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ABSTRACT

Moments of  deep-inelastic  structure functions, parton
distributions and parton fragmentation functions are discussed in
the context of Quantum Chromodynamics with particular emphasis put
on higher order corrections. A brief discussion of higher twist
contributions is alse given.

INTRODUCTION

It i= an experimental fgct* that thg deep~inelastic structure
functions depend on x =(Q")/2v and ; i.e., Bjorken scaling is
violated. Quantum chromodynamics (QCD) prediects secaling violations
in deep~-inelastic scattering®** with the pattern consistent with the
experimental findings. In comparing QCP predictions with the
experimental data one can either work with the moments of structure
functions or with the structure functions themselves. Quite
gener 11y QCD predictions for the moments of the simplest
(non-singlet, NS) structure functions can be written as follows

1

HI:S(QB} = de xn—zFNS(x,Qz)
0
(t) (t)
A d 2
= ‘f-g—jm [a(Qzﬂn [1 + Rf]t) ﬂ%ﬂl+ ...:' (1)
ten 1@

‘ere the sum runs over various twist (t) contributions:, Leading
twist (t=2), twist four (t=4) and so on. FurthermOfg)a(Q et}s the
efg?etive strong interaction coupling constant and 4 R and
A are numbers to be discussed below.

The expressions like (1) are rather formal and it is often
convenient to cast them in a form of parton modgl formulas in which
case the basic elements are the effective Q° dependent parton
distributions and elementary parton cross-sections. In the case of
semi~inclusive deep~inelastic scattering also the concept of the
effective Q dependent fragmentation functions is introduced.

n 1 4

*See the contributions to the Session "eN, uN and vN Interactions®
#xand references therein.
+F°r recent reviews see refs. 1 and 2.
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Here we shall discuss three topics:

i) Moments of the structure functions in the leading twist
approximation (t=2 in Eg. 1) ?53 with the next to leading order
corrections taken into account (R in Eg. 1).

ii) Parton distributions aad parton fragmentation functions
beyond the li-ading order in a{(Q“),

iii) Higher Twist (t>2) Contributions.

Our discusaion includes the latest developments as well as
some results obtained by various authors since the Tokyo
Conference.

BASIC FORMI.AE

In QCD and in the leading twist approximation the moments of
any structure function are given as follows

3 . .-
M_(Q7) = 5 o D) = D i€, . @
0 1=NS,S,G u

Here A;(uz) are the badronic matrix ele§ent3 of non-singlet (NS},

singlet (8) and gluon (G) operators and Cn are the corresponding

coefficient funetions 1in the Wilson operator product expansion.

FErthermore g is the renormalized quark-gluon coupling constant and

M 1s the subtraction scale at which the theory is renormalized.

The important property of Eg. (2) is the factorization of
)

non-perturbative pieces A;(u from perturbatively calculable

coefficient functions Cl(Qz/NE,gz).
Specializing Eq. (9) to non-singlet stﬁgctgrez fgnctions, and
using renormalization group equations for Cn {(Q°/4 ,9 ) one obtains

8 Sy

S, .2 NS, 2 NS, =2,.2
Mg (Q ) = An (Il )eXD _S_ 2 dg' B(g!) Cn (1:g (Q ) (3)
glu™)
2.2 dNS =2, .2, =2, 2 -2,.2
_ s, 2 85e%) 1% g (@)-g=(u°) ns|.[. 25(a°) ns
= An () =5 1+ > 7 14 2 Bn
g (") 16m 167
where terms of order g have been neglected.
Furthermnore
Y0 T(?) Y0
N3 n NS n n
d = - 5 4 == ~-—= 8 y (5)
n 280 n 280 285 1

In obtaining Egs. (i) anﬁS(S) the following expansions for
the anoma&gus _gimensions (Yn ), B functions and the coefficient
function c, (1,2°) have been used:
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Hare Al(uz) are the hadronic matrix elegents of non-singlet (NS},
singlet (S) and gluon (G) operators and C_ are the corresponding
coefficient functions in the Wilson operator product expansion.
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non-perturbative pieces An(u ) from perturbatively calculable

coefficient functions Ci(Qz/ua,gz).
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using renormalization group equations for Cn (Q /1 ,q" ) one obtains
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where terms of order éu have been neglected.

Furthermore
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In obtaining Eqs. (4) anﬁS(S) the following expansions for
the anoma&gus _gimensions (Yn ), B functions and the coefficient
function Cn (1,27 ) have been used:
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Finally the Q@ evclution of g (Q7) is given as follows
2 2,2 2,.2
20 2) D [1f(B1/BO)ln 1n(2/0%) /10002 /0%) |
= g 2,2 9
16 Boln(Q /A7)
wt§9 A being the famﬁgs QCD scale parameter. The parameters YO,
n L 51 and B have been calculated by at least two groups:
in refs.” 3 and 4, 5%and 6, Tand 8, 9 and 10, and 11 and 12,
respectively.

To proceed further one c¢an use elther formal approach or
intuitive approach.

In the formal approach one proceeds as cllowus. Since the
left-hand side of Eq. {(4) does not depend on pu~ the r.h.s. of this
equation can be put in the following form

MO(Q7) = 1&”3[ a(Q )] [ “(Q ) R ] , (10)
with
R” =Z2.° + B . (11)

and K being independent of u2. Note that Eq. (10) represents just
the thist two (t=2) contribution to Eg. £{1)
In the intuitive approach setting p =Q" in Eq. {(4) one obtains

M%) = Q%) - oSG . (12)

Here
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can be interpreted as the moments ofNSan ffective, Q2 dependent
non-singlet parton distribution gq (x,Q ) ({e.g., valence quark

distribution), and

.2, 2
o852y = 1 4 BELQ) NS (1u)
n 161f2 n

may be regarded as the elementary parton cross-secticn. We shall
now discuss these two approaches in more detail.

FORMAL APPROACH

We just list the most important properties of Eqs. 10 and 11.

1y () and gh> depend on the renormalization scheme5 used
to calcula%e Pgﬁse quﬁgtities. This renormaliation prescription
dependence of Y and Bn caricels in Eq. 11} if these quantities
are calculated in the same scheme; i.e., the combination
(1)
Y
n NS
230 + Bn {15)

is renormalization prescriptﬁgn independent.
%g 1':Fhe parageters R depend o the definition of
H

a(Qz). If a(Q”) is red8fined to ar(Q”) with

a(@®) = a'(@®) + r'[O!'(Q2)]2 r - const. (16)

then the expansion parameters in RES in Eq. (10} are changed to

NST' _ NS NS
[Rn ] = Rn + uﬂrdn . an

Of course the final, answer for MNS(QZJ iz independent of the
definition of (Q ) since each chgnge of the expansion parameters
R 213 compensated by the corresponding change of {he values of
afq°) or equivalently values of A extracted from experiment. This
is illustrated by §Q§1following example. 14

3) For the MS ' and Momentum Subtraction (MOM) schemes,
which have been discussed widely in the literature, Egs. (16) and
{17) read as follows



aMOM = %[1 + 1-5580 %‘§:l s (167)

N NS NS .
[z = [Fwou + eol-553 (17°)

Numerically we have:

and

=L n JMOM—

. NS NS R N
i) 2<[Rn ]FI_S<16 and -l< [H ] <2 for 2<n<8 with both [Rns]ﬁ-g
NS . . . . '
and [%n MoM 1hereasing monotonically with n.

ii) Ir Aﬁ3=0.30 GeV then the MOM scheme with A =0.55 GeV

MOM
leads to essentially indistinguishable results for Mgs(Qz) for

Q2210 GeV2 The corresponding values of a(Qa) are uMOM=O.32 and

aﬁszo.ZU at Q2=10 GeVz.

iii) The quantity 1 + (a(Q2)/4ﬁ)RgS in Eg. (10} varies for

2<n<8 and Q2=10GeV2 from 1.05 to 1.31 for MS scheme and from 0.92
to 1.08 for MOM scheme. Since in the leading order the quantity in
question is equal to 1 we observe that MOM scheme seems to lead to
a better expanssion in o that MS scheme. An oppesite conclusion
would be reached in the case of 1/1nQ" expansion.

4) One may think for a while that there is no point in doing
next to leading and higher order calculations since at the end one
can anyhow change the size of various terms in the expansion by
redefining a. The point is however that by doing consistent
higher-order calculations in_ various  processes, such as
deep-inelastic scattering, e e »hadrons, photon-photon scattering
etc. one can meaningfully compare QCD effects in thege processes
using one universal effective coupling constant a{Q”) extracted,
e.g., Tfrom deep-inelastic data. By studying  higher order
corrections to various processes one can find a universal
definition of a for which the QCD perturbative expansions are
behaving well. Such studies can be found in refs. 15,16,21. One
finds that schemes with q<o, < lead to acceptable expansions.
Another method fo 7find1ng %he optimal scheme for o has also been
recently suggested.

5) One can stu?g ?5operties of R which are inqu?qd?gt of
the definition of o. ? One is so called A scheme, -' ! Here
one rewrites Eg. (10) as follows n

NS
d
NS, 2 NS 1 dgs 1'(31/Bg)ln 0@ /0% /(@283 ] ®
Mn(Q)zﬂn[_T?] W
_ In(Q"/A ) Byln(Q“/A%) (18)



with

RNS

A= A exp . (19)

n NS

2,d

The n dependence of A is independent of the definition of {see
eq. 17 and 19). A inePeases roughly by factor 2 and 3 for F. and
F., structure functions respectively if n is varied from n=2 to n=8.
In the leading order A is independent of n. The n dependenﬁs of A
as given by Eq. (19) is in a very good agreement wit
experimental data indiecating the importance of
next~to-leading-order corrections. Other quantities which are
independent of the definition of a can be found in refs. 18 and 19.
6) As already stated in connection with the n.dependence of
A, the next-ﬁg-leading-order corrections to the Q@ evolution are

dﬁgferent for F2 and F3 structure functions. In fhe leading order

F and F_, have the” same Q evolution. {(R_" depends on the
sgructure fénction considered—see point 15 below.
7) There are several new effects related to

next~to-leading-order corrections. Most of them are small. They
are summarized in ref. 21.

This completes the listing of the main properties of Eq. {10).
One should also mention that,

8) The next-to—leadingT?rqﬁr corrections to the singlet
structure functions are known. '

9) Some of the next-to-leading-order corrections to
deep-inelastic scattering on polarized targets have been calculated
in ref. 22.

Finally:
10) It has been suggested in Ref. 23 to use the moments

1
2 (M+N+1)) 2
BM,N(Q Y = ;!;! Soxn(‘l—X)MF(X,Q )dx ’ (20)

rather than the moments of Eq. (1}, which for K are mostly
sensitive to x>0.5. With increasing M the moments of Eq. (20)
become sensitive to small values of x and are particularly well
suited for the study of gluon and sea distributions which are
concentrated at small values of x.

INTUITIVE APPROACH

11) The novel feature of parton distributions beyond the
leading order is that they can be defined in various ways. Two
definitions have been discussed in the 1literature. They are as
follows. oY
Definition A. Moments of parton distributions are gefined by
the matrix elements of local operators normalized at Q . This is




the definition of Eg. (13) which constitutes the 02 evolution
egquation for so deggned parton distributions. NS

Definition B. The full higher order correction to F is
absorbed into the definition of parton distributions. Egs. (?2-1”)
are replaced by

S, 2 NS, 2.1 [.NS,-2.7' :
5@ = [f @] @] (12)
with
NS, 2.7 Ns, 2 [z%(e%) dgs E-(Q%)-g®) NS
[én (Q )] = A (u }[§§“-§" [1 + & *gé L ], (13")
g (u) 16w n
Rgs given by Eq. (11), and
1 for ng

N3,-27
[o (g ﬂ =
n -2, 2
1+ BLQ ) TGN - [?N for F . (iar)

2 nl]3 tnj2 3

167

< NS NS
It should be remarked that since 2 and -Bn are separately
renormalization  prescription dependent S0  are the parton
distributions of def. A. On the other hand the parton
distributions defined by (13') are renormalization prescription
independent.

%g) Also fragmentation functions can+b§ defined din wvarious
ways. If we consider the process e e +h + anything then the
moments (in the z variable) of relevant cross-sections take for the
non-gsinglet contributions the form of Egqs. (12-14) and (12'-14"')
with the following replacements

NS, 2 NS N3, 2

NS, .2 2

qn(Q)+Dn(Q) , An(u)+vn(u)

NS NS NS NS

z =~ [zn }T , Bn > [Bn ]T . (21)
NS, 2 NS, 2

Here D “(Q°) and V. (") are the moments of a non-singlg%
fragmentation function and the time-like cut vertices
respectively. Furthermore the index T stands for "time-like", 1In
rder to kgep uniforp, notatign we shall in the following use
zﬁgj , [BﬁE] for zwS and qug of Egs. (13) and (14) with the index
Y ¢ . § X
S standing for "space-like'.



13) In the MS scheme one finds,21 for 2<n<8

1.5 = 2.5 for S
7 ] - ) (22)
[ n]S:T  o.5 - 1.5 for T

6,28

The inequality [Zn]si[?n]T expresges the violation of the

Gribov-Lipatov relation beyond the leading order ([Y;T?]S£[}£1)]T)

as opposed to [Y£O)]s=[Yg]T' For large n [Zn]s+[?n}ffln n.

Furthermore both Bn

witn®226,29

and Bn increase with n as (ln n)2

T S

8 2
[Bodr o nlBds + 3 (23)

We are now in a position to compare both definitions of parton
distributions and fragmentation functions.

14} i) Evolution Eguations for parton distributions and
parton fragmenation functions are essentially the same in the case
of the def. A and are different in the case of def. B due to the
substantial difference in the values of [B ]S and [B ]T'

ii) Furthermore the evolution equatioﬁs in quesgion are in the
case of def. A essentially the same as leading order equations
(fz ] ,[zn]S are small) except for the modified evolution of the
effecgive éoupling constant (see Eq. 9). The evolution equations
in the case of def. B differ substantially at large n (Large Xx)
from the corresponding 1leading order equations due to the large
values of [Bn]S and [Bn]T at large n and due to the non-trivial

behavior (1n n)2 of these parameters.

NS iéi)EWhereas the iant gistributions or structure functions
(An (u :QO)) at some Q =Q0 in the case of the def. B will be for
FNS the same as in the leading order (i.e., the data does not
change) the  input, distribution in the def. A will differ
considerably at low Q and large x from those used in the leading
order phenomenoéogy. The reason is that Bn's differ considerably
from 1 for low Q@ and large n.

Of course the final results for the structure functions should
be independent of any particular definition since the differences
in the parton distributions and parton fragmentation functions are
compensated by the corresponding differences in the parton
cross-sections. A detailed study of the effects discusseg here hag
been done in ref. 30. It turns out that in the range 5<Q7°<200 GeV
and 0.02<x<0.8 one can find simple parametrizations for both
definitions of parton distributions which represent to a high



accuracy Eqs. (13) and (13'). These parametrizations are of the
form of leading order parametrizations of ref. 31, i.e.,

n,(s) n.{s)
x (%, x| (1-x) 2 (24)
(s =n® 4555 = -1n[9‘-§9-f?-l] . (25)
i B § i© ! - 2
a(Qg)

In accordance with points ii) and iii) one has

RS RLAR (26)
[”;]Lo” :”;]A * [“;]B

where the indices LO, A, B stand for leading order,_.definition A
and definition B, respectively. For instance [nz]B=2.71 and
[n,],=3.40 whereas [n}],=0.76 and [n}]y=1.5.

15) On the leve§ of structure Tunctions themselves two main
properties of the next-to-leading-order corrections are worthwhile
mentioning

i) If AﬁB is chosen so that AEE=ALO’ where ALO is the scale in

the leading order expressionﬂBsto,ZNs=0) then a stronger increase
(decrease) of structure functions at Small (large) values of x is
predicted by next-to-leading-order correcticns relative to LO
predications. If is decreased so that scaling violations for
x>0.4 are similar to those predicted by leading order formulae
still some additional increase due to next to leading order
corrections 1s seen at small x.

NS 3&1) This increase at small x is more pronounced for F3 then
F,o.

2 There is some indication that thigzadditional inecrease in F
at small x has been seen in the data. Detai}ed comparison shoulé
however alsg iacluge charm production effects™™ in F_ which are of
order O{(m ~m )/Q ] with o, and m_ being charm ané strange quark
mass, respectively.

It should also be remarked that in refs. 20, 34 fits of
structure functions to the data have been made with the general
conclusion that the next-to-leading-order corrections improve the
agreement of QCD with the data.

Final message to our experimental colleagues: In ref. 20,30,34
and 35 simple inversion methods of moments of structure functions
or parton distributlons have been developed. Therefore, the
analysis of structure functions beyond the leading order should be
now as easy as in the leading order.




HIGHER TWISTS

At low values of Q2 one has to worry in addition to
logarithmic scaling violations about power-like scaling violations.
In QCD they are represented by higher twist contributions; the
terms in Eq. (1) with t>2. Let us summarize what is known at
present about these contributions

16} There are many operators of a given twist>2 contributing
to Eq. (1) a?%)consequently there are many unknown non-perturbative

A

parameters n (t>2) which have to be extracted from the data.
This makes 3Bhe phenomenology of higher twist contributions very
complicated. The situation might be conslderably simplified in

certain regions of phase-space (e.g.,x*!) and for particular
cross—-sections in which case one can_.,identify and calculate the
dominant higher-twist contributions.S?

17} The anomalous dimensions of some of the twist four (t=U)
operators have be?g)calculated in ref. 3%4) The two novel features

as compared wifE)d are as follows. dn (2?an be negative as
oppos? ) to d ZB. Furthermore, whereas d v* In n for large n.
The a may increase linearly with n. These two features indicate

that nthe structure of Jlogarithmic corrections to higher twist
contributions might be much more complicated than in the c¢ase of
the leading twist. It would be interesting to study numerically
these effects.

18) Phenomenologically one can study the effects of higher
order twist contributions in deep-inelastic scattering by using
"QCD motivated" parametrizations of the terms t>2 in Eq. (1).395uch
an analysis has been done one year ago by Abbott and Barnett who
found that the deep-inelastic data can be fit by higher twist
contributions alone. Their combined analysis of twist 2 and higher
twist contributions indicated that the value of the paramebter A is
strongly dependent on the size of higher twist contributions. If
the latHEr increase the A decreases.,.Recent analyses of Duke and
Roberts and Pennington and Ross  who combine all the existing
data show however that the best fits to the data can be obtained if
the higher twist contributions are small. Similar conclusion has
been reached in ref. 42. Even if higher twist contributions may
appear to be of little imaortancg in the analysis of deep-inelastic
structure functions for Q@ >5 GeV™ and x<0.8, they may be and they
probably are important for x*1. This appears to be the case as
discussed in ref. 37.

SUMMARY

A. Leading twist QCD with next-to-leading~order corrections
taken into account 1is in a good agreement with experimental data
for x<0.8. However, more phenomenology of next-to-leading-order
corrections {in partieué@r for fragmentation functions) I1s needed.
Recall that QCD predicts non-trivial x and z non-factorization in
semi-inclusive deep~inelastic scattering. Further tests of these
predictions are of interest.



B, For large n or large x the next-to-leading-order
corrections are large and still higher order corrections are
probably non-negligible. Ways gg including these higher order
corrections have been suggested.

C. Fg x*1, or =z* higher twist effects are probably
important. These llﬁf‘fects can also be important in longitudinal
structure functions.

D. Finally there is the outstanding question of calcglating
the x dependence of structure functions at fixed value of Q. This
has been addressed in the context of specific models in refs., U2
and 45.

I would like to thank Dennis Duke for discussions.
REFERENCES

1. A.Peterman, Phys. Rep. 53C, 157 (1979).

2. A.J. Buras, Rev. Modern Phys. 52, 199 (1980).

3. H. Georgi and H.D. Politzer, Phys. Rev. D9, 416 (197L4).

4. D.J. Gross and F. Wilezek, Phys. Rev. D9, 980 (1974).

5. E.G. Floratos, D.A. Ross, and C.T. Sachrajda, Nuecl. Phys,
B129, 66 (1977) and Erratum, Nucl. Phys. B139, 545,

6. G. Curci, W. Furmanski, and R.Petronzio, TH.2815-CERN (1980).

7. H.D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).

8. D.J. Gross, and F. Wilezek, Phys. Rev. Lett. 30, 1323 (1973).

9. W. Caswell, Phys. Rev. Lett., 33, 254 (1974).

10. D.R.T. Jones, Nucl. Phys. B75, 531 (1974).

11. W.A, Bardeen, A.J. Buras, D.W.Duke and T. Muta, Phys. Rev,
D18, 3998 (1978).

12. E.G. Floratos, D.A. Ross, and C.T. Sachrajda, Nucl. Phys.
B152, 493, (1979).

13. M. Bace, Phys. Lett. 78B, 132 (1978); S. Wolfram, Caltech
preprint 68-690 (1978) (unpublished).

14, R. Barbieri, L. Caneschi, G. Curci and E. d'Emilio,
Phys. Lett. 81B, 207 (1979); W. Celmaster and R.J. Gonsalves,
Phys. Rev. Lett. 42, 1235 (1979).

15. K. Harada and T. Muta, Phys. Rev. D22, No.3 (1980).
L.F. Abbott, Phys. Rev. Lett. M4, 1569 (1980).

16. W. Celmaster and D, Sivers, ANL-HEP-PR-80-30.

17. P.M. Stevensen, University of Wisconsin preprints, 153, 155
(1980).

18. A. Para and C.T. Sachrajda, Phys. Letters 86B, 331 (1979).

19. M.R. Pennington and G.G. Ross, Phys. Letters 86B, 371 (1979).

20. D.W. Duke and R.G. Roberts, Nuel. Phys. B166, 243 (1980).
H.L. Anderson et al. Fermilab-Pub-79/30-EXP.

21. A.J. Buras, talk presented at the Symposium on *"Topical
Questions in QCD", Copenhagen, June, 1980, Fermilab preprint,
October 1980.

22. I. Kodaira, S. Matsuda, K. Sasaki and T. Uematsu, Nuel. Phys.
B159, 99 (1979); I. Kodaira, S. Matsuda, T. Muta, and
T. Uematsu, Phys. Rev. D20, 627 (1979).



23.
24,

25.
26.
27.
28.
29.
30.
31.
32.

33.
3”‘-

35.
36.
37.
38.

39.
1iol

41.
h2.
43.
Ly,

u5-

R.G. Roberts, J. Wosiek, and K. Zalewski, in preparation.

L. Baulieu and C. Kounnas, Nucl. Phys. B141, L23 (1978).
I. Kodaira and T. Uematsu, Nucl. Phys. B141, 497 (1978).

G. Altarelli, R.K, Ellis and G.Martinelli, Nucl. Phys. B143,
521 (1978).

G. Altarelli, R.K. Ellis, G. Martinelli and Pi, Nuel. Phys,
B160, 30 (1979).

A. Mueller, Phys. Rev. D18, 3705 (1978).

J. Kalinowski, K. Konishi and T. Taylor, CERN preprint
TH-2902; E.G. Floratos, R. Lacaze and C. Kounnas, Saclay
preprints 80/77, 80/83.

N. 3akai, Phys. Lett. B85, 67 (1979); J. Ambjérn and
N. Sakai, Nordita-80/14 (1980).

A.BiaXas and A.J. Buras, Phys. Rev. D21, 1825 (1980).

A.J. Buras and K.J.F. Gaemers, Nuel. Phys. B132, 249 (1978).
See the talk by H. Weerts and I.G.H. De Groot in these
proceedings.

T. Gottschalk, ANL-HEP-PR=80-35 (1980).

A. Conzalez-Arroyo, C. Lopez and F.J. Yndurain, Nucl. Phys,
B153, 161 (1978).

R.P. Feynman, R. Field and D.A. Ross, unpublished; see
R. Field, Cal-Tech-68-739 (1979).

H.D. Politzer, Cal-Tech 68-765.

E.L. Berger and S.J. Brodsky, Phys.Rev. Lett., 42, 940 (1979);
G.R. Farrar and D.R. Jackson, Phys. Rev. Lett. 35, 1416
(1975). E.L. Berger, Phys. Lett. 89B, 241 (1980).

J. Gottlieb, HNucl. Phys. 139, 125 (1978). M. Okawa,
University of Tokyo preprint, UT-337 (1980).

L.F. Abbott and R.N. Barnett, Ann. Phys. 125, 276 (1930).
D.W. Duke and R.G. Roberts, Rutherford Lab Preprint RL~80-016
(1980) to appear in Phys. Letters B.

M.R. Pennington and G.G. Ross, Oxford preprint (1980).

R.L. Jaffe and G.G. Ross, Phys. Letters 93B, 313 (1980).

S. Brodsky, SLAC preprint; D. Amati, A. Bassetto,

. M. Ciafaloni, G. Marchesini, and G. Veneziano, TH.2831-CERN

(1980; L. Caneschi, University of Pisa preprint.

L.F. Abbott, E.L. Berger, R. Blankenbecler, and G. Kane,
Phys. Letters 88B, 157 (1979).

A. De Rujula and F. Martin, MIT preprint CTP No.851 (1980).;
see the talks by R.L. Jaffe and F. Martin in these
proceedings.



