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ABSTRACT 

Moments of deep-inelastic structure functions, parton 
distributions and parton fragmentation functions are discussed in 
the context of Quantum Chromodynamics with particular emphasis put 
on higher order corrections. A brief discussion of higher twist 
contributions is also given. 

INTRODUCTION 

It is an experimental f3ct* that th2 deep-inelastic structure 
functions depend on x q (Q )/a and Q ; i.e., Bjorken scaling is 
violated. Quantum chromodynamics (QCD) predicts scaling violations 
in deep-inelastic scattering** with the pattern consistent with the 
experimental findings. In comparing PCD predictions with the 
experimental data one can either work with the moments of structure 
functions or with the structure functions themselves. Quite 
generlly QCD predictions for the moments of the simplest 
(non-singlet, NS) structure functions can be written as follows 

MfIS(Q') = {dx x"-~F'?x,Q~) 
0 

: -& $;;., [a(Q2)fit)[i + RLt) ++ . ..] (1) 
even 

~:ere the sum runs over various twist 
twist (t=Z), twist four (t=4) and so 

(t) contributions:2 Leading 

strong interaction coupling 
are numbers to be discussed belo 
The expressions like (1) are rather formal and it is often 

convenient to cast them in a form of parton mods1 formulas in which 
case the basic elements are the effective 4 dependent parton 
distributions and elementary parton cross-sections. In the case of 
semi-inclusJve deep-inelastic scattering also the concept of the 
effective Q dependent fragmentation functions is introduced. 

l 
See the contributions to the Session "eN, uN and VN Interactions" 

**and references therein. 
+For recent reviews see refs. 1 and 2. 
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Here we shall discuss three topics: 
i) Moments of the structure functions in the leading twist 

approximation with the next to leading order (t=2 in Eq. 1) ?yj in Eq. ,) 
corrections taken into account (Rn . 

ii) Parton distributions afd parton fragmentation functions 
beyond the Lading order in a(Q ). 

iii) Higher Twist (t>Z) Contributions. 
Our discussion includes the latest developments as well as 

some results obtained by various authors since the Tokyo 
Conference. 

BASIC FORMl".AE 

In QCD and in the leading twist approximation the moments of 
any structure function are given as follows 

MntQ2) 3 dx x "-'F(x,Q') = A;(u2)C$$,g2) . (2) 
i=NS,S,G ?J 

Here A1(uC) are the radronic matrix elements of non-singlet (NS), 
singlet"(S) and gluon CC) operators and Ci are the corresponding 
coefficient functions in the Wilson op"erator product expansion. 
Fyrthermore g is the renormalized quark-gluon coupling constant and 
u is the subtraction scale at which the theory is renormalised. 
The important property 
non-perturbative pieces o:i(E'i (~~omispe~~u"rba~~~~llyriz~~:co~lab~: n 
coefficient functions Ci(Q2/u2,g2). 

Specializing Eq. (9) to non-singlet stfigct2re2 f2nctions, and 
using renormalization group equations for C, (Q /u ,q ) one obtains 

where terms of order g4 have been neglected. 
Furthermore 

0 
dNS = r, 

y(l) Y0 
n 2B0 

; z”, :-L--n 
280 2% ' (5) 

2i30 

In obtaining Eqs. (4) anfiS(5) the following expansions for 
the anoma&us -imensions (yn ), g functions and the coefficient 
function Cn (1,g ) have been used: 
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BASIC FORMULAE 

In QCD and in the leading twist approximation the moments of 
any structure function are given as follows 

Mn(Q2) q dx x n-2F(x,Q2) = A;('12)Ci(g,g2] 
n v2 

. (2) 
i:NS,S,G 

H?re Ai are the hadronic matrix elements of non-singlet (NS) 
singlet"(S) and gluon (G) operators and C1 are the correspondin; 
coefficient functions in the Wilson o;erator product expansion. 
F5rthermore g is the renormalized quark-gluon coupling constant and 
LJ is the subtraction scale at which the theory is renormalized. 
The important property ofi Es. (2) is the factorization of 
non-perturbative pieces A,(u ) from perturbatively calculable 

coefficient functions Ci(Q2/u2,g2). 
Specializing Eq. (9) to non-singlet stfi3ctyre2 flfnctions, and 

using renormalization group equations for C, (9 /).I ,q ) one obtains 

Mr(Q2) = Ar(u2)exp 
g(Q*, 

dg' 
Yff% ) 

E(P2) B(g') 1 l CF(l,;2tQ2) (3) 

: A3*)[2&~,, + i2’Q;;$2’~2’ ZF].[,+i.?$&r] 

where terms of order i4 have been neglected. 
(4) 

Furthermore 
0 

dNS yn 
n =2BO ; 

ZNS 
yw 

:-!L Y0 
n 2B0 

--11-B 
28; ' ' 

(5) 

In obtaining Eqs. (4) anfis(5) the following expansions for 
the anoma&us $mensions (y, ), B functions and the coefficient 
function Cn (1,g ) have been used: 



’ 

8(ii) q -8, 
g3 
16~~ 

and 

fy,$) = 1 +-$B? . 

(6) 

(7) 

Finally the Q2 evolution of g2(Q2) is given as follows 

g2(Q2) _ a(,:) _ 1-(S,/$)ln ln(Q2/A2)/ln(Q2/A2) 

16n* 8,1n(Q2/A2) 
(9) 

famfigs QCD scale parameter. The parameters y" 
have been calculated by at least two groupg: 

6, 7 and 8, 9 and 10, and 11 and 12, 
respectively. 

To proceed further one can use either formal approach or 
intuitive approach. 

In the formal approach one proceeds as ~0110~s. Since the 
left-hand side of Eq. (4) does not depend on u the r.h.s. of this 
equation can be put in the following form 

dNs 
f(Q2) = Xz[a(Q')] n [I + $ RF] , (IO) 

with 

FiNS n =Zr+BfIS . (11) 

and gNS being independent of u2. Note that Eq. (10) represents just 
the t%st two (t=2) contribution to Eq. .$l)* . 

In the intuitive approach setting u :Q in Eq. (4) one obtains 

M,NS(Q2) = q,Ns(Q2) * c;(g2) . (12) 

Here 



q;(Q2) : A;(Q2) = AF(p2)[BTsb + i2(Q:;;$(!‘2) $$](,3) 

can be interpreted as the moments ofNSan sffective, 42 dependent 
non-singlet parton distribution q (x,Q ) (e.g., valence quark 
distribution), and 

-2 2 
rry(g) = I + $y B; 

may be regarded as the elementary parton cross-section. We shall 
now discuss these two approaches in more detail. 

FORMAL APPROACH 

We just list the most important properties of Eqs. 10 and 11. 

depend on the renormalization scheme5 used 
This renormaliation prescription 

cancels in Eq. II) if these quantities 
are calculated fn the saze scheme; i.e., the combination 

..(l) 
(15) 

is renormalization prescript&n independent. 
a(Q2) ;;j,lThe parayeters R, depend 02 the definition of 

If a(Q ) is redefined to o'(Q ) with 

r - const. (16) 

then the expansion parameters in Rn NS in Eq. (IO) are changed to 

[ I RNS ’ 
n = RfI + oxrdy . (17) 

Of course the final2 answer for fS(Q2) is independent of the 
dg&Inition of ~((4 ) since each change of the expansion parameters 
R 2is compensated by the corresponding change of the values of 
a?Q ) or equivalently values of A extracted from experiment. This 
is illustrated by t&y,following example. 

3) For the MS and Momentum Subtraction (MOM)"' schemes, 
which have been discussed widely in the literature, Eqs. (16) and 
(17) read as follows 



(16') %OM="ms 

[Rfjk = br-jMoM + BoD.55]dF . (17') 

and 

Numerically we have: 

i) 2< R NS [ 1 NS n KS<l6 and -4s Rn 
r rrO~ 

II 1 Mo&2 for 2<n<8 with both -- 
and [R:OjMOM increasing monotonically with n. 

ii) If A,-,=O.30 GeV then the MOM scheme with AMOM:0.55 

leads to essentially indistinguishable results for MF(Q2) 

Q2a10 GeV2 The corresponding values of a(Q2) are ~~M~0.32 

%=0.24 at Q2=10 GeV2. 

iii) The quantity 1 + (a(Q2)/4a)Rr in Eq. (10) varies 

GeV 

for 

and 

for 

2zn<8 and QZ=10GeV2 from 1.05 to 1.31 for s scheme and from 0.92 
to 1.08 for MOM scheme. Since in the leading order the quantity in 
question is equal to 1 we observe that MOM scheme seems to lead to 
a better expanssion in c( that E scheye. An opposite conclusion 
would be reached in the case of l/lnQ expansion. 

4) One may think for a while that there is no point in doing 
next to leading and higher order calculations since at the end one 
can anyhow change the size of various terms in the expansion by 
redefining a. The point is however that by doing consistent 
higher-order calculations in various 
deep-inelastic scattering, e+e-+hadrons 

processes, such as 
, photon-photon scattering 

etc. one can meaningfully compare QCD effects in the3e processes 
using one universal effective coupling constant a(Q ) extracted, 
e.g., from deep-inelastic data. By studying higher order 
corrections to various processes one can find a universal 
definition of a for which the QCD perturbative expansions are 
behaving well. Such studies can be found in refs. 15,16,21. One 
finds that schemes with CL m -aMoM lead to acceptable expansions. <ct.< 
Another method for7finding the optimal scheme for c1 has also been 
recently suggested. 

5) One can stu~~,$§operties of R which are in~~;~~~~~t,e;ef 
the definition of a. One is so cayled An scheme. 
one rewrites Eq. (10) as follows .I^ 

MF(Q2) = fS 
dNS l-(gl/g~)ln ln(Q2/A2)/ln(Q*/A2) n 

[ln(Q'/Az,3 n [ f3,l.n(Q2/A2) ]I,, 



with 

RNS 
An = A exp + [ I 280dn 

The n dependence of A,, is independent of the definition of ~(see 
eq. 

3 
as 

17 and 19). A ino'?eases roughly by factor 2 and 3 for F“" and 
structure funct?ons respectively if n is varied from n=2 tg n=8. 
the leading order A is independent of n. 

given 
The n dependen of A 

by Eq. (19) is in a very good agreement witR 
experimental data indicating the importance of 
next-to-leading-order corrections. Other quantities which are 
independent of the definition of CL can be found in refs. 18 and 19. 

6) As already stated in connection with the n2dependence of 
the next-&leading-order corrections to the Q evolution are 

functions. 
evolution. 

In&&e leading order 
(II depends on the 

notion considered-see point 15 below.? 
7) There are several new effects related to 

next-to-leading-order corrections. Most of them are small. They 
are summarized in ref. 21. 

. (19) 

This completes the listing of the main properties of Eq. (10). 
One should also mention that, 

8) The next-to-leadingr?T@r corrections to the singlet 
structure functions are known. 

9) Some of the next-to-leading-order corrections to 
deep-inelastic scattering on polarized targets have been calculated 
in ref. 22. 
Finally: 

10) It has been suggested in Ref. 23 to use the moments 

BM ,(Q2) = (";y;:)! x"(l-x?F(x,Q2)dx , (20) , . . 

rather than the moments of Es. (11, which for N'ti are mostly 
sensitive to 00.5. With increasing M the moments of Fq. (20) 
become sensitive to small values of x and are particularly well 
suited for the study of gluon and sea distributions which are 
concentrated at small values of x. 

INTUITIVE APPROACH 

11) The novel feature of parton distributions beyond the 
leading order is that they can be defined in various ways. Two 
definitions have been discussed in the literature. They are as 
follows. 

Definition A.24 Moments of parton distributions are 
the matrix elements of local operators normalized at Q 

gefined by 
. This is 



the definition of Eq. (13) which constitutes the Q2 evolution 
equat;zn,i,';;iz; ;$ned parton distributions. 

The full higher order correction to FNS is 
absorbed into the definition of parton distributions. Eqs. 62-14) 
are replaced by 

ftQ2) = [q;S(Q2)]'* [$%i2)]' , (12') 

with 

[sf:“(Q’)]’ T A~(~~@-$~[’ + ~2(Q2:;f:h2) Rr], (13,) 

RF given by Eq. (111, and 

for F! 

1 + $$ Kg3 -~ [BEy2 for F3 . (14') 

It should be remarked that since ZNS and BNS are separately 
renormalization prescription dependent so n are the parton 
distributions of def. A. On the other hand the parton 
distributions defined by (13') are renormalization prescription 
independent. 

ways. 38' Also fragmentation functions can be defined in various 
If we consider the process e+e-+h + anything then the 

moments (in the z variable) of relevant cross-sections take for the 
non-singlet contributions the form of Eqs. (12-14) and (12'-14') 
with the following replacements 

q:‘(Q’) -+ D:‘(Q~) , A~I’(IJ~) + Vn NSh2) 

p + p n c 1 nT' BNS n -f BfiS T . [ 1 (21) 

Here D NS 2 (Q ) and V NS 3 
fragmentgtion functian 

(u-1 are the moments of a 
and the time-like out 

respectively. Furthermore the index T stands for "time-like". In 

'~~"~~~~,lF,~~~~~~e~~~~ofw~qs~h~~~~ iid tit) ~~~"~~~gindu~~ 



13) In the E scheme one finds, 

" 

for 2<n<8 

[Zn]S,T = 1::: 1 y:t r: f - (22) 

The inequality [Zn]S* kn]T expresses the violation6'28 of the 

Gribov-Lipatov relation beyond the leading order ( Y [ ?-jS+:')]T) 
as opposed to [yr)]S=[yi]T. For large n [En]s+[Zn]T*ln n. 

Furthermore both Bn T and Bn s increase with n as (In n) 2 

with6,26 $29 

CBnlT &z nLB& + ; IT2 (23) 

We are now in a position to compare both definitions of parton 
distributions and fragmentation functions. 

14) i) Evolution Equations for parton distributions and 
parton fragmenation functions are essentially the same in the case 
of the def. A and are different in the case of def. B due to the 
substantial difference in the values of [B ] and [B ] . 

ii) Furthermore the evolution equatiokSin que&!i% are in the 
case of def. A essentially the same as leading order equations 
ciz I , lz 1 are small) except for the modified 
eff&&ven soupling 

evolution of the 
constant (see Eq. 9). The evolution equations 

in the case of def. B differ substantially at large n (Large x1 
from the corresponding leading order equations due to the large 
values of [Bn]G and [B~]~ at large n and due to the non-trivial 

behavior (In nj2 of these parameters. 

(ANSCu*=Q21) 
i'i) Whereas the inpyt flistributions or structure functions 

n 0 at some Q =Qo in the case of the def. B will be for 

FNS 
t? 

the same as in the leading order (i.e., the data does not 
c angel the input 
considerably at low Q2 

distribution in the def. A will differ 
and large x from those used in the leading 

order phenomeno$ogy. The reason is that B,'s differ considerably 
from 1 for low Q and large n. 

Of course the final results for the structure functions should 
be independent of any particular definition since the differences 
in the parton distributions and parton fragmentation functions are 
compensated by the corresponding differences in the parton 
cross-sections. A detailed study of the effects discusseg here ha3 
been done in ref. 30. It turns out that in the range 5<Q (200 GeV 
and 0.02<x<O.8 one can find simple parametrizations for both 
definitizng of parton distributions which represent to a high 



accuracy Eqs. (13) and (13'). These parametrizations are of the 
form of leading order parametrizations of ref. 31, i.e., 

x qNS(x,Q2) S x 
n, (5) 

(1-x) 
n2G) 

(24) 

l-l.(S) = ll!O) . 
1 1 

In accordance with points ii) and iii) one has 

['l:]LO = [n!jB ' [n'i]A 

(25) 

(26) 

[';]LOz [n;]A ' [n;]B 

where the indices LO, A, B stand for leading order,odefinition A 
;nnfll tefinition B, rspectively. ;"' instance ['L21B=2.71 and 

2 A 3.40 whereas Ln ]A=O.76 and [n jB"l.5. 
15) On the leve of structure unctions themselves two main 

properties of the next-to-leading-order corrections are worthwhile 
mentioning 

i) If & is chosen so that b=ALo, where AL0 is the scale in 

the leading order expression(B NS =O,ZNS:O) then a stronger increase 
(decrease) of structure funotio& at &all (large) values of x is 
predicted by next-to-leading-order corrections relative to LO 
predications. If4-43. is decreased so that scaling violations for 
00.4 are similar to those predicted by leading order formulae 
still some additional increase due to next to leading order 
corrections is seen at small x. 
NS 3d 

'i) This increase at small x is more pronounced for F 
3 

then 
F2 * There is some indication that thi additional increase in F 
at small x has been seen in the data. j2 De"~~4no~p~tr:~~a~~ou~~ 
however alsy iycluge charm production effects 
order O(Cm -m 1/Q ) with mc and ms being charm an a strange quark 
mass, respSti$ely. 

It should also be remarked that in refs. 20, 34 fits of 
structure functions to the data have been made with the general 
conclusion that the next-to-leading-order corrections improve the 
agreement of QCD with the data. 

Final message to our experimental colleagues: In ref. 20,30,34 
and 35 simple inversion methods of moments of structure functions 
or parton distributions have been developed. Therefore, the 
analysis of structure functions beyond the leading order should be 
now as easy as in the leading order. 



HIGHER TWISTS 

At low values of Q2 one has to worry in addition to 
logarithmic scaling violations about power-like scaling violations. 
In QCD they are represented by higher twist contributions; the 
terms in Eq. (1) with t>2. Let us summarize what is known at 
present about these contributions 

16) There are many operators of a given twist>2 contributing 
to RI. (I) q!) consequently there are many unknown non-perturbative 
parameters An (02) which have to be extracted from the data. 

of higher twist contributions very 
a~~~li~",:,"d".36$heP~~~~~~~~~ght be considerably simplified in 
certain regions of phase-space (e.g.,x+l) and for particular 
cross-sections in which case one can 37identify and calculate the 
dominant higher-twist contributions. 

17) The anomalous dimensions of some of the twist four (t=4) 
operators have be~~)calculated in ref. 3 
as cornpar;: wzltg,;, are as follows. 
;p,","p ) 

da4)(~F~ntw~,no~~~a:~~~r~~ 
. Furthermore, wherea: d 

may iac<ase linearly with n. 
fi In n for large n. 

Thesg two features indicate 
that "the structure of logarithmic corrections to higher twist 
contributions might be much more complicated than in the case of 
the leading twist. It would be interesting to study numerically 
these effects. 

18) Phenomenologically one can study the effects of higher 
order twist contributions in deep-inelastic scattering by using 
"QCD motivated" parametrizations of the terms t>2 in Eq. (1). 39 Such 
an analysis has been done one year ago by Abbott and Barnett who 
found that the deep-inelastic data can be fit by higher twist 
contributions alone. Their combined analysis of twist 2 and higher 
twist contributions indicated that the value of the parameter A is 
strongly dependent on the size of higher twist contributions. If 
the lat 
Roberts" 

r increase the A decreases. 
and Ross4' 

Recent analyses of Duke and 
and Pennington who combine all the existing 

data show however that the best fits to the data can be obtained if 
the higher twist contributions are small. Similar conclusion has 
been reached in ref. 42. Even if higher twist contributions may 
appear to be of little imgortanc 5 in the analysis of deep-inelastic 
structure functions for Q >5 GeV and ~~0.8, they may be and they 
probably are important for x+1. This appears to be the case as 
discussed in ref. 37. 

SUMMARY 

A. Leading twist QCD with next-to-leading-order corrections 
taken into account is in a good agreement with experimental data 
for x(0.8. However, more phenomenology of next-to-leading-order 
corrections (in particuJ3 r for fragmentation functions) is needed. 
Recall that QCD predicts non-trivial x and z non-factorization in 
semi-inclusive deep-inelastic scattering. Further tests of these 
predictions are of interest. 



B. For large n or large x the next-to-leading-order 
corrections are large and still higher order corrections are 
probably non-negligible. Ways g including these higher order 
corrections have been suggested. 

imporE,ntY3' ZLie Or "I 
higher twist effects are probably 

4fjffects can also be important in longitudinal 
structure functions. 

the 
has 
and 

D. Finally there is the outstanding question of calcylating 
x dependence of structure functions at fixed value of 4 . This 

been addressed in the context of specific models in refs. 42 
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