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ABSTRACT 

The non-perturbative condensation of the operator 

in QCD is discussed using renormalization group technique. 

It is shown that the magnetic condensation, <G2 
!JV 

> > 0, leads 

to the new vacuum which has the energy lower than the per- 

turbative vacuum. From this fact it is concluded that 

Green's functions calculated in the normal vacuum have 

tachyonic singularities. By assuming the gauge invariant 

local expansion of the effective action it is shown that the 

condensed vacuum has the property of vanishing dielectric 

constant. If the color electric field is applied by intro- 

ducing heavy quarks at infinity, the condensation is partly 

broken and an infinite tube of the color electric flux is 

formed. Arguments rely heavily on the instability of the 

normal vacuum and on the negative character of the B-function. 

An attempt at the mean field type approximation is made. The 

comparison with the previous phenomenological approach is also 

given. 

t On leave of absence from Research Institute for Fundamental 
Physics, Kyoto University, Kyoto 606, Japan. 
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I. INTRODUCTION 

The central problem in studying the low energy spectra of 

Quantum Chromo Dynamics (QCD)l 1s certainly to determine the 

ground state. Many people suspect that the normal perturbative 

ground state may not be a true one. 2 

In this paper we discuss one of the dynamical aspects of 

pure &CD, excluding Higgs' particles, which seems to play an 

important role in determining the true vacuum. (Quarks are 

introduced as external color sources.) The same problem has 

previously been discussed in an intuitive approximate way. 

Our starting point is a very simple observation that the two 

body force between normal massless gluons is attractive in the 

color singlet channel, and gluons can form a color singlet 

bound state which is necessarily a tachyonic one because gluons 

are massless. This means that the normal vacuum sits on the 

maximum, instead of minimum, of the potential corresponding to 

this bound state. The problem was first studied by a vari- 

ational approach in terms of the Cooper pair, 3 which is the 

non-relativistic analogue of the tachyon, and then discussed' 

in terms of a tachyon by solving the Bethe-Salperter (B-S) 

equation in the ladder approximation. Both led to the same 

qualitative picture that such a bound state is formed for 

arbitrarily small coupling constant, i.e. the critical coupling 

constant is zero. However these approaches rely on gauge non- 

invariant approximations. 
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It is now clear that the local gauge invariance of the 

vacuum of QCD is an essential ingredient of the theory. In 

order to discuss the color singlet condensation phenomenon 

gauge invariantly and non-perturbatively, we choose in this 

paper the operator GE"(x) or Jd4x &zv(x) and discuss its 

non-perturbative condensation. ^a Here G LJV is the usual Yang- 

Mills field strength tensor. We have used the fact that any 

field can be an interpolating field of the bound state as long 

as it has the same quantum number as the state we want to 

discuss. ^2 So that the source term J coupled to G 
UV 

is introduced and 

JE coupled to the gluon field A: are also introduced to discuss the 

situation where quarks are present in the condensed vacuum. 

The introduction of J or JF does not spoil the renormal- 

izability of the theory so that the non-perturbative condensed 

solution, if it exists, should be a solution of the renormal- 

ization group equation (r.g.e.). The assumption taken in this 

paper is that the r.g.e. has a non-trivial solution, specifically 

(23) below is assumed to have a finite solution. Then the 

analysis of Sec. II shows that the magnetic type condensation 

of G2 1 *2 
1J.v' i.e. A$ : z <:Gu,:> > 0, leads to the vacuum which has 

lower energy than the normal vacuum. It occurs for arbitrarily 

small coupling constant. The reason why we believe in the 

existence of a non-trivial solution of (23) is two fold. The 

one is due to the results of the ladder approximation 4 where 

the physical elements leading to the condensation is the 

attractive force in the color singlet channel. The other is 
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due to the general statement that any zero mass theory which 

has the property of asymptotic freedom shows non-perturbative 

condensation phenomenon. There is no proof of this statement 

but there is also no example which contradicts with it. As an 

example we discuss in Appendix A the condensation of the 

Lagrangian in hQ4 theory. In the discussion in Sec. II the 

problem of operator mixing is neglected. It has been discussed 

by several authors 5,S with the results that we can ignore the 

mixing when only the physical quantities are discussed. 

Section III is devoted to the proof of the general state- 

ment that if some composite operator shows non-perturbative 

condensation then any Green's function calculated in the normal 

vacuum has tachyonic signularities in the channel which has the 

same quantum number as the above composite operator. According 

to this theorem, the Green's functions of QCD if calculated in 

the normal vacuum have tachyonic, i.e. spacelike, singularities 

in the color singlet channel. They will become complex for 

spacelike momentum. The imaginary part at zero momentum is 

related to the decay probability of the normal vacuum. 

Now the true vacuum is filled with gluons which condense 

non-perturbatively forming a color singlet composite state. 

The normal gluons cannot be in the asymptotic states. The 

problem is to determine the 'color electrostatic' property of 

the vacuum, which is discussed in Sec. IV. The condensation 

of G2 TV does not violate the local gauge invariance of the 

vacuum so that the effective action is expected to have a gauge 

invariant local expansion (54) below. We have in mind the situation that an 
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infinitely heavy quark and antiquark with definite color index 

are introduced at infinity so that the static abelian constant 

'color electric' field is chosen for the argument of the 

effective potential. Then we see that the applied color electric 

field E breaks the condensation so that A@ becomes a function 

of G 5 1 E2 2 * It is also seen that the dielectric constant E of 

the vacuum diminishes as the condensation A$ increases and E 

vanishes as A$ takes the vacuum value A$ = A$c. In deriving 

these results the sign of A@ (A$>O) and S-function (6~0) play 

important roles. The stationarity condition, that is the source- 

less condition Jn = 0, is satisfied by the normal solution 

G !JV 
= 0 and by E = 0. The former solution cannot represent the 

condensed solution because the tachyonic singularities are 

present in the Green's functions owing to the results of Sec. III 

(see also Appendix 3). The perfect 'diaelectric' property E = 0 

leads to a tube like solution for the color electric flux. We also 

attempt to discuss the behavior of the dielectric constant by 

mean field approximation. 

Section IV is devoted to the discussion of the connection 

between the present approach and the previous phenomenological 

one. We get qualitatively the same picture of the stable 

vacuum and the mechanism of flux squeezing. In the phenome- 

nological approach the condition E = 0 emerges as a stability 

condition of the vacuum. In the present approach we are forced 

to take the solution E = 0 because the other solution G = 0 PV 
corresponds to the unstable normal solution. 
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The picture of the hadronic bound state we get in our 

paper is similar to the one discussed by Callan, Dashen and 

Gross. a But their instanton density is replaced here by the 

condensation <:G$:>. The antishielding property of the 

vacuum is due to the ordinary gluons, not due to the instantons, 

which condense in the vacuum forming the color singlet com- 

posite states. We know from perturbation theory that gluons 

show the antishilding effects. The bag constant of MIT bag 

model' is supplied by the condensation energy density of the 

tachyonic bound state in our case. 

In Sec. VI the discussions are presented onseveral points 

which seem to be crucial to the present investigations. 

We look for the vacuum solution satisfying J=Jt=O by taking 

a particular field configuration as an argument of the effective 

action, i.e., we probe the vacuum by the external field of the 

specific configuration. For the discussion of more complicated 

x-dependent (gluonium like) solutions, we need more general 

effective action which is not the subject of the present paper. 
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II. NON PERTURBATIVE CONDENSATION OF G2 
i.lV 

For the purpose of discussing the non-perturbative 

translationally invariant condensation of G2 
UV' the constant 

source J is introduced as 

.iQwCJl z 
s 

-i(l+J)jG;v(~) d4x 
e 4 [ 1 d;i , (1) 

^a where G UV 
= a ;;a 

11 v and R 

is the space-time volume. The internal group is assumed to be 

SU(N) with the structure constants fabc. Throughout the paper, 

except in Sec. III, the hat A is used for the field operators or for 

'the fielas which are integrated out in the functional formalism. 

The fields witnout tne hat are c-number quantities. It is known" 

that given a Lagrangian of the form 

e 
2 

J.g 
(x) = - $1 + J) G2 uv(x) > (2) 

then we need 64(0)-term in the functional integrand in order 

to reproduce correct perturbation series. Thus (1) is modified 

to 

J gJ g(x)d4x++64(0)Q1n(l+J) , 
[dA]. (3) 
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The gauge we choose in this paper is the axial gauge or the 

background gauge in which Zl = Z2 holds. In the latter gauge 

ghost fields must be introduced. We suppress these gauge terms for 

simplicity because they do not affect our discussions below. 

A. Defining gJ 

By the change of integration variables v%JA~ + A;, we 

rewrite (1) as 

eiQw[Jl = / i f21,gJ(x)d4x[d”] e (4) 

where 

@o,gJ (x) = - $ (au<- avi: + gJfabcA~A~)2Cx~, (5) 

gJ = g/m. (6) 

Such a transformation has been used by Kluberg-Stern and Zuber5 

in their discussion of the insertion ofL = n -f @(x)d4x. Now instead 

of making the theory finite governed by the Lagrangian of (2), 

we can make the equivalent theory (4) finite. So the renormal- 

ized coupling constant is introduced as usual. 

gt;= Jz(+WgJ = a glfi. 

We define gr as 

g r = gr;=o = &xx&. 

(7) 

(8) 



-9- FERMILAB-Pub-79/50-THY 

Here fl = Z-l Z3j2 = v'-- 13 Z3 in the usual notation and A is the 

cutoff and p the subtraction point. It is not necessary to 

give the precise renormalization scheme to fix Z. 

In order to discuss the expectation value of i:,, d/dJ 

is applied to (1) but this produces extra infinities due to 

the hard character of G2 UV' The source J should thus be 

renormalized as 

J = JrZG(gr,Jr,A/u). (9) 

In general ZG depends on Jr, which is easily seen perturbatively 

(see below). From (7) and (S), bare quantities are elimanated 

to give 

g2 z(gJ’Alu) 
1 + JzG(g,J,A/U) = 3 Z(g,A,u) , 

gJ 
(10) 

where we have suppressed the superfix r because only the 

renormalized quantities are used from now on. ZG is chosen in 

such a way that gJ does not have A/u dependence. Now in order 

to see the perturbative structure we expand as 

2 2 
gJ = fg + f,(Jk4 + f2(J)g6 + . . . 

z = 1 + zwg2 + z(2)g4 + . . . 

zG = 1 + z;l)g2 + Zd2)g4 + . . . (11) 
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From (10) it is seen that 
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z(1) = _ z(1) 
G - fl(J)(1+J)2/J , 

z(2) - l+J x 
G J 

i 
-(1+J)f2(J) + (1+J)2f;(J) (12) 

+ (l+J)f,(J)Z(') + (1 - (1:,,2) z(2) + & z(l)"] 

and so on. Thus ZG can be chosen to be J independent up to the 
2 order g . But for higher orders ZG contains J dependent infin- 

ities. Also higher order terms of gz, fi(J) (izl), depend on 
n 

the renormalization prescription of L. There is however a 

natural choice of renormalization conditions which make all 

fi(J) (i>l) vanish. It is a generalization of the scheme 

discussed by Kluberg-Stern and Zuber' who discussed one insertion 
n 

of L. 

We define n-insertion of renormalized L into the propagator 

by 

n(")(xy);; f (D;iO) 
c 

D,(x'~')~;~' 

x (13) 

ab 
where DJ(~~),,V is the propagator<$x) At(y)> of the theory 

governed by 2 
J,g 

of (2) where l+J is replaced by l+JZG. New 

divergences appear for each n so we can impose a renormalization 

condition for (13). In Fourier space T("),$ has the form 
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The factor (-l)nn! is taken from the tree contributions. 

(For n=O, (14) is the renormalization condition determining Z3.) 

Now in an equivalent theory governed by @- J-o,gJ of (5), 

the propagator D 
gJ 

(xy)Fa$ = <nFJ(x) AtJ(y)> is defined in the 

same way as (13) and (14) with n=O. Here ia 
!JJ 

is the renor- 

malized field and contains a factor -I&-. Thus 
^a 

gJ APJ = g ;i; and hence the inverse propagator DJ -l(x,y)$ for 

finite J is related to Di:(xy)F$ by D;l = D-l gJ x g2/g. With 

the above renormalization condition for ~-1 
gJ' 

and writing the 

Fourier transform of D;'(x,y)$ as TJ(42)q26abgpy + gauge term 

we have 
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n(")(q);; = T (n)(q2)qzdabgjlv + gauge term. We choose 

ri,(")(q2 = u2) = (-l)"n!. (14) 

TJ (q2 

2 
=u2) = s 

gJ 

It is easy to see that (14) requires dn.rrJ(q2 = u2)/dnJ 
J=O 

to be unity for n=O, 1 and zero for n > 1. This leads to 

(15) 

fi = 0 (CO), i.e. 

2 
gJ =&. (1‘3) 
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zG is fixed by (12) order by order setting fi=O (i>l) in 

the equation. 

As has been stated, if we change the renormalization 

scheme of L, then fi will be changed but the lowest order 

relation of gJ in (ll), i.e. (16), is unchanged. Thus if we 

restrict ourselves to small g then the relation (16) is 

renormalization proscription invariant. 

If we apply d/dJ to (10) and set J=O, the result of 

Ref. 5 is reproduced, 

zG (g,o,A/v) = 1 - (g/x5) wag. (17) 

h 

and hence the anamalous dimension of L is given by 

yG(g) = (W,-$ud ZG/W = - g d(B/g)/&, (18) 

where B(g) = P c&/do = bog3 + big 5, . . . (19) 

In the above discussion, the problem of operator mixing is 

not discussed with the hope that such a mixing does not affect 

the physical quantities to be discussed in the following 

section. 

B. Non-Perturbative Condensation of i2 
UV' 

Having obtained a finite gJ, we discuss in this subsection 

the condensation of L = p(x)d4x. h J" For this purpose we need 

renormalized W[J], which is a sum of vacuum graphs in the 
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presence of the source J. They are quartically divergent 

in perturbation theory. In familiar examples where the source 

couples to soft operators such as the scalar boson field C$ 

these quartic divergences can be subtracted by taking the 

difference of W[J] and W[J=O]. In this case the J-independent 

subtraction makes AW[J]~ W[J]- W[J=O] finite: we can apply 

the usual renormalization scheme to if the theory is 

renormalizable at all. 

In our case however J couples to the hard operator itv 

and J-independent subtraction does not work. In order to 

discuss this problem, we temporarily introduce the source 

term J;(x) couple to the gauge field i; and consider 

W J,J; . [ 1 For fixed J, V J,A: [ 1 is defined by the Legendre 

transform, 

+A;] = - Wp,J;] +j-J;(x) g d4x 1 

u 

(20) 

6W 

~J;(x) 
= A;(x) 

To render V finite, we subtract V pert. [J,At=O] from v[J,A~] 

where 'pert.[ ' n ] J Aa= is the energy of the perturbative vacuum 

in the presence of J. It is a sum of one-particle irreducible 

(1 P.I.) vacuum graphs calculated perturbatively and hence it 

is quartically divergent. The difference AV, 
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,,[,,A;] = +,A;] - Vper&,A; =O], (21) 

when expended around A;=O, can be made finite by the usual 

renormalization scheme atleast in perturbation theory so it 

satisfies the r.g.e. We perform the usual renormalization 

after the scale change mAII=AUJ and g/m=gJ so that 

AV is a function of gJ, A,,J and u and satisfies, 

i 

a 
p z + B(gJ) & - y(gJ) IA;,(x) GAa6(x) d4x AV = 0 . (22) 

J 
UJ 

Now we can easily see that Aa 
pJ 

6f6Aa = 
uJ 

A; $/&A: (see (60) 

below). Thus at the stationary point (&AV/&AE(x) = Ja'(x) = 0), 

provided a stationary point other than perturbative vacuum 

state exists, AV is given by a non-trivial solution of 

where 

a a 
u z + B(gJ) ago AV(gJ,u) = 0, 

QAV(gJ,g') f AV 
6AV/6A; = 0 . 

(23) 

The reason why we have introduced Jz or A: is two fold. 

The first is, as explained above, to define the quantity which 

is finite after renormalization at least in perturbative sense. 

The second is that we want to introduce quarks in Sec. IV. In 

that case the equation to be solved is changed into 6AV/6AF = J;. 
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aAv(gJ,!J) 
A$ = aJ , MC 

= A$1 JGO . 
(24) 

which is the difference of the expectationvalue of -(l/Q);, = 

(l/Q)(I/4)j~;v(x) d4 x measured in the non-perturbative vacuum 

state and the perturbative vacuum state. In this sense we 

write 

A$=;<;: G;"(x) d4x :> = < $ : G;"(x) :z . (25) 

From ( 161, a/agJ = - 2(g2/g;) a/aJ, so that by (23), 

v& AV(g,l.l) = 4AV(g,p) = 2 y Aec , (26) 

where the fact that AV 0: )-I 4 has been used. We restrict our- 

selves for small g where we know that B is negative, b 0 < 0. 

Equation (23) can be written down directly if we apply 

the argument given by Gross and Neveu 11 that any physical 

quantity should be independent of the renormalization point. 

Our AV(gJI 11) is the difference of the energy density of non- 

perturbative (if it exists) and perturbative vacuum so it 

is expected to be a physical quantity. In this paper we 

assume that a nontrivial solution to (23) exists. The reason 

why we believe this has been given in the introduction. 

Now we define A@ and Aec by 
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From (26) we reach the following conclusion: non- 

perturbative magnetic condensating of Gtv leads to a non- 

perturbative vacuum which has lower energy than the pertur- 

bative one. 

By magnetic we mean A$, > 0, i.e. A$c = < i:fi2-i2:> > 0. 

The sign of Aec will play an important role when quarks are 

introduced in Sec. IV and also agrees with the sign obtained 

by Shifman,Veinstein and Zakharov 12 from the analysis of their 

sum rules. The r.g.e. gives a definite relation (26) between 

the order parameter A@ and the energy density AV, which is the 

case because the order parameter is the Lagrangian itself. 

This is not the case for other order parameters. 

AV or A@ is complex in general reflecting the decay of 

the vacuum of higher energy. On this case we take the real 

part of (26). A$ or AV behaves as z/bog2 e as g+O. The - 

condensation occurs for arbitrarily small coupling so that 

the critical coupling constant g, is zero. A@ sitisfies the 

correct r.g.e. as is seen by applying u & + B(g) $g to (26), 

( V $-, + B(P) & - yG(g))Ae = 0, (26)’ 

with y,(g) given by (18). 

We may define the effective potential AV(A$) of A$ by 

the Legendre transform of AV(gJ,u). But the J-dependent 

function has been subtracted so that the shape of AV(A@) has 
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not the usual meaning of the effective potential. However 

the quantities AV(A$)~,,,,,,e = 0 and AQc has a definite 

meaning: the former is the energy difference of the two 

vacua and the latter is the difference of <l/4 G2 UV > between 

the two vacua. It is easy to get AV(Ae)=AV(gJ,p)-J aAV/aJ, 

with A$ = aAV(gJ,p)jaJ. In the magnetic region A@>O, it takes 

the form, 

bog2 
AV(A@) = 2 A@ C - Iln 

with C some finite constant. In Fig. 1, we plot 

AV(Ae), which has a physical intrepretation only for small J 

as explained above. 

In Appendix A, we discuss O(N) Xe4 theory with negative 

renormalized X in the large N limit. 13 To illustrate the 

trick we have used, that is to absorb J-dependence into the 

coupling constant, the condensation of the Lagrangian is 

discussed. There it is seen that the Lagrangian indeed 

condenses with the "magnetic" sign <-:y > > 0 in agreement 

with our result of &CD. We have also examined Gross- 

Neveu model," the two dimentional massless four-Fermi inter- 

action, in large N limit. ~This model again shows the non- 

perturbative condensation of the Lagrangion with "magnetic" 

sign. 

Any type of condensation is surely an infrared effect. 

In the pairing approach, 3,4 we can see explicitly that it is 
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a dynamical effect of infrared gluons. In the present formal 

approach this point is not clear. However the masslessness 

of gluons is playing an essential role in the present discus- 

sions too: it makes the r.g.e. simple (homogeneous) and 

solvable by an elementary integration. 

III. THE TACHYONIC SINGULARITY 

The purpose of this section is to show that the non- 

perturbative condensation of any composite operator implies 

the existence of tachyonic (spacelike) singularities in the 

relevant channel of the Green's functions calculated in the 

normal vacuum. 

In Sec. II, the condensation of G2 UV has been discussed. 

It involves the color singlet JP=Of composite operators in 

A; up to fourth order. Naively we expect the appearance of 

O+ tachyonic singularities in color singlet channel of Green's 

functions if we calculate them in the normal vacuum. This 

problem has been discussed by Kugo 14 in the ladder approxi- 

mation for a specific type of interaction. Generalizing his 

arguments, we discuss the problem to all orders for any type 

of interaction. 

The Fourier components of any real boson field is denoted 

by &(P). Here the index i represents all the attributes of 

the field except for the momentum (Lorentz or internal group 

indices) and the Wick rotation in momentum space is assumed. We 

base our arguments on the effective action for composite 

operators up to fourth order derived by De Dominicis 
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and MartinI and investigate its eigen-spectrum around the 

stationary solution. It is known that the stationary equations 

are Schwinger-Dyson (S-D) equations and the eigen-value 

equations are B-S equations. We proceed step by step and 

discuss first the case of the two-body operator and then pro- 

ceed to higher operators. 

A. Two-Body Operator 
,. 

Consider <$i(p) Gj(q)> = Gij(p,q) and write the effective 

action r for G 15 

r(G)=-+Tr en G-lGo -+Tr G Goi + r(2)(G), (27) 

where we have suppressed all the indices so that Tr is over 

indices (i,j) and the momentum. The indices are recovered 

whenever necessary. ,(2) in (27) is the two particle irre- 

ducible vacuum graph with G for the internal line. Go is the 

free propagator. The stationary condition is the S-D equation 

for the propagator, 

G-l - Go1 = 2 6 rc2)(G)/6G. (28) 

Note that &I'(2) /6G represents the complete proper, i.e. 

1 P.I., self-energy part. The solution of (28) is written as 

G S’ In order to discuss the stability of the solution Gs, we 

write G = G, f 6G and keep the term up to the second order in 

6ii. 
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i-'(G) = T(Gs) + ; 6G M bG, 

M = _ G-Q+-1 + ,(2) 
s s G=Gs ' 

(29) 

(30) 

For the discussion of the eigen-spectrum of M, note that 

M is already diagonal in the total momentum P due to the 

translational invariance of the vacuum. Explicitly 

6GM6G = pTq "ij(g + PJ~ - P) Mij,mn(P,P,q) 
: I 9 

ijmn 

x 6G mn ; + 9,; - q . > 

In order to diagonalize in the relative momenta and in the 

indices (i,j), observe that K(2) is nothing but the B-S 

kernal: it is the complete two particle irreducible connected 

four point Green's function with the internal line Gs. In the 

usual B-S equation we discuss the spectrum of the coupling 

constant rather than the spectrum of the total momentum (energy). 

So we introduce, following Kugo,14 a coupling constant A as a 

measure of the magnitude of the kernal K (2) , 

(31) 
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h is assumed to be positive to give an attractive force. Now 

M in (30) can be diagonalized by the following B-S equation, 

G;lG;lx, = An(P2) Ec(2)&. 

The normalization of x, and the orthogonal relations of 
h 

xn or of x, E G;'G;lx, are 

x;G;‘G;‘x, = 
h 

;;GsGsxm = Wn(P2) 6nm. 

h 

xn satisfies 

x, = Xn(P2) ,(2) GsGs;,, 

ii; K "(2)-l ; 
m = h 6nm . 

The above normalization has been chosen beca.uzc, in the 

massless theory in which we are interested, it is x that 

has a finite value as Pn+O. Thus An(P2)GsGs + O(1) as 

Pu+O. 

Expanding 6G in normal modes 

6G. P 
iJ 

5 + p'; - p 

6G = 
1 

h Xn(P2) 
A,(P) GsGs x, x , 

(32) 

(33) 

(34) 

(35) 

n 
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we get from (34) or (35), 

; 6GM6G = - ; c Xn(P2)-x 

n 
A;(P) x A,(P). 

The effective potential V, representing the vacuum energy 

density, is the negative of the Pu=O mode of the effective 

action so 

V = - I(Gs) +1 
Xn(0)-A 

P=O 2 
A;(O) x A,(O). 

(37) 

(36) 

The factor hn(P2)/X has been extracted in (36) so that A,(P) 

is O(1) as Pu+O. For the solution Gs to represent the stable 

solution, An(O) should satisfy 

An(O) - h > 0 (for all n), (39) 

which is guaranteed if the lowest solution h n=O satisfies 

A n=o (0) - ;i 2 0. (40) 

The relation between (40) and the presence or absence of 

the tachyonic singularities has been discussed in Ref. 14. 

Here we consider the following problem which is our concern in 

this section. If we know that some two body operator shows 

non-perturbative condensation, can we conclude the existence of 
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tachyonic spectrum in Xn(P2) if we take the normal pertur- 

bative solution of the S-D equations? 

Now we assume that a two-body operator 0 ^C2) = z c.. ;.;. 
iJ iJ 

shows the non-perturbative condensation.Here 0 ^(2) can be local 

or non-local. The effective potential V(O(2)) for O(2) = 

<G(2) - > - 1 CijGij can be constructed from that of Gij and the 

stationary value 0$2) is given by Oi2) = I Cij(G..) 1J s’ We take 

the normal solution for G, so that OL2) does not realize a 

minimum of V(O(2)). Suppose (39) is satisfied for all n. 

V( O(2)) is obtained from the effective potential V(G) if G's 

are restricted in a particular direction in G space specified 

by Cij. So O(2) is a minimum solution of V(O(2)) because (39) S 
tells us that in G space V(G) does not decrease in any direction 

around the solution G,. We conclude 

$o(O) - x < 0. (41) 

In the next subsection the condensation of the composite 

operator O(4) of up to fourth order in the field is discussed. 

There we get the same condition (41) for the spectrum of the 

normal vacuum if 6(4) condenses non-perturbatively. Taking 

this result in advance, we now discuss the case of &CD. The 

fact that (41) leads to the existence of the tachyonic bound 

state has been shown in Ref. 14 for the massive theory. Here 

we will see that it is also the case for &CD. 
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From Sec. II we know that G2 LJV condenses for arbitrarily 

small coupling A. (We identify X in this subsection with g 2 

of &CD.) It means 

x n=o (0) = 0. (42) 

The only assumption we need to prove the statement of this 

section is that as the coupling constant is increased the binding 

energy of the bound state is increased. There is no rigorous 

proof of this statement but any physically sensible solution to 

B-S equation is known to enjoy this property. Then as An is 

increased P 2 moves toward the spacelike region and from (41) 

we conclude that the trajectory hnEO (P2) becomes tachyonic for 

h,‘O. In Fig.2 a schematic form of X,(P") is given. Setting 

h,=A and n=O in (32) it is seen that for arbitrarily small 

coupling constant a tachyonic bound state is formed. It has 

the quantum numbers of color singlet and J'=O+ which produces 

a spacelike pole in the normal Green's functions in the color 

singlet channel. In general it also has a branch point due to, 

for example, the contribution of the graph shown in Fig.3. 

Thus we conclude that any Green's function evaluated in 

the normal vacuum has an imaginary part if all the external 

momenta are set equal to zero. 

The asymptotic state of a normal gluon does not exist 

because it forms a color singlet tachyonic bound state and 

condenses in the vacuum simply because it is energetically 

favorable. 



We mention here the result of the ladder calculations, 4 

where the solution to the color singlet tachyonic bound state 

has been explicitly given. In this approximation the equation 

X=hn,,(P2) is shown to give P =A e 2 2 -"' (c>O) for small P2, 

where A is the cut off and A is identified with g2. The 

tachyon bound state exists for arbitrarily small coupling 

constant. It agrees with the conclusion of this subsection 

and of Sec. II based on non-perturbative arguments. 

B. Inclusion of Three and Four-Body Operators 

We define, following De Dominicis and Martin, 15 the 

effective action r(G,C(3),C(4)) where 

<Qi(P )$j(q)+k(')' = Gii'(P,P')Gj jq(q,q')Gk kl(r,r') 

x c(3) l,jvkv(P'>q'~r'), (43) 
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<~i(P)~j(q)~k(r)~l(s)> = Gij(P,q)Gkl(r,sl+ perm. 

+ Gii,(P,P')Gjj,(q,q')Gkk,(r,r')Gll,(S,S') 

d4, lIJ,k,l,(P',9',r',s'). (44) 

c(3) and C(4) are the connected part of the Green's functions 

with external legs deleted. I' has the following form as shown 

in Ref. 15, 
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r(G,Cc3),C(")) =-+TrRn G-lG 0 -+Tr GG-' 0 

GGGCc3) - ; &- C(3)GGGC(3) 

1 -- c(4) 
4! 0 GGGd4) - ; & d4)GGGGCc4) 

+ r(4+G,C(3),C(4)), (45) 

where CA3) and C!i4) are the bare three and four particle vertices 

respectively. T(4) represents essentially the four particle 

irreducible vacuum graph with internal line replaced by G and 

three and four particle vertices by C (3) and C(4) respectively. 
T(4) contains extra diagrams to avoid multiple counting of the 

vacuum graph but we need not specify T (4) explicitly. The 

stationary requirements 6T c4),& = &+4),&3) = &4),&4) = 0 

reproduce S-D equations for G, C (3) and C(4) , the solution of 

which we denote by Gs, C(3) and CL4). 

C(3),c(3)+6c(3), c(4)=c(:)+6c(4) 

Writing G=Gs+GG, 

and defining Ci=(G,C(3),C(4)), 

6Ci=(Sl,EC(3),6C(4)) an: Cis=(Gs,CL3),CL4)) with i=1,2,3, F 

becomes 

r-(Ci) 2 r(cis) + + 6Ci Mij 6Cj. 

Explicitly for example 

(46) 
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6C M236C 2 3 = SC!3)(P pq)M.. 1Jk ' lJk lmnv(P~pq~rst) 

We have used the translational invariance of the vacuum and 

so (46) is already diagonal in P. For the diagonalization of 

(46), the following coupled 3x3 B-S equations are solved, 

Gx,= - $, K x,> (47) 

,. ,. 
where G is diagonal and Gil = Gil G-l 6 S' 22 = GsGsGs and 
A 
G33 =GGGG s s s s' i is given by Kij = l/A 62 T(4)/6Ci6Cj 

and x, = (x, 
Wx(2LxW 

n n )' We have introduced K I ci=cis 

A - 
which is related to M by M = - G+K, K=l/X K. The kernel K or 

K has the property of four particle irreducibility. (It is 

not irreducible in sense of Faddeev. 16) The orthogonality 

relations are 

+ _ 
x, G x,= X/hn(P2) Anm. 

As in the two body case we expand 6Ci in x, 

6Ci = IAn ,;I) hn(P2)/i. 

(48) 

(49) 
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Then (46) becomes 

r(ci) = r(cis) + Jj 1 Ai(>) 
n 

For the effective potential V it becomes 

V(Ci) = V(Cis) + $ I An 
+ (AJP~=O)-i) An' 

(50) 

so that the stability of the solution C. 1s requires (39). 

Now suppose we know that a composite operator 0 ^(4) 
n 

involving up to fourth order of the field ai shows the non- 
,. 

perturbative condensation. In terms of $i, G(4) can be 

written as 

* h 
OC4) = z “ij$li$Jj + z aijkGiGjik + x aijkliiijiki,. (51) 

The effective potential V(O(4)) of O(4) = CO(~)>, which is a 

function of Ci by (51), can be obtained by V(Ci) of (50). In 

particular the stationary point OQ4) of V(O(4)) is determined 

by that of V(Ci). The small oscillation of 0 (4) around O(4)=OL4) 

can be written as a linear combination of the small oscillation 

of Ci around Ci=Cis. Thus if (39) holds 0(4)=OQ4) is a minimum 

point (at least locally) of V(OL4)). Taking OL4) as a normal 

solution, it leads to the contradiction so that (41) must hold. 
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IV. THE PRESENCE OF COLOR ELECTRIC FIELD 

A. The Local Expansion 

Up to now we have discussed the situation where color 

sources JE are absent. In Sec. II, we have seen that for 

‘c = 0 there are two kinds of vacua (J=O) satisfying A$=0 

or A$ =A@c> 0. The former solution corresponds to the normal 

perturbative vacuum which also satisfies AF=O. (Recall the 

definition of A$ given in (24).) In this section the 'color 

electromagnetic' properties of the condensed vacuum satisfying 

A$=Aac are discussed. The condensed non-perturbative vacuum 

is filled with gluons forming a color singlet composite states 

so that it will have a color electromagnetic property substantially 

different from the normal vacuum. For strong color electric 

field (near the source, i.e. quark) we know from perturbation 

theory that the vacuum has an antishielding property because 

of asymptotic freedom. For small electric field (away from 

the quark), non-perturbative condensation of A$ is expected to 

play an important role. 

In the presence of color source, we need the effective 

action !Y(@,Au) of two variables $I and Au, which is defined in 

the following way. (We neglect for the moment the renormal- 

ization problem and also write $I instead of A@ for simplicity.) 

We introduce W(J,J,,) by 

- 2 'I e 
i W(J,J,,) 

=e 
J 

d4x(l+J(x))6zv(x)+i I d4x J;(x)+x) 

(52) 
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and r(+,Api) by 

r(t~,A~i) = d4x J(x) 6;;x, - 
/ 

d4x J;(x) 6W 
&J;(x) ' 

6W 6W 
@(x) = - 6J(x) > A;(x) = sJa(x) . 

l.J 
(53) 

Because we are interested in long range phenomena, we need the 

expansion of r suitable for the study of the soft region. For 

this purpose r is first expanded around @=A;=O, the coefficients 

being the Green's functions which is 1 P.I. in the field A v' 
In 

order to obtain relevant series, these Green's functions are 

expanded around the zero momentum and then terms with the same 

number of powers of momenta are summed up. Each term of this 

expansion suffers from infrared divergences in perturbation 

theory so that only the sum has a meaning. The situation is 

the same as Coleman-Weinberg's 17 discussions on the massless 

Q4 theory. As was pointed out by them, zero momentum expansion 

yields a local expansion in x-space. 

The gauge we choose in this section is the background 

Lorentz gauge,l* 

Dab 
u 

ALb f (ap6ab + gfabcA;) A;' = 0, 

n 
where A' LJ is the quantum part of the gauge field. In this gauge 

(with corresponding ghost interaction of course) T still has a 

local gauge invariance and we get a gauge invariant local ex- 

pansion of r, 
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T($,A,,) = I d4x r("'o)($(x),Ki(x)) 

+ d4x a~~auo(x)r(l,O)(~(x),Ki(x)) 

+ 
/ 

d4xDG D G u WV ll' lJ'v (x) r(O,l) (Q(x),Ki(x)) 

+ 
. . . . ) 

where Ki(x)Is are. independent local invariants formed by A:: 

iii(x) = (G~,(x).(G~~~~~)~,... .). For SU(2) the number of K. 1 
is known to be nine 19 but we do not need their explicit form. 

In Sec. VI we discuss the validity of the expansion (54). 

In the presence of quarks, the rule of calculating the 

effective action tells us that we should solve 

(54) 

6r 

PA; 
= j:(x) , 

where j:(x) represents the quark source, which we take to be 

j;(x) = 6aZ 6~0 p(Z). 

(55) 

(56) 

This means that quarks are assumed to be infinitely heavy and 

their direction in color space is specified by 6aa. Specifically 

we put the quark and antiquark at infinity, i.e. p(2)=efi2(x) 

(b(z-a)-6(z+aj) with a-r-m. Here e represents the charge of the 
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quark. In this case, equation (55) has a solution with 

A; = 6 ho Sax A, so that G(x) : - $ GE" = i E2 = $ (o'A)2 is 

non-zero while all other Ki's vanish. 

In the following the first term T (OS') is discussed 

with the above abelian configuration of A;. We neglect 

other terms of (54) having higher derivatives, which is 

justified a posteriori; as we will see in the following, 

r(o,o) gives us a flux tube solution. In the 

limit of an infinite vortex (a+m), E becomes (Ex,E y' Ez) = 

(0 0 E) with E constant throughout the whole space. For this 

solution the terms T(i'j) with j>l vanish and the terms ; (i,O) _ 

with i>l contribute to the surface energy of the flux tube and 

give non-zero thickness to the skin region. To the extent 

that we neglect surface energy our solution becomes exact in 

the limit of an infinite tube. 

The above procedure of taking only the term r (O,O) can be 

reinterpreted as follows. We just calculate the effective 

potential I(@,AF) with constant @ and with static abelian form 

for Atwhich gives constant electric field 2 = $A. This involves 

no approximation and is calculated independently of the quarks. 

Now the quark and antiquark are introduced at spatial infinity. 

Then the flux configuration can fully be discussed in terms of 

the above r("'), apart from the contribution of the surface energy 

The infinite flux tube is of course unrealistic because of 

qi pair creation which we neglect in this paper. However as 
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for the gluon pair creation its effects are already included 

in the effective action f so we can discuss them in terms of 

c-number A:. By taking abelian configuration of A; , as is 

the case in this paper, it seems that we are missing the 

solution in which the color flux of the source is shielded 

by the gluonic color charge. As has been discussed in Ref. 20 

the shielding charge due to gluons are gauge dependent and 

they can be gauged away: there is a gauge choice in which 

there is no gluonic charge. The elimination of the gluonic 

charge has been studied in explicit examples in Ref. 20. In 

this gauge, the quarks are the only sources of the color. The 

color content of the quark system is classified in this gauge, 

and we look for the abelian solution in this gauge. 

There is still another complication due to the non-abelian 

character of quarks. This can easily be taken into account by 

changing daa in (56) and in the solution A; = 6,,06aa A into 

Aa/ where Xa 1s the Gell-Mann matrix in the case of SU(3). 

The only change in the final results is to replace the so.uare 

of the quark charge e2 into e2 x Z(xa/2)" = 413 e2. 
a 

As the quark and anti-quark approach each other many terms 

in (54) begin to contribute and in the extremely opposite case, 

i.e., near the quark, the expansion (54) becomes a bad one 

because terms with more derivatives become more important than 

the terms with fewer derivatives. 
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B. The 'Color Electric' Property of the Condensed Vacuum 

In order to discuss T (O,O) , we can take the source J of 

$I to be x-independent, i.e., J(x)=J. Then as has been discussed 

in Sec. II, the J dependence can be absorbed into the coupling 

constant g and the field A; . The quantity we discuss in the 

following is just V(J,A";) of (20) or (21) in the static abelian 

configuration of A: which gives a constant electric field. It 

is more convenient to work in the J-representation. 

To be explicit we discuss here the process of absorbing 

J. Let Jo, A:, go be unrenormalized quantities. The Jo 

dependence can be absorbed by the change 

gyxz = 9;. 

PA:'= A$ and l+J 

In the background gauge, the renormalized J, 

*;J a*d gJ are defined by 

(&/z)+ I+J ZG(g,J,+jA;', (57) 

where gJ is defined by (10). So that 

ayA;J-auA;J+gJfabcAb AC PJ vJ 

2 = , 

gJA;J 
0 a0 

= g A,, 

and hence 
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9; GJ = g2G, (58) 

GJ = (1 + J)G. (59) 

or 

More generally, 

A" 
PJ 

=-A;. (60) 

We have defined GJ = - l/4 G2 
!JVJ 

and G = GJCO. AV of (21) is now 

AV = AV(gJ,GJ,u). Note that for fixed J, AV(gJ,GJ,u) is the 

generating functional of 1 P.I. Green's functions evaluated at 

zero momenta. 

Now we are in a position to discuss the color electro- 

static properties of the vacuum. Because there is no source for 

$ orA@, J can be set to zero after the calulation. When J=O, 

A@ and G are not independent; A$=A@(G). The dielectric constant 

is defined to be 

E(G) = - 
aAV(g,,G,,u) 

aG J=O ' 
(61) 

so that E becomes a function of A$. This relation tells us how 

the condensation A@ affects the dielectric constant E. To 

see the relation between A$ and E, we first note the re- 

normalization group equation satisfied by AV(gJ,GJ,u), 

(J’ & + B(gJ) agJ -?- - 2 y(g,) GJ +)AV = 0. (62) 
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In the background gauge, it is known that 

Y(&cJ) = 
B(g,) 

gJ 

Then 

aav 
A+ = a~ 

aav gJ aAV 
GJaGJ--- 2 agJ 

gJ 
= 23 2f3(gJ) 

a 
v x AV 

4 =- gJ a 
l+J 2B(gJ) ~-GJ~GJ Av, 

> 

(63) 

(64) 

(64)' 

where we have used (62), (63) and the fact that AV = p4F(g,G/u4) 

with some function F. Equation (64) is exact in our configuration 

of the electric field. Putting J=O in (64)' and using (59) and 

(61), 

" J=O = B(g) -=(l-G&)AV 

2g = Bo (AV + GE) 

2 5/ 2 (AV + GE) 
g-to bog 

(65) 

(65) ’ 
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Equation (65) shows that 6A$/2g is the Legendre transform of 

AV. By differentiating (65) by G, 

%=-&GE, (66) 

(66) 1 

at J=O. In what follows we need negative character of B(g) 

which is known to be correct at least for small g. 

One can derive a closed equation satisfied by AV J=. which 

is given in Appendix B. There it is shown that the sourceless 

(stationary) condition Jn=O is satisfied by perturbative 

solution G=O or non-perturbative solution c=O. Note that at 

these values the term GE in (65) vanishes. On the other hand 

from Sec. II we know that at Jp=O there are two kinds of vacua 

satisfying A@=0 (normal, perturbative) or A$=Aec>O (condensed, 

non-perturbative). The main purpose of this subsection is to 

show that the condensed vacuum has the property of e=O. 

It is easy to see that the normal solution G=O satisfies 

(65)' and (66)' perturbatively and that A@+0 as G-+0. Indeed 
2 up to the order g , E is given by 

Re e(G) = 1 - 3 g2 2 En G- 
lJ4 ' 

(67) 

Im E(G) = - 71 k g2 2 ' (67)’ 
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where Savvidi's renormalization condition 21 Re e(G=p4)=1 is 

adopted with the subtraction point taken in the electric region 

(G>O). AV is then 

/ 
G 

AV = - &(G)dG 
0 

= -G i 
b. 2 b. 2 

1-z-g -y-g en s 
u 1 

b. 2G +in- g 2 

On the other hand A@ = <1/4:Gzv: > is given by the tree graph 

up to this order so that 

A$ = G. (69) 

When the color electric field is applied to the normal 

vacuum, the response of E, AV and A$ is given by (67), (67)', 

(68) and (69). In particular as G goes to zero A$ and AV vanishes 

as it should be. Equations (67), (67)'. (68) and (69) are 

easily seen to satisfy (65)' and (66)'. 

Now we look for the non-perturbative solution of (65)' or 

(66)'. In doing so the following observation should be made. 

The perturbative solution of E has an imaginary part corre- 

sponding to the fact that a pair of gluons is created out of 

the vacuum and runs away to infinity because the asymptotic 

states of gluons do exist in perturbation theory. But if we 
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include non-perturbative effects, gluons cannot be in the 

asymptotic states as we remarked in the end of Sec.IIIA. So 

that E should not have such an imaginary part for the physical 

branch of solution. We therefore classify the real solution 

of (66)', which has two types of solutions depending on the 

following two situations. 

Case I), 

In this case G can be eliminated in favour of E. 

aA$ - 2 --__ 
ae b g2 G(E). 

0 

In the presence of electric field (G>O), 2 < 0. This means 

that as A$ increases (recall that A$ > 0 for the condensed 

solution) E decreases, which means that the condensation has 

an antishielding effect. It is simply because A$ is made up 

of gluons (in a color singlet composite state) which we know 

from perturbation theory posesses the antishielding property. 

Now from the r.g.e. we know 21 E(g,G) = E(&t),u4)x &Z2(t), 

with dg/dt = B(g), t = en G/u4 and 

B = 8/(4+2y), v(g) = B(g)/g. (71) 

Thus for large G, due to the asymptotic freedom we have c-An G/n4. 

As G diminishes, E decreases while A$ increases alone the tra- 

jectory shown in Fig. 4. The vacuum satisfies the sourceless 

condition: either G=O or c=O. At G=O, there is a solution 
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corresponding to the normal vacuum with A@=0 so that the 

trajectory passes through the point N in Fig. 4, where E will 

be complex due to the presence of tachyonic singularities. The 

question is whether the condensed vacuum satisfying O-$=&bcis realiz 

by G=O or by e=O. Suppose it satisfies G-O as is shown by C in 

Fig. 4. This means that at G=O there are two vacua satisfying 

J=O so that AV(gJ,GJ=O,p) is a two valued function of J. 

However AV(gJ,GJ=O,u) satisfies r.g.e. (62), without the last 

term, i.e. (23), so that AV = Au4exp-4 / 
gJ 

dt/g(x) with some 

constant A. At J=O there is a solution giving AV=O. Thus 

A=0 leading to AVZO. Therefore G=O corresponds uniquely to 

the normal vacuum satisfying AQ=O. The same conclusion is 

obtained if A@ is considered as a function of J and G. At G=O, 

A@ satisfies (26)' with the change g+gJ from which we get 

A$_O. The discussion in Sec.III therefore shows that if we expand the 

effective action i- around A:=0 (or AV around G=O) corresponding 

to the normal vacuum, the tachyonic singularities are present 

in Green's functions. 

The condensed solution Ac$=A$~ thus corresponds to the 

other solution e=O: the condensed vacuum has the property of 

the perfect 'diaelectrics' c=O. 

This leads to the crucial consequence of the flux squeezing. 

The solution E=O leads to the relation A$c=(2/bOg2)AV as is 

requirea by (26). In Sec.V the same condition(s=O) is derived by 

the consistency of the phenomenological Lagrangian or by the 

stability of the non-perturbative vacuum. 
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There are two cases for the allowed trajectories of e(G) 

as shown in Fig. 5a) and b). At some GG, E vanishes (E(GG)=O). 

It is easy to see that Go cannot be magnetic in sign (Go<O). 

This is because aA$/as > 0 for Go<0 so that A$ cannot take the 

value A$I~ at G=GO<O. Therefore G&O. More complicated trajectories 

are pssible than those given in Fig. 5a) and b) but what we need 

in the following are E s In G (G%m) and s(GD)=O at Go 2 0. 

We see from (66) that the applied color electric field 

partly breaks the tachyonic bound states which condense in the 

vacuum. This becomes clear if we adopt Savvidi's renormalization 

condition?l Then we have c(g,G) = g2/i2(t,g) where g is governed 

by B of (71) and t = In G/n4. SO that G ae/aG = -2(g2/E3)8(g) 

which is positive in the region where z is negative. It follows 

from (66) that aA@/aG < 0 which implies that if the color electric 

field is increased then A$ decreases. 

Case II), 2 3 0, $.g f 0. 

In this case e(G)=Cl where Cl is a constant independent of 

G. It is easy to show (see Appendix B) that the equation 

aA$/aG:O holds if anionly if C1=O, in which case A@sA$,. This 

solution is not analytically connected with the solution of the 

Case I). The fact that e-0 and A@ZAOc can be solutions is 

physically understood as follows. If e-0 for any applied field 

G, the displacement D defined by D=eE is identically zero. In 

Appendix B we show that it is D,not E,which acts as an effective 

source and couples to quantum fluctuations of the gluon fields. 

So in case D=O, tachyonic bound states which condense in the vacuum 
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are not affected by the applied electric field and A$=A$c for 

any G so that the energy of the vacuum does not change in the 

presence of G. The solution EZO is also shown in Fig. 5a) or b) 

which passes, of course, through the point G=O. This is also 

required by the Lorentz invariance of the vacuum state. 

Note that in the Legendre transformed space, both case I) 

and case II) can be expressed as a single solution A@=A@(E) which 

takes the value A$c at E =O. 

Next we discuss the flux configuration for each of the 

two cases shown in Fig. 5a) and b). In Fig. 6a) and b), 

y(G) Z -AV(J=O,G) is shown, where we have defined p=O for 

AI$=A$~. 
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C. The Flux Configuration 

We discuss the case corresponding to Fig. 5a) and b) 

separately. 

a) The case where e(G) behaves like Fig. 5a) has been 

discussed by Callan, Dashen and Gross.8 We give a brief 

argument to show that it leads to a tube like solution of 

color electric flux. We are discussing the situation where 

a static quark and antiquark of charge ?e are introduced at 

. z=+m. In the axially symmetric (about z-axis) solution, the 

electric field is directed along the z axis and the magnitude 

is constant over the whole space because the tangential 

component of the electric field is continuous. This is 

simply because we are discussing the situation where quark 

and antiquark are separated infinitely apart. 

We calculate the energy per unit length of the vortex of 

the cross section CI and see if there is an optimal value of 0. 

If 0 is infinite, the flux is not squeezed. The Hamiltonian is 

defined by 

H = E &?~= E,, -9 
ad 

where y(E) s - AV (J=O,G), G = B E2 and the displacement is 

given by D = ap/aE = E E. The flux is non-zero only for the 
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region where E f 0 so we minimize the following Hn under the 

condition Do = e, 

Ho = (ED-9)~ 

9 = e(E - iT) , 

where E is a function of D . The optimal value of CJ is 

given by 

0 = a(Hu) - aD a(Hu) = _ -- 
au au aD 

dz-=-g 
2 fy,2 

Thus y=O determining E or G, which is denoted by E C or G C’ 
u is determined through Do = e. The equation p=O is nothing 

but the Maxwell equal area rule as shown in Fig. 5a). The 

finite metastable branch (BB') is present. The structure of 

the tube is shown in Fig. 7. The color electric pressure 

in the region I is balanced by the condensation energy AV (or 

the binding energy of gluons in the color singlet channel in 

the terminology of Sec. III) due to the discontinuity SQ in the 

magnitude of the condensation at the surfaces. The discontinuity 

64 is easily seen to be given by 

6$ = (A@),- (A$), = (2/b0g2)Gc E(G~) < 0 , 

where the points 1 and 2 are indicated in Figs 5a), 6a) and 

7. 

EC satisfies the r.g.e. 

(l/Ec)u $ EC = - y(g), i.e., E = p2 g C 2+v(x) dx B(x) 
This is derived by noting that 2 satisfies (62) with J=O and 
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2 
has the form y(t,g) = gtO,g(t,g) 5 G, with t = In E2/p4. 

g 
Soy= 0 is realized for 2 = c with c some numerical constant 

and hence In Ec2/u4 = jidx/8(x). One can also derive 
d 

(l/Dc)u F DC = Y(P). In the limit of a static quark, c can be 

shown, using the above relations, to be renormalization point 
do independent, - = 0. du If EC = m then we get an infinitely thin 

flux tube, a string with u = 0, which corresponds to infinite 

binding energy for the gluons. 

b) The case given in Fig. 5 b) in Fig. 6 b) is the limit of 

the case a) where e(GC) -+ 0. Then c = e/D(Gc) = e/e(Gc)Ec+ m ; 

the flux is not squeezed. In this case if we include the 

derivative terms of I$ in the local expansion (54), which we 

have neglected so far, they contribute to the surface energy 

and prevent the flux from spreading out. Let us consider the 

term apea,+. For small g this can be approximated by 

Ajd4x(i2 -($I$)~) with A=T @~")($=, A ~0) 
'IJ . If A>0 the energy 

is not bounded from below so that A should be negative. 

Neglecting the thickness of the skin, we are led to the problem 

of minimizing the following Ho under the condition Do=e, 

ay uH=o(Em-~)+SA 

where Smrepresents the surface energy with some positive 

constant S. It is easy to see that oH is minimized by non-zero 

D or u. In the present case flux squeezing is a combined effect 

of the condensation phenomenon (volume effect) and the surface 

effect. Surface energy, which is shown as E s in Fig. 6 b), makes 
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it possible for 9 to take a non-zero value inside the flux tube 

without destroying the mechanical equilibrium. By contrast, 

in the case a) flux squeezing is caused by the condensation 

phenomenon alone and the derivative terms T (i,O) (izl) provide 

the thickness to the skin of the flux tube. 

D. The Mean Field Approximation 

Up to this point, the arguments were formal. In order to 

get the trajectory e(G), we need some approximation which takes 

into account the effects of condensation. In this subsection 

an attempt is made to discuss E(G) by the mean field type 

approximation, thereby in particular, determining which of 

the two cases given in Fig. 5a) and b) is realized. We 

define first the local color electric field in the color 

dielectric medium, which is done classically. 

We make a cavity with the dielectric constant co in the 

three dimensional dielectric vacuum which has the dielectric 

constant E. If the electric field is supplied from the source, 

the electric field in the dielectric medium is defined to be 

the one in this cavity. If we take a sphirical cavity, 

Alocal 
Fi = f(E,EOMIJ , (72) 

with 

(73) 
0 

We have denoted by Aiocal the potential in the dielectric 

medium. Equation (73) depends on the shape and the size 
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of the cavity but what we need in the following is the fact 

that Aiocal vanishes at E=O and A=0 and this is independent 

of the shape. Now in the above approximation it is the local 

color electric field constructed from A local 
P that acts as an 

effective field in the medium. Our assumption here 

is that if we calculate the effective potential 5(Aiaca1) of 

Aiocal neglecting the condensation and then substitute (72) 

for Aiocal then it will be a good approximation to the 

effective potential V(AII); V(Ap) = ?(Aiocal). We take the 

limit Of constant electric field (in z direction) and because 

we are discussing the case J=O, c is a function of G. Thus 

we are led to a non-linear self-consistency relation, 

E(G) = - w = _ aGlocal av(Glocal) 

aG aGlocal ' (74) 

where 
Glocal = - 4( A a Alocal 

lJ v 
_ a A1oca1)2 = f2G 

v LJ (75) 

a5 
aGlocal 

=82 
E2(L&9 . 

(76) 

Equation (76) has been given by Savvidi. 21 

ii2 

Here t=ln Gloca1/p4, 

dy/2B(y) = t, B(y) = g B(g), Y = g2 and g is given by (71). 

the renormalization is performed with respect to the local field. 

With (72), (73), (75) and (76), we see that (74) has the following 

two types of solution, corresponding to the two cases in Sec. IVB. 

i) E(G) : 0 . This corresponds to the case II) in Sec.IVB. 
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(2EfEO) 
3 

18 so (77) 

The second solution (77) corresponds to the case I) in Sec.IVB. 

To discuss the latter solution we need g which is governed by 
s 23 Now we know from Sec. III that the effective potential V(G), 

when expanded around G=O, has an imaginary part due to tachyonic 

singularities in its expansion coefficients. This leads to a 

condition on B such that B(y) has no zero in the region O<y<m - 

and that lmdx/a(x) is finite. The reason is that if the above 

conditions on B do not hold aV/aG, for example, has no sing- 

ularities in O<G<= and is real when G approaches zero. 

With the above behavior of 8, it is easy to analyse the 

non-linear equation (77) by the phase space method. For large 

G, E x In G. At some finite G(=Gc), g2== where ds/dG = +m, 

and E is finite (E=E~), suggesting that the solution realizes 

the curve of Fig. 5a). As s+O, g approaches the infrared 

fixed point of n. Because k?(y) has no zero in the region 

O<Yrn> 

cannot be real and positive, thus excluding the case of Fig. 5b) 

The unstable branch, corresponding to (BC) in Fig. 5a), 

is. depends on the behavior of B(y) away from the real positive y ax 

-2 (if we can use (77) at all in the region where g 1s not real and 

positive.) In general the branch (BC) will be complex 

because it is unphysical anyway; Re $$ > 0 The 
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imaginary part integrates automatically to zero along BC; 

fBCdG Im s(G)=O. Therefore the Maxwell rule still holds. 

For the unphysical branch, many cases can occur as shown in 

Fig. 8. The trajectory (BCl) corresponds to the case where 

-2 + 0 g - as E + 0. Note that y=O- is an infrared fixed point 

of B(Y). Near the point Cl the solution behaves like ac/aG 

= A/in E with A=so2/(4bog2). Different trajectories of Fig. 8 

give different sizes of the metastable region but they all lead 

to the flux tube solution. 

Our mean field approximation suggests the case shown in 

Fig. 5a). We should discuss the accuracy of our approximation 

which is not given in this paper. The essential requirements 

to have a tube like solution in the approximation of neglecting 

the surface energy term, are that the solution c-0 exists and 

that V(G) has a singularity at G=C3>0 at which s=aV/aG is 

finite. These facts are independent of the detailed form of 

f(e,co) or of Z(y) and are determined solely by the fact that 

f(O,co)=O. 
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V. COMPARISON WITH THE PREVIOUS APPROACH 

We first recapitulate the arguments' which lead to the 

phenomenological Lagrangian proposed by Kogut-Susskind 24 and 

't Hooft25. Let a(x) denote the color singlet Jp=O+ tachyonic 

state. It can be either a paired bound state or c&k2 p"(x)'. 

In our previous approach it represents the pairing field in 

which case it can explicitly be seen that the dominant con- 

stituents of $(x) are infrared soft gluons. The QCD Lagrangian 

9 now contains two different dynamical degrees of freedom @ 

and A; and it is expanded first in Aa 
P' taking the simplest 

possible terms consistent with the gauge invariance, 

yCG,iE) = - *apGavG - v(G) - *s(ii)i2;t . (78) 

The potential V(m) is shown in Fig. 9 and represents the 

condensation of q. The vacuum satisfies ,;> :T @ c,4;> = 0. 

The sign of ec cannot be determined here in contrast to the 

discussion in this paper (Sec. II). 

For the condensed vacuum to be stable against the fluc- 

tuation around $=@,,AF=O, E(Q) must satisfy certain conditions. 

First, if ~(4~) f 0, the fluctuation of ^A" ~, due to the term 

-w,)e;" , produces tachyon bound states again and conden- 

sation proceeds still further. But this is inconsistent so 

E(@C)=o. In other words such an effect renormalizes V(e) 

and after the renormalization E($~) should vanish. We assume 

for simplicity 
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' (79) 

with u,a>O. Next we consider the small change in $,$J=$,+A$I. 

Then the change in the energy density AE can be estimated as 

follows, 

AE Q frV"($c)(A$)2 - a (80) 

The term -aG2 
!JV 

contributes to AE by an amount -B which is the 
* ,. 

energy density gained by condensing $ up to the value<$>=$c. 

Note that the term 6;: in (78) can be understood as :G ^a2. -ia2 

- <ole;;lo 
pv.- WV 

> without the loss of generality. Here IO> represents 

the normal vacuum. Thus for AE to be positive, CL should satisfy 

a>1 . - (81) 

The condition (81) is also the condition for avoiding double 

counting, which says that after extracting I$, gluon fields A: 

should not form $I any more. Indeed if (81) is satisfied gluons 

cannot produce a tachyonic bound state 4 because its condensation 

is energetically unfavorable. Now y($,A;) in (78), with (81) 

understood, is regarded as a c-number effective Lagrangian with 

the hope the $Z represents the dominant quantum effects of QCD: 

The condition (81) is known 24'25'7 to guarantee the flux tube 

solution when quarks are introduced. 

To compare p($,A:) with the results of this paper we first 

neglect the term au$au$ and eliminate @ by the equation of 

motion, 

-h ' bt+f, - V'(l$) = 0 . (82) 
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Solving (82) to give @o(G) and taking the abelian configuration, 

Tis expressed by G s -*GE", which is compared with AV(G) of 

Sec. IV. We have two types of solutions of (82). The one is 

@'a,, EfO, which corresponds to the case II) of Sec. IVB. The 

other solution G = V'($)/E'(@) gives the trajectories of Case I). 

If a>l, we get the trajectories of Fig. 5 a) with the point C 

at infinity (Go=") For the case u=l, we define 

8 F 
-i G = ,‘$ 
d@ 

& ;:I$; _ 
C 

For B>O, the case of Fig. 5 a) is realized and for B<O, Fig.5 b). 

See Fig. 10 for various cases. 

The condition (81) on a can also be derived by regarding 

e%@(G) ,G) as a local approximation to the effective 

action. Then we know that E(@(G)) is complex at G=O, which 

is the case if any only if (81) holds. (As G+O,@ should tend 

to the normal value zero so that V'($)/E'($) is required to 

approach zero as e-0.) 

We have neglected the term au$au$. As has been pointed 

out in Sec. IVC, in the case a=1 and E<O the tube like solution 

is realized by the combined effects of the kinetic term au$au$ 

and condensation energy. 

We have obtained the solution s-0 by equation of motion 

for I$ which is not the case in Sec. IV. This is due to the 

approximation taken in (78). 

Summarizing, the phenomenological Lagrangian (78) leads to 

qualitatively the same physical picture of the condensed vacuum and 
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its stability conditions as discussed in Sec. IV. 

VI. DISCUSSIONS 

The assumptions we have made are that (23) has a non-trivial 

solution and that the effective action T has a gauge invariant 

local expansion (54). The latter assumption can be verified, 

of course, perturbatively but it automatically excludes the 

possibility of a massive phase where gluons acquire equal mass. 

Naively we expect that, if the condensation is understood as 

pairing in the color singlet channel, the gluons become massive 

in the stable phase. Indeed we have discussed previously the 

color singlet condensation in terms of pairing, by studying the 

formation of the Cooper pair3 and by performing a variational 

calculation of the vacuum energy by means of Bogoliubov 

transformation3 and we were led to the massive phase. The 

same problem was discussed covariantly by solving the B-S 

equation for the tachyonic bound state 4 and by adopting the 

two loop approximation for the effective potential. 26 The 

B-S equation for the color octet Goldstone mode has been 

discussed by J. Smit.27 They all led us to the massive phase. 

But as long as the color singlet condensation is discussed in 

terms of pairing, we cannot study the problem gauge invariantly 

so that it is not known whether the mass thus generated is 

produced by a dynamical effect of condensation or simply by 

the reason that we have taken a gauge non-invariant approximation, 



-54- FERMILAB-Pub-79/50-THY 

This is the reason why we have adopted 6' UV to measure the color 

singlet condensation. With the condensation of G "2 it is rather !JV 
hard to imagine the mechanism of mass generation. In this way 

we are led to assume the gauge invariant local expansion (54), that is, 

we are looking for the stable ground state in which gluons do not 

acquire mass after the condensation of G2 i.lv . This imposed the 

condition E=O on the stable vacuum because the normal solution 

G=O corresponds to the unstable vacuum. If the massive solution 

is allowed the solution G=O can be a solution corresponding to 

the massive stable vacuum. We can clearly see this situation if 

the term proportional to (AF)2 is added to (54) or to (78). Then the 

condition e=O does not follow from the stability requirement. 

Also in the example of x$4 discussed in Appendix A we have two 

phases at $=O, one is the normal massless vacuum and the other 

is the massive stable vacuum. The exclusion of the massive 

phase in QCD is equivalent to the exclusion of the possibility of the 

formation of the octet Goldstone bosons which supply logitudinal components 

to the gluons. We do not yet have the answer to the question 

whether or not the massive phase is one of the solutions to &CD. 

We have also assumed imp1 icitly that E is not negative. 

This is required in order for the theory to give any sensible 

answer: if E is negative the energy of the ground state of &CD 

is not bounded from below so t hat there is not stable vacuum. 

There is however at the.moment no rigorous proof of the non-negativeness 

of E. The same r~emark applies to the coefficient T(l,') of the 

auqau$ term in (54). 
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In this paper only the case of infinite separation of qs 

is discussed. When the separation becomes finite, the approach 

based on some phenomenological consideration will probably be 

more effective rather than the approach taking more and more 

terms of (54) into account. 

It is apparent that our picture discussed in this paper 

is very much similar to the one presented by Callan, Dashen and 

Gross8 and hence to MIT bag model'. The basic difference is 

that our discussion is based on the interaction among ordinary 

gluons, not on the classical solution like instantons, which 

leads to the formation of the tachyonic bound state and makes 

the normal vacuum unstable. This forces us to choose the 

solution c=O for the condensed stable vacuum. 

We have discussed the condensation of 6$ and its physical 

effects. There are of course infinitely many gauge invarant 

operators such as DU$,VDn,8u,v,etc.28 or even non-local gauge 

invariant operators. Our conclusions here will not be edified if these 

ooerators are shown to exhibit non-trivial condenstions since OCR argx.axmts 

are based on the instability of the nomnal vacuum. We do not bow h-Never 

at the mcment how we can discuss the condensation of these complicated operators. 
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APPENDIX A: THE CONDENSATION OF THE LAGRANGIAN IN x$4 THEORY. 

As a solvable example we consider the condensation of the 

Lagrangian in O(N) hQ4 theory in the large N limit.13 Its 

condensation is rather trivial as we shall see below, but the purpose 

of this Anpendix is to show how the trick of absorbing J into tne coupling 

constant and field operators works. The Lagrangian is 

where 

2 = -&.alliiau$i _ &mo2G2 - 2 (i2)2 , 

2 is the equivalent to 

La@ ,x) =P + &p 
A ^i^ 

0 

i2 = iiii 
2 
i=l 

(Al) 

(AZ) 

We must keep the lnhO term in the following discussions. The 

effective potential V to leading order in l/N is 

V(@,x) = - ix" + *xe2 + - 
Nm02 

AO 
ln(k2+X). (A3) 

The mass the coupling constant renormalization are introduced 

as 
m2 m02 + s d4k 1 _E--,-..- 
A AO J (2a)4 2 ' 

(A4) 

1 1 -=- 1 
A hO (k2+a2)2 ' 

(A5) 

corresponding to the renormalization conditions 
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av/ax = Nm2/X , 
@=O, x=0 

a2v/aX2 =-N/A , 
+=o, x=lJ 

(A6) 

(A7) 

respectively. Then V(@,x) becomes 

X2(1n(x/u2) - 3/2) 

- i 64(0)lnh0 . CAB) 

In the following we consider only the case m=O because in that 

case calculations can be done explicitly. We take also 1~0 

because the theory is asymptotically free for this choice and 

the attractive force is present among $ so that we expect a 

dynamical rearrangement of the vacuum. (For the discussion on 

the sign of renormalized A in O(N) model see Ref. 13.) Indeed 

it is known13 that the abolute minimum of V(@,x) is realized by 

ei = 0, x = xc = u2e (A9) 

which shows the pair condensation for the true vacuum. We expect 

that the condensation of the Lagrangian occurs at the same time 

because 3 
2 contains the term x . To see this is indeed the 

the source J is introduced and 2 is changed to (l+J)s 

we renormalize J according to J -f JZ i . The relation (10 

becomes 

case, 

Then 

) 

WAJ,A/U) 
1 + JZ, (X,J,Alu) = hJZcA,A,Fij . (AlO) 

From (A5) 
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z(h,A/u) = 1 - ; K(k) 

with 

so 

K(i) = 1 
(k2+U2)2 ' 

1 -_ 
xJ 

; K(t) 
l+JZX =1 

2' KC;) . 
(A12) 

--- 
A 

Because the l/N limit picks up one loop graphs, the arguments 

following (12) suggest that the J independent renormalization 

of 9 may work. Indeed from (A12), 

1 .- ; K(t) . (Al3) 

The anomalous dimension of 2 is given by 

Y* (A) : Z;’ 1~ dZz /du 

A = -->o 
16rr2 

(Al4) 

Now we discuss the condensation of -9 In the l/N limit, 

the subtraction term corresponding to V ,,,.[J,A;=O] in (21) is 

given by V(J,$=O,x=O). AV is obtained by (AS) with the 

replacement X + h J and @ + QJ = &j~$ while x (and mo2) are 
n 

independent of J. Then the expectation value of :p: is 

A,$ Z <-:&:>J = 
aAV(@J'X,AJ'u) 

aJ 

N 21 2 =_- 
2x x+-x@ . (Al5) 



-59- FERMILAB-Pub-79/50-TRY 

where (Al3) has been used. (We use the symbol A$ and C$ for different 

quantities.) There is no J dependence in (A15). 'This is because in the large 

N limit A$,x and @ are not independent because essentially only one loop graphs 

are included. The true vacuum satisifies (A9) so that Aa takes tne value 

N A+ =-zxc 21 ?; , 

which is aositive ("magnetic") as in the QCD case. But in h~$~ 

case C.415) shows that if we define connected part by -<:s>c:A@ + $ X2-$x$" 

&n<:p>c = 0 which means that the genuine condensation of the Lagrangian 

does not occur in the large N limit. With (A9) and (A14) A$ is shown 

to satisfy 

a a 
P z + B(X) n - Y* O))A$ = 0 > 

where we have used 

dX x2 !J z = B(A) = - 
161~~ 

(A16) 

derived from (All). The effective potential of A@ can be 

constructed if we restrict ourselves to the case C$ = 0 which 

satisfies aav($,,x,x,)/ae = 0. Then (A15) is used to calculate 

AV(A+) = AV(x,hJ) - JaAV/AJ 

= A$ + h - - x 
641~~ 641~~ 

(Al7) 

AV(A$) of (A17) shows the similar behavior as given in Fig. 1. The 

minimum value of AV is 

I 

2+ 641~~ 
AV =- N A 

aav/aaa = 0 1281r2 
u4e (A18) 
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which satisfies (26) at the minimum point, 

4AV = F A$ (A19) 

AV and A$ are real in the large N limit and the difference of the factor 2 

between (26) and (A19) comes from the difference of (16) and (Al3). 

The Gross-Neven model" can be discussed exactly parallel with 

the hG4 case and the Lagrangian condenses with "magnetic" sign: 

<@: > < 0. Both theories show tachyonic bound state poles 

(not cuts in the large N limit) if we take the normal vacuum. These 

are examples of the theorem proved in Sec. III. 

APPENDIX B: A CLOSED EQUATION FOR AV 

The total effective action T(AF) is known to satisfy the 

following equation (J is set to zero), 

T(Aa) = t In 
ijp(x)d4x + ijd4x 6r 

6$(x) 

d4x A; (x) " 
&A:(x) ' 

(Bl) 

We choose the background Lorentz gauge 

tiaba + 

l8 DuAu = 0 with D:b = 
h h 

u igf abcAz so we insert the factor A(A,A)G(DuAu) where 

A(A,A) = det Mab, Mab = (DuDp)ab - ig D abfb'dbid 
!J IJ . In the static 

abelian configuration, A: = 6aa 6v0Au, the local expansion of r 

reads 

T(A;) =-.d4x V(G(x)) 

+ / d4xa~G~“(x)a~,G~,“(x)r(l)(c(x)) 
+ . . . . ) (B2) 
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with G =aA 
WV LJ v - a,,A,, and G(x) : - *GE". We insert (B2) into 

(Bl) and use the relation, 

I d4x aAayx) $(*) = 2/d4* Guy(x) a;;x) G;"(X) 
P 

with Ga !JV 
= auiva. - a ia. 

v !J To single out V we take the con- 

figuration where G,,,,(X) h as only one component G Ozand -Go= 5 E 

is a constant overall space. In this limit we can derive 

[3 dii 

(B3) 

Gut(x) 
(B3’ ) 

n ,. 
Insertion of the term A(A,A)G(DuAu) is understood. We cannot 

set 1 d4x G:"(x) = 0 because of the zero mass nature of the 

gluon. Indeed if (B3) is evaluated perturbatively, it has 

infrared divergences. Equation (B3) is an anolog of the 

equation satisfied by the effective potential V($(x)), not 

the effective action, in Q4 theory, for example, where the equation 

satisfied by V is derived by taking the limit of constant 0. 

Now we observe the following two points. 

1. Equation (B3) says that the real source of the electric 

field which couples to the fluctuation of the gluon field is 

G TV av/aG (not Gu"), that is, it is the displacement D GEE, 

not E, which plays the role of the effective field.. The 

dielectric constant E depends on how much A@ condenses in the 

vacuum. 
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2. To show cl = 0 in the case II) of Sec. IVB, we write 

the expression for A$. Now from W(J,Ju) of (52) with constant 

J, we define 

with 

V(J,A;) = - W(J,J;) + 
I J;(x) aw d4x 

aJ;(*) 

A; = A;(JQ = aw 
aJ;(x)’ 

Then 

RAij = I WJ,A;) 

I 
=- 

aW(J,J;) 

J=O aJ J=O aJ I J=O 

where Ju is expressed as a function of A 
!J and J. So we get, 

in the limit of constant field 

1,. 
=?iLe f 

ipd4x+2cli GuvJd4x Ga .5 
A$ uv Lil 

J=O 
I 

ei&?d4x+2cl i GuvJd4x qvEdAl ' 

A 
where we have suppressed gauge terms, and L = /d4xp(x), It is 

clear that if cl#O, A$ cannot be G(=-%G$) independent so that 

cl=o. 
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FIGURE CAPTIONS 

Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Fig. 8 

Fig. 9 

Fig. 10 

The effective potential AV(A@). 

The typical behavior of the trajectory An(P2). 

An example of the diagram which gives rise to the 

branch point in Green's function in the spacelike 

region of the momentum. The wavy line represents 

gluons and the solid line a color singlet tachyon 

bound state. 

The trajectory E(G). 

a),b). Two possible trajectories of E(G). 

a),b). Two possible forms of p(G). 

The structure of the flux tube. 

The solution c(C) by the mean field approximation. 

The shape of the potential V($) of (78). 

The relation between G(= -*GE") and # given by (8.2). 
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