .( 5 B/(p - p’). Clearly, when ‘,rR+ a, ‘SAL + 0 and so also mv+ 0 (since 

m,“-vL. ) 
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Finally, we want to offer some discussion of case (ii) discussed in section II. 

It is a case of two 3’s: Qf and owl with only @f coupling to the fermions, which 

enables us to imagine an interesting situation: <Q f > << <Ow>* We claimed in 

section II that one can still arrange that v L = O(<$f> 2 , !v ) i.e. v 
R’ L does not depend 

on large mass scale < ew>. Te now prove that statement. From (8.11) and (B.13) it 

is easy to see how to go about it: we should forbid the term i3 K 2 
w w v LvR (if such a 

term was absent for a single @, we would have obtained v L = 0). Now, 

B ,” = 2(~,),~ so we need only forbid the term (Yw)12trAL’$wAR@ wf (notice that 

we cannot forbid tr A L’$wA RivJ’ term, but it is proportional to K K ww ’ and so can 

be made arbitrarily small). Let us therefore impose the symmetry D: 

@W +i@w , i, + -iiw 

@f * @f , Gf * if 

AL + AL , AR * AR (8.15) 

In this case, the poiential is going to have the general form (K w >> K w’, K >> K’) 

V(AL, AR,K, KJ = -p2(vL2 + vR2) + ;(\,L4 + vR4) +-;:vL2vR2 

+ K(V 2 L + VR2)(crK2 + OwKw2) + BVLVRK2 

+ terms which depend on K, <w only (B.I~) 

The main point 1s that (8.1 I) now becomes 



44 FERMILAB-Pub-80/61-THY 

p2v1 = PVL3 2 2 
+ P’VR VL +bK + CIWKW 2h 

P2VR 3 = PVR 2. +p’vl vR+(aK2+awKw 2)V R+BK2”L . (8.17) 

Similarly as before, it is easy to show that 

2 
YLVR = YK (8.18) 

where y = B/(p -p ‘) (cI,~ term drops out, as expected). That is a useful result: it 

justified our claim in subsection (ii) of section II, that mV 2 O(mf2/mW ), since 

K = O(mf/h), rather than being of order m$, /m, . 
R 

L R 
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FIGURE CAPTIONS 

The dominant diagrams which lead to neutrino-less double 8 

decay through exchange of WL and vi (i = e, p, r) or WR and 

Ni. The cross on a neutrino internal line denotes a (Majorana) 

mass insertion, since it is clearly a term 5’~ &N) which can 

lead to a production of two electrons in a final state. 

The leading diagram for a lepton flavor changing process 

u + e y. Again, the process goes through the exchange of vi and 

WL or Ni and WR. In addition, due to the GIM mechanism, the 

Goldstone boson exchanges (denoted by GL and GR in obvious 

notation) are comparable in strength to gauge boson mediated 

amplitudes. We ignore the physical Higgs exchanges, by 

assuming mH >> mW. 

Some typical diagrams leading to a decay u +eee. Clearly, 

there are quite a few more graphs involving Goldstone bosons, 

which we didn’t display here. 
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