
m Fermi National Accelerator Laboratory 
FERMILAB-Pub-79/16-THY 
January 1979 

QCD Phenomenology of Gluon Jets 

K. SHIZUYA 
Fermi National Accelerator Laboratory, Batavia, Illinois 60510 

AND 

S.-H.H. TYE 
Laboratory of Nuclear Studies, Cornell University 

Ithaca, New York 14853 

(Received 

e Operated by Universities Research Association Inc. under contract with the Energy Aesearch and Development Administration 



-2- FERMILAB-Pub-79/16-THY 

ABSTRACT 

We investigate in detail, within the framework of perturbative 

&CD, the properties of the gluon jet in comparison with those 

of the quark jet. The short-distance features of a gluon jet 

are quite similar to those of a quark jet, apart from the dif- 

ference in the overall color charges C2(G)/C2(R) = i : The spread 

of a gluon jet in the transverse momentum is much bigger than 

that of a quark jet and the narrowing of a gluon jet with in- 

creasing energy is slower than that of a quark jet. We also 

evaluate the thrust T distribution which has the same features 

for both types of hadronic jets. The average <l-T> and higher 

"thrust moments" <(l-T)"> for the gluon-jet case are again 

approximately C2(G)/C2(R) = i times those for the quark-jet 

case. The usefulness of these thrust moments is emphasized. 

The implication of the above result on the search for gluon 

jets is discussed, especially in the hadronic decay of a heavy 

quarkonium state. We express the gluon-jet production cross 

section in terms of the Altarelli-Parisi parton functions. 
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I. INTRODUCTION 

It appears likely that strong interactions are governed 

by the non-Abelian gauge field theory - Quantum Chromodynamics 

(QCD) - which involves elementary quark and gluon fields. 

The evidence for the existence of spin $ quarks is overwhelming. 

All evidences for the existence of colored gluons, on the 

other hand, are circumstantial at best. The effects of 

gluonic degrees of freedom have so far been seen in the form 

of deviations from the naive quark-parton picture. Therefore, 

to put QCD on firmer grounds, it is essential to search for 

more direct signatures of the existence of vector gluons. 

It is generally believed that, due to some nonperturbative 

color-confinement effects in &CD, quarks and gluons cannot 

be seen by themselves but only in the form of hadrons which 

are color-singlets. Therefore, one must search for some 

other manifestations (as direct as possible) of the fundamental 

quanta. The hadronic jet phenomena observed in e+e- annihilation1 

and other experiments are considered to be induced by energetic 

quarks which fragment into hadrons. Similarly, it is expected 

that an energetic gluon would also manifest itself in the 

form of a hadronic jet. In lieu of a free gluon, gluon jets 

(i.e., hadronic jets arising from energetic gluons) should 

best reflect the features of the colored vector quanta. In 

this work we continue our study2 on the properties of gluon 

jets in comparison with those of quark jets, within the 

framework of perturbative &CD. 

The quark-confinement effect in QCD is not yet understood. 
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With the idea of asymptotic freedom! QCD perturbation theory 

is reliable only for the calculations of short-distance effects. 

Correspondingly, to calculate any quantitative properties of 

quarks and gluons by means of QCD perturbation theory, one 

must take great care to isolate perturbative short-distance 

effects from nonperturbative quark-confinement effects. In 

the case of deep-inelastic lepton-hadron scattering, this type 

of isolation of short-distance effects is achieved by use of 

Wilson's operator product expansion along with the renormalization 
3 group. There are also attempts 475 to extend the application of 

QCD perturbation theory to other processes where the analysis 

based on the operator-product expansion and the renormalization 

group is not directly applicable. 

Recently, many authors, in particular Politzer 4 and Sterman 

and Weinberg, 5 have suggested that suitably chosen features of 

hadronic final states produced in scattering processes may be 

calculable by means of QCD perturbation theory, provided (1) non- 

perturbative confinement effects are either factorized or smeared 

over and (2) all infrared divergences and mass singularities are 

absent. 

Following this criterion, Sterman and Weinberg have studied, 

using perturbative &CD, the hadronic-jet structure observed in 
+ - ee annihilation. They define the cross section in terms of 

jet-like hadronic final states, characterized by the back-to-back 

cone of half angle 6 , in which all but a small fraction E of 

the total e+e- energy E is emitted. Fig. l(a) shows the basic 
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process that leads to quark jets. A pair of energetic quark 

and antiquark produced via the virtual photon decay into 

hadrons due to some nonperturbative long-range effects in 

&CD. The gluon bremstrahlung process (Fig. l(b)) leads to 

the broadening of hadronic jets (which we shall call quark 

jets). The fraction of the jet-like events characterized by 

E and 6 in the total events is, to leading order in 

= g2/(4T), given by 5 
"C 

"C lr2 f(quark) = 1 - y C2(R) I(4 In 2~ + 3)ln 6 + 3 - i j , 

(1.1) 

where terms of order E and/or 6 are neglected and the color 

factor C2(R) = $ for triplet quarks. This expression is free 

of infrared divergences and mass singularities since they are 

cancelled between the real-particle emission process (Fig. l(b)) 

and the virtual correction processes (Fig. l(c) and (d)). In a 

sense, the long-range effects are smeared over the energy reso- 

lution E and the angular radius 6~ so that only the short- 

distance features of jet phenomena survive. The ratio f 

provides a measure of "jettiness" of the quark jet. 

This approach is particularly useful for the study of gluon 

jets for the following reasons: (1) the perturbative QCD calcul- 

ation of the fraction f for the gluon-jet case is also free 

of infrared and mass singularities, (2) the property calculated 

is qualitatively independent of the source of the energetic 

gluon produced; hence it is applicable to many scattering 

processes where the production of gluon jets is expected; for 
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ll- example, the lepton-hadron deep inelastic scattering, Dre 

Yan di-lepton production, large-p, scattering experiments 
+ - ee annihilation into hadrons and the hadronic decays of 

heavy quark bound states; (3) the calculation does not require 

any knowledge of how an energetic gluon fragments into hadrons, 

as long as the overall transverse momentum spread of the gluon- 

jet fragmentation does not differ drastically from that of the 

quark-jet fragmentation. This last point is of particular 

importance since we know nothing about the gluon fragmentation 

function. 

Using this approach, we have shown that qualitatively 

a gluon jet tends to spread substantially more than a quark 

jet. 2,6,7 Of course, this conclusion is applicable only to 

kinematic regions where QCD perturbation theory is valid while 

nonperturbative effects are small. Unfortunately, at energies 

available today or in the near future the kinematic region 

where such a quantitative comparison is valid is rather limited. 

Hence it is worthwhile to use a more suitable variable instead 

of f(c,6) for a quantitative comparison between the quark jet 

and the gluon jet. In this work we choose the variable thrust8 

T, &<T<l - - 

T = max( F 16,,dTiSil) (1.2) 

where the sum runs over all observed particles and the $, are 

parallel to a "jet" axis which is chosen to maximize T. This 

axis is called the thrust axis. (Our definition differs 
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slightly from that proposed originally by Farhi8;we believe 

this definition is better in practice since, for an event 

where some hadrons escape detection, the thrust T in his 

definition may attain values beyond the bound + ( T ( 1 . 

The two definitions coincide for a perfect detector.) In 

terms of the thrust distribution, we find that the gluon jet 

is again less jet-like than the quark jet. This means that 

the observation of a gluon jet is difficult to achieve. 

In perturbative QCD the transverse-momentum spread of a 

gluon jet arises from the gluon pair or quark pair emission. 

At high energies the structure of those particle emission 

processes is determined by that of mass singularities associated 

with them. It was noticed by a number of authors 4,7 that the 

leading mass singularities in QCD have a structure universal 

to many high-energy processes. In physically sensible quantities 

such as the inclusive jet cross section, those mass singularities 

as well as infrared divergences are expected to be cancelled' 

between the real and virtual correction processes, leaving their 

short-distance features which reflect the structure of the mass 

singularities. This in turn implies that the high-energy features 

of a gluon jet are independent of how it is produced. It will 

be reasonable to suppose that the production of energetic gluons 

is insensitive to the nonperturbative confinement effect which 

induces a gluon to fragment into hadrons; this is because the 

energetic-gluon production is considered to take place in a much 

shorter time scale than the latter. 
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With this in mind we can study the gluon-jet property 

in perturbative QCD by choosing the simplest, well-understood 

operator as a gluon production source. The hadronic jet 

production has a clear parton interpretation. To emphasize 

the parton language, we discuss the scalar source and the 

pseudoscalar source in two different presentations. We shall 

express the inclusive jet cross section in terms of the Altarelli- 

Parisi parton functions 10 in Appendix A. 

Quantitatively, the cross section (l/o)(do/dT) for either 

the gluon pair or quark pair production is peaked at T+l. This 

is the case even after all infrared and mass singularities are 

cancelled between the real and virtual particle emission diagrams. 

Physically, events with smaller pL (or equivalently T+l) would be 

crowded with particles arising from the confinement effects, as 

characterized by a limited average transverse momentum 

<pI> s 0.3 GeV. Even within perturbative &CD, the Kinoshita- 

Lee-Nauenberg theorem' requires us to average the cross section 

over the detection resolution size AT of T to remove the small- 

momentum singularities at T+l. Therefore, to render the 

perturbative calculation sensible, we must average the cross 

section over a resolution AT larger than the uncertainty AT 

(nonperturbative) induced by the fragmentation process. 11 

For example, we can use the inclusive cross section 

1 
u(AT) = 

I 
dT(da/dt) 

l-AT 

with AT>AT(nonperturbative). 
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As an alternative to the above smearing procedure, we 

suggest to use some "large-T suppressed" expression for the 

comparison between theory and experiment. Let us introduce 
n (1-T) (l/crtot)(de/dT) fornl0 . For positive integer n , 

the small-T region (where perturbative QCD effects dominate) 

is enhanced relative to the large-T region (where infrared 

and confin ,e 

gluon pair 

we can use 

and mass s i, 

ment effects are big). In particular, for the 

and quark pair production discussed in Sec. III, 

(l-T)(l/atot)(d~/dT) so that the leading infrared 

ngularities in do/dT (which are proportional to 

6(1-T)) are suppressed. It will be equally useful to consider 

the integrated quantitites 

M,(E) = <(l-T)"> = I 
1 n 

?I 
dT(l-T) (l/otot )(da/dT) > (1.3) 

which we shall refer to as thrust moments at energy E. It is 

clear that to leading order in perturbative &CD, all thrust 

moments are proportional to the effective running coupling 

constant crC(E). 

The rest of this paper is organized as follows: in Sec. II, 

we present the doubly~differential cross section for the pro- 

duction of a pair of gluon jets from a color-singlet gauge- 

invariant, scalar source (Fa )2, in the leading-order PV 
perturbative &CD, as a function of the energies of the quanta. 

We evaluate the total cross section which includes both the 

virtual and real emissions. In Sec. III, we derive the fraction 

f(e,6;E) with the inclusion of the constant term in it. We also 
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derive the differential cross section expressed in terms of 

the thrust and compare the gluon jet and the quark jet 

productions. The nonperturbative effects are also discussed. 

Section IV contains discussions and remarks on how best to 

find gluon jets, in view of the prediction that they are 

broader in transverse momentum than quark jets. In Appendix 

A, we show that the pseudoscalar source (Fa uv8Fv) gives the 

same gluon-jet structure as the scalar source. 

II. GLUON JET PRODUCTION CROSS SECTION 

To study the gluon-jet properties by means of QCD per- 

turbation theory, we consider the gluon-jet production from 

the color-singlet, gauge-invariant, scalar source FFV[A]FFv[A], 

where 

F;\,[A] = $,A"," - avA; + g fabcA;A; . 

To zeroth order in the coupling constant g, a pair of gluons 

is produced from this source. To investigate the short-distance 

effects on the gluon-jet spreading we calculate the gluon-jet 

production cross section in the one-loop approximation, which 

subsequently is promoted, on the basis of the argument of Sterman 

and Weinberg, 5 to the leading-logarithmic approximation. In this 

section we evaluate the differential cross section and the total 

cross section to order "C = g2/(47r) . 

Figure 2(a) shows the basic process that leads to the 

production of a pair of gluon jets. Figure 2(b) - (e) are 
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particle emission processes to order g , where the final states 

have either three gluons or a gluon plus a quark pair. All 

quark masses are taken to be zero. We shall perform our 

calculation in the Feynman gauge, and correspondingly we have 

to include the fictitious final state of a gluon plus a ghost 

pair (Fig. 2(c)) (we can of course avoid the ghost-pair pro- 

duction diagram by working in the axial gauge). In order to 

regularize the infrared divergences and mass singularities 

we shall work in n = 4+D dimensions.12 The three-body Lorentz 

invariant phase space is five-fold differential (in four 

dimensions). Since the angular distribution of the gluon 

production cross section depends on the source and is of no 

interest to us, we shall integrate over all angles, leaving 

only two independent energy fractions x. = 2Ei/E (i=1,2,3), 1 
x1+x2+x3 = 2 and 05~~51 (Ei is the energy carried by the 

massless particle i and E is the center of mass total energy). 

A straightforward calculation yields the following doubly 

differential cross section for the sum of real-particle 

) - (k)) in n=4+D dimensions: emission processes (Fig. 2(f 

)f% - g&- 
(l-x2)(1-x3) 

1+ l-x1 + 
1 du(1) = 2 f(D) ED C2(G < dxldx2 C 

+A 
(l-x2)2+(1-x3)~2+2 1 

2 (l-x2)(1-x3) + T(R)N 
f (1-y) 1 - (2-D)(l-x2)(1-x3) 

> 

+ symmetrization in (x1,x2,x3) . 1 (2.1) 
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Here aC = g2/(4~) is the QCD coupling constant and a0 is the 

total cross section for the Born diagram Fig. 2(a). 

f(D) : [(z/?)~I'(~+&D)]-', where f(D) = 1 for D=O. C2(G) is 

the value of the quadratic Casimir operator for the color 

representation G of the gluon; in QCD C2(G) = C2@) = 3. 

T(R) is given by the trace of the product of two color- 

representation matrices of the quark; for triplet quarks 

T(R) = +. Nf is the number of quark flavors. The symmetri- 

zation means (x1+x2+x3+x1) and (x1+x3+x2+x1), so that the sum 

of the constant terms is three times of that shown in (2.1). 

For later convenience we have also fully symmetrized the 

quark-pair emission contribution, which originally is symmetric 

in the quark and antiquark energy fractions but not in the 

gluon energy fraction. We observe that diagram Fig. 2(e) 

contributes only a constant term. 

It is a simple exercise to derive the three-body phase 

space in terms of xi in n = 4+D dimensions: 13 

dR = dxldx2dx3 ~6(2-~~-~~-~~)[(1-~~)(1-x~)(1-x~)]~~ . (2.2) 

The physical region is given by the Dalitz triangle region 

shown in Fig. 3. The three sides (xi = 1) of the triangle 

correspond to two-jet-like configurations where two of the 

three final-state particles are collinear. The differential 

cross section (2.1) is singular for xi = 1; this gives rise 

to mass singularities. The three corners of the triangle, 

where one of xi is close to zero, correspond to soft particle 
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emissions and lead to infrared divergences as well as mass 

singularities for the soft gluon emission processes (Fig. 2 

(f), (g), (i) and (j)). The quark-pair emission process 

(Fig. 2(h)) has only a mass singularity. 

The integration of the differential cross section (2.1) 

over the whole phase space gives the cross section a(1) for 

the real-particle emission processes: 

1 
I I 

1 
u(1) = 

0 
dxl 

l-x1 
dx2[(l-xl)(l-x2)(l-x3)]~D(du(l)/dxldx2) 

"c f(D)ED u. II - q $ + g - $} 

+ NIT(R)@; - $1 . (2.3) 

The single poles in D=n-4 represent mass singularities while 

the double pole arises from the coalescence of a mass singu- 

larity and an infrared divergence at the corners of the Dalitz 

triangle. 

These divergences are cancelled' by those arising from the 

virtual corrections to the same order in ~1~ which are shown in 

Fig. 4. The total cross section u(2) for the virtual correction 

processes to order ac has previously been calculated: 2 

O(2) = a0 % f(D) 
D 

- 2 ED + % E - g 
D2 

D 
- $ + + T >I , (2.4) 

where 1-1 denotes the subtraction point p2 = u2 at which we 

have performed the renormalization of the gluon propagators. 
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For the renormalization of the scalar source (F,,[A])2 we 

have subtracted only the ultraviolet-divergent piece at 

p2,112 for gluon lines and at p2=E2 for the source momentum. 

As a consequence of the cancellation of the infrared 

divergences and mass singularities between the real and 

virtual corrections, the total cross section to order 

"C' utot = u. + O(l) + u(2), is finite: (D-to) 

utot = ao C2(G) - $ Nf T(R) ln(E/vi) 

+($ - $C,(G, + jj Nf T(R) . (2.5) 

The source we have used is not a conserved source. Accordingly, 

the coefficient of the ln(E/n) term in (2.5) represents the 

anomalous dimension 14 of the scalar source (F n"[A] )2. It 

will be important to remark that the constant terms in the 

virtual correction (2.4) are somewhat ambiguous in the sense 

that they depend on how we renormalize the source (we have 

employed an off-mass-shell renormalization procedure). This 

is because one cannot use, due to the presence of infrared 

divergences and mass singularities, the on-mass-shell 

renormalization for exclusive processes such as the virtual 

correction (2.4). Physically one should define crtot in terms 

of some inclusive cross section which is free of the infrared 

and mass singularities; we shall discuss this point in the 

next section. 

In general the operator (F,,"[A]) 2 is mixed, 

under renormalization, with the gauge-invariant 
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operator i ;iavngFb [A]qb, where gFb[A] is the covariant 

derivative for the colored quark field qb(x). With the help 

of the equation of motion, this operator turns out to be 

proportional to the quark mass operator zamqa which vanishes 

for massless quarks (i.e., a soft operator). Therefore, it 

is not necessary to consider the mixing with the quark operator. 

Since we calculate physical quantities, it is also unnecessary 

to take explicit account of the mixing with non-gauge-invariant 

operators. 14 

III. TRANSVERSE MOMENTUM SPREAD OF GLUON JETS 

We are now ready to study the spread of the gluon jet due 

to short-distance QCD effects and compare it to that of the 

quark jet. We calculate the fraction f(e,6,E) of two-jet-like 

events specified by E and 6 in the total events. We then 

calculate the thrust distribution from eq. (2.1) and compare 

it to the quark-jet case. In Appendix A, we present our previous 
n 

method4 of calculation which is essentially the equivalent photon 

approximation of Weizsacker and Williams. 15 This method was 

estensively used in the generalized parton language of Altarelli 

and Parisi." 

Let us first determine the kinematical regions which 

contribute to the inclusive cross section u(E,~) for jet-like 

final states. A jet-like configuration is characterized by a 

hadronic cone of half angle 6 inside which all but a small 

fraction E of the total energy E is emitted. Suppose we consider 
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the configuration where xl>x2 x3 (See Fig. 2(R)). The angle 8 

between c2 and c3 is given in terms of x l,x2 and x3 by 

sin2&e) = (1-x1)/(x2x3) . (3.1) 

Therefore, 0~0~26 when 

1 - x1 = x2 + x3 - 15 (sin 2 6)x2x3 (3.2) 

which is, together with the two other similar regions, shown as a 

shaded region in Fig. 3. The hard-momentum regions are char- 

acterized by 2~5~~51-2~ (i=1,2,3) while the soft-momentum 

regions are the three remaining regions on the corners of the 

triangle. 

The inclusive jet cross section is obtained by integrating 

the differential cross section (2.1) over the shaded area (hard 

+soft) in the Dalitz triangle. 16 In particular, for the hard 

momentum region near x121, i.e., 2 x2+x3-126 x2x3 and 2c(x251-2e, 

the phase space integration is written as 

Cl-x2)/&S2x2) 2 6 (1-x2)x2 
dx3 I(Xi) = d(l-xl)I(xi), 

l-x2 0 
(3.3) 

apart from terms of order 6 2, where I(xi) = [(1-xl)(l-x2)(l-x3)]~D. 

The phase space integration for the soft momentum region 

05x252 E is given by 

1 

dx3 
l-x3 

d(l-xl) I(Xi) . (3.4) 
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The actual calculation is simplified by making a suitable 

change of variables. The result is the inclusive cross 

section for the real-particle emission processes 

u~(E.~) = co $ 5 - % k)E" - (4 ln(2c)+%)ln 6 

5 2 ---71 6 + $ + NfT(R) $ 
i I 

where finite terms proportional 

AED+$ln6-2$ , 
11 

(3.5) 

to E and/or 6 have been 

This expression agrees with our previous result, 2 neglected. 

which was obtained by a different method of calculation. The 

Born diagram (Fig. 2(a)) and the virtual corrections (Fig. 4) 

lead to two back-to-back jets. They must be added to the cross 

section (3.5) to give the inclusive jet cross section to order 

% 

U(E,6) = uo + O(2) + U1(E,6) , (3.6) 

which is free of infrared divergences and mass singularities. 

Let us define the fraction f(c,6) of all jet-like events which 

have a fraction (1-e) of the total energy E inside some pair of 

opposite cones of half angle 6: 

f(gluon) = u(~,b)/o~~~ 

= 1 - 2 4C2(G)ln(2e) + F C2(G) - + NfT(R)}ln(6) 

+ ($ - $C,(G) + $ NfT(R) 
I 

. (3.7) 

Note that the source-dependent ln(E/u) terms in u(e,S) and utot 

are cancelled in the ratio f(e,6). As noted earlier, the virtual 
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correction o(2) has some ambiguity associated with the re- 

normalization of the source. Owing to the multiplicative 

nature of the renormalization of the source, this ambiguity 

is common to u(E,~) and utot and therefore it disappears from 

the ratio f(c,6) = o(e,~S)/a~~~ . This ratio f, including the 

constant term in it, has a definite physical meaning independent 

of the renormalization of the source. We note that the total 

cross section ctot can be written as u tot = U(E,6)/f(E,6), 

where quantitites on the right-hand-side are directly measurable. 

It is interesting to observe that the fraction f(c,CF) can 

be expressed directly in terms of the Altarelli-Parisi 10 parton- 

splitting functions PGG(Z), PqG(Z), Pqq(Z) and P,,(Z) (listed 

in Appendix A): 

5 

l-2e 
f(gluon) = 1 - 2 (ln 6) dZ(PGG (Z) + PqGG')) > (3.8) 

2E 

s 

l-2e 
f(quark) = 1 - % (In 6) dWGqW + P,,(Z)) , (3.9) 

2E 

where only logarithmic terms are kept. The fractions f in Eqs. 

(3.7) and (1.1) (apart from the constant terms) are reproduced 

upon integrations over 2. In Appendix A we show the derivation 

of Eq. (3.8) in detail. It is clear from this analysis that the 

"jettiness" of quark jets and gluon jets is source independent. 

Before the comparison of the quark jet and the gluon jet, 

let us consider the meaning of the coupling constant dc in 

(3.7) and (3.9). These two expressions are based on one-loop 

calculations and a c is a constant at this level. As suggested 

in Refs. 4,5, with suitable assumptions, these one-loop results 
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can be generalized to the leading logarithmic approximation; 

namely, the coupling constant ac can be replaced by the 

running coupling constant 3 cc(E) which approaches zero as 

E-t-. Such a replacement is valid in the case of deep 

inelastic scattering where the short-distance effect and 

the long-distance effect are factorized by use of the operator 

product expansion. Now let us look at the three-jet-like 

configuration in Fig. 2(a). If G2 and G3 are not soft (i.e., 

x2)2& and ~~12~) and 8'26, all momentum invariants such as 
+2 +2 2 
Pl ' p2 = (%x2) 2 2 GEE and (c2-c3)2 ) (&E)22~l~2(l-cose) 

22. z 2~6 E increase with the total energy E. Such a reaction 

will be regarded as a short-distance phenomenon and will be 

characterized by the QCD running coupling constant ccc(E) which 

decreases like (In E) -1 as E+m. On the other hand, if, e.g., 

o(x2~2e or 0<8<26 so that some momentum variables are no -- 

longer hard, then perturbative QCD cannot be applied to such 

configurations. However, for the inclusive cross section 

u(E,~) or the ratio f(e,6) the contribution from these latter 

configurations are smeared over; the real-particle-emission 

contribution and the virtual correction add up to remove these 

long-distance singularities. Therefore, if E and 6 are chosen 

so that the (nonperturbative) long-distance effects are smeared 

over, the ratio f(s,6) will represent the short-distance 

features of jet phenomena. For short-distance phenomena one 

can use an argument based on the renormalization group. AS 

noted by Sterman and Weinberg, 5. if the ratio f=f(E/u,aC;E,&) 
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is free from infrared and mass singularities, it is rewritten 

as 

f(Elv,aC;E,~) = f(l, c@);E,~) , (3.10) 

where at(E) is the coupling constant defined at the momentum of 

order E. With ec replaced by cc(E), the perturbative results 

(3.7) and (1.1) are expected t 

so is the total cross section 

In Fig. 5 we compare the 

and the gluon-jet angular radi 

o be reliable at high energies; 

(2.5). 

quark-jet angular radius G(quark) 

us G(gluon) for the same values of 

f, E and aC(E). To a good approximation 

G(gluon) 2 (6(quark)) 
C2(R)/C2(G) 

= (6(quark))4'g , (3.11) 

as noted earlier. 2,6 The short-distance effects of QCD tend to 

make the gluon jet much broader than the quark jet. The energy- 

dependence of the coupling constant olC(E) tells us that the 

quark and gluon jets get narrower with increasing E. The narrowing 

of gluons jets, however, is slower than that of quark jets. This 

general qualitative feature is mainly a consequence of the difference 

in the color factors C2(R) and C2(G) associated with the represent- 

ations of the quark and the gluon in &CD. (The larger the 

representation, i.e., the gross color charge, the larger the 

spreading of a jet.) The threshold energy for the detection of 

a clean gluon jet will be an order of magnitude bigger than that 

(%3 GeV) for the detection of a quark jet. This renders the 

detection of gluon jets very difficult. It is intriguing to 
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consider this as the reason why gluon jets have so far escaped 

detection. 

The perturbative results (3.7) and (l.l), from which we can 

extract some qualitative features of jet phenomena at high 

energies, may not be adequate for quantitative analysis at 

present energies. This is because nonperturbative effects 

(fragmentation of quarks into hadrons) observed experimentally 

seem at least as important 8 as the perturbative effects at the 

center-of-mass energy E s 9 GeV available at present. There is 

no inkling as to how a gluon fragments into hadrons. We do not 

know how big an angular radius 6 is required to smear out the 

non-perturbative effects in a gluon jet. It is even possible 

that an energetic gluon fragments with such a large average 

transverse momentum that the jet formation never materializes. 

If this is the case, any QCD perturbative study of the gluon- 

jet structure is useless and we have to look for other means to 

test the existence of the gluon. For rough estimate, let us 

suppose that the gluon fragmentation has a comparable limited 

transverse momentum as the quark fragmentation. Even in this 

case, f(E.6) may not be a useful quantitative formula for 

energies available now or in the near future. Let us take the 

average transverse momentum to be <p,> 2, 0.3 GeV/c. The non- 

perturbative effect on E and 6 will be EE.~ % <p,>/E and 

6N,p. % (<P,:,<n>)/E, where cn> is the average hadron multi- 

plicity. Typically, for E = 10 GeV and <n; 21 10, we have 

EB P (" 0.03) reasonably small but 6B p (Q 0.3) uncomfortably . . . . 
large. 
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For a given energy, the perturbative effects are expected 

to dominate over the non-perturbative effects at large trans- 

verse momentum with respect to the jet axis. If we have the 

differential cross-section expressed as a function of pI, we 

can compare the quark-and the gluon-jet processes at large pL 

where non-perturbative effects are small. Following the 

suggestion of Farhi, 8 let us use the thrust T distribution 

(see eq. (1.2)) to make a quantitative comparison of the quark-jet 

and gluon-jet productions. 

For two-body configurations the thrust T is proportional 

to 6(1-T). Therefore the Born cross section u. and the 

virtual correction o(2) lead to the differential thrust 

cross sections (doo/dT) = 006(1-T) and (da(2)/dT) = 0(2)6(1-T), 

respectively. 

For three-body configurations the thrust is given by 
2 T = max(xl,x2,x3) and 5 5 T 2 1. Let us suppose T = xl > 

x2'x3 and integrate the differential cross section (2.1) over 

x2 with T = x 1 kept fixed, taking into account the symmetry of 

the phase space. We obtain the differential cross section 

for the three-particle emission expressed in terms of thrust: 

do(l) = 3 
dT d~2[(1-xl)(l-x2~(l-x3)]~D $;$; , (3.12) 

where T+x2+x3 = 2. The factor [(l-xl)(l-x2)(l-x3)]~D serves 

to regularize the infrared divergences and mass singularities 

that occur at T=l, and can be set equal to one for Tfl. 

Therefore, except for T=l, 



-23- FERMILAB-Pub-79/16-THY 

1 do(l) = 
< dT 

x In + (3T-2){C2 

T(l-T) + &) - 2) + NfT(R)(l-2T(l-T))} 

cG)(; + $ T - g A) + NfT(R)(-ST+ ; &)/]. 

(3.13) 

It is evident that the leading singularities of da(l)/dT at T=l are 

cancelled by those of the virtual correction du(2)/dT = a(2)6(1-T). 

(This is simply because the infrared divergences and mass 

singularities are cancelled between o(l) and u(2).) In general, 

if we consider quantities like (1-T)"(da/dT) (nzl), it is not 

necessary to take explicit account of genuine two-body config- 

urations (i.e., the Born term and the virtual correction) whose 

contributions are proportional to 6(1-T). Correspondingly, we 

shall henceforth consider the (1-T) weighted, normalized thrust 

distribution (l-T)"(l/a,,,)(do/dT), (n>l). - Up to order olC(E), 

we can write (1-T)"(l/a tot)(do/dT) = (l-T)"(l/oo)(d~(l)/dT), 

so that the renormalization-scheme dependence drops out 

trivially. In particular, the average of(l-T)is given by 

<l-T>gluon = 
1 

i 213 
dT(l-T)(l/oo)(do/dT) 

= %[C2(G)(& 
2 

-gln3-++2ln2ln3+ 

2(L(- $)-L(i))}+ NfT(R){- & + 2 In 3] 

= % C2(G)(0.787) [ + NfT(R)(0.114)] 

= 2 (2.59) ) (3.14) 

where we have included four flavors. L(x) is the Spence function 
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. 
We observe that most of the contribution to <l-T> comes 

from the gluon-gluon interaction. The spreading due to the 

quark-gluon interaction contributes roughly 10% to the total. 

For the quark jet, on the other hand, the differential cross 

section in terms of thrust is 

,(R) [~~c~wTj - 3)ln(G)- g 
1 do(quark) = 'C 

utot dT 7 c2 

and the averaged 1-T is 

<l-T>quark 2 2 C2(R)(0.789) 2 2 (1.05) . 

2-T 
(3T-2) l-T 1 , 

(3.15) 

(3.16) 

In Fig. 6 we plot (1-T)(l/a9)(do/dT) for both the gluon case 

(solid line) and the quark case (dashed line). In addition, in 

Fig. 7 we show the ratio ((l/~o)(d~/dT))gluon/o(do/dT))quark, 

which turns out to be close to C2(G)/C2(R) = 2 for the entire 4 
2 range 3 ( T < 1. 18 This implies that a gluon jet and a quark jet 

will have, apart from the overall color charges, almost the 

same structure. Roughly speaking, for both types of jets, 

quantities which are related to the transverse-momentum spread of a 

jet, such as <l-T> and the spherocity, 8 will be characterized 

by the ratio C2(G)/C2(R) = i _ In particular, from (3.14) 

and (3.15) we learn that <l-T> gluon/<l-T>quark = 2.47%C2(G),C2(R); 

this is also true for the ratio of the "large-T suppressed" 

n-th moments <(l-T)n>gluon ,<(l-T)n>quark Q, C2(G)/C2(R) (n,l). 

The nonperturbative effect on do/dT is important for large T 
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(See Fig. 6). To suppress this nonperturbative effect 

relative to the perturbative effect, it will be useful to 

consider the abovementioned moments 

<(l-T)"> z n 
dT(l-T) (l,otot )(du/dT) _ (n>l) . 

In Fig. 6, we have included the (1-T) weighted thrust dis- 

tribution for the quark fragmentation, which is obtained 

phenomenologically17 from experiment. In Fig. 8, where the 

(l-T)2(1,0 tot)(du/dT) distributions are plotted, we observe 

that the non-perturbative effects are suppressed for T < 0.9 , 

where the perturbative effects begin to dominate. The effects 

of higher order perturbative QCD contributions can best be 

measured for T values between 3 and 213. 

IV. DISCUSSION AND REMARKS 

The hadronic decay of a quarkonium state via the three- 

gluon intermediate mode has been discussed exhaustively in 

the literature.1' Direct observation of the gluon jets from 

the T decay is anticipated. However, as a consequence of our 

analysis on the gluon jets, the following distinct possibility 

emerges : the gluon jets from T decay are not observable, that 

is, prohibitive statistics would be required to sort out the 

three-jet structure in the hadronic decays of the T. If this 

is the case, we are left with few alternatives to search for 

the gluon-jet structure in the quarkonium decay. The best 

solution to this problem is provided by the discovery of a 
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very heavy quark. The heavier the quark mass, the more 

energetic are the gluons produced from the decay. Since 

the gluon jet narrows as the energy of the gluon increases, 

the detection of the three-gluon jet structure becomes more 

accessible. In this section we give a brief discussion on 

what we consider to be the best way to search for the gluon- 

jet structure in T decay. 

The property that is easiest to find in the analysis 

of jet structures is the jet axis. Even for a multijet 

event, we can still define the thrust axis by maximizing 

the momenta parallel to it. Once the thrust axis is de- 

termined for each hadronic decay event, we can then study 

its angular distribution with respect to a fixed direction, 

say, the e+e- beam direction. We call this angle ET. 

It is straightforward to derive the differential decay 

cross-section for the three-gluon decay of an ortho-quarkonium 

state:20 

1 dr3g 9 . 1 

r3g 
dTd cos BT = ( TT2-9) 4T2(2-T)2 

-B(T)(l-3cos2eT) 1 (4.1) 

where 

A(T) = (3T-2)(2-T2) 
T 

+ 2(1-T)(5T2-12T+S) ln 
2-T 

B(T) = 1-T (3T-2)(2T3-7T2+6T+2) 
4 T2 T 

+ 2(T4-6T3+18T2-24T+12) ln 2-2T 
2-T WI T 
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and T3g is the three-gluon decay width of a heavy quarkonium 

state (see Fig. 9(a)). We note that as T+l, B(T)+0 and 

1 dr3g 9 

r3g 
dTdcoseT + (n2-9) 

$ (l+cos2eT) . (4.2) 

This is the same angular distribution as the background 
+ - * - 

ee +y -t qq and the hadronic decay via a virtual photon. 

For values of T away from unity, the angular dependence and 

the differential cross-section both decrease, as shown clearly 

in Fig. 10. For example, at T = 0.8 

1 dr3g 9 

I& 
dTdcoseT 2&y ;(1+0.2 cos2eT) . (4.3) 

T=0.8 

The angular dependence should provide a better test of the 

three-gluon decay mode than a single T dependent differential 

cross-section. To see this, let us integrate over the angle 

BT to obtain17 

1 dr3g - 6 A(T) 
r3g dT (n2-9) T2(2-T)2 ' 

(4.4) 

This T distribution is plotted in Fig. 11, where we have also 

plotted a pure three-body phasespace distribution (properly 

normalized): 

(ll”tot )(du,dT) = 6(3T-2) . (4.5) 

The two distributions (4.4) and (4.5) look almost identical, 

with the three-gluon decay distribution slightly more peaked 

at T=l. In fact they have the same average thrust 
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c~-T'~~ = <l-T> 3-body phase-space = 0.111 . (4.6) 

This means that the thrust distribution of the T decay does 

not provide a sensitive test of the vector nature of the 

gluons. This is in contrast with the bremsstrahlung processes, 

where the amplitudes have enhancements due to infrared and 

mass singularities, giving rise to drastic deviations from the 

phase space. 

Here we have tacitly assumed that the angular distribution 

(Fig. 10) calculated from the lowest-order three-gluon decay 

diagram is not drastically altered by higher-order corrections. 

These corrections include (1) higher-order perturbative QCD 

corrections (such as shown in Fig. 9(b)) as well as (2) non- 

perturbative effects, e.g., the internal motion of quarks 

inside the quarkonium. Careful evaluation of these corrections 

(which may be sizable) is beyond the scope of this paper. 

Phenomenologically, we can learn something about the size of 

the corrections by looking at the T distribution. A pure 

three-body decay (such as Fig. 9(a)) covers the range 

213 < T < 1 . Due to the higher-order corrections, a 

quarkonium state can decay via four (or more)gluons (and/or 

light quarks) into hadrons; then the thrust distribution 

becomes nonzero for values of thrust down to TL&. A 

measurement of such events with + ( T 5 213 should give 

us some indication of the size of the higher-order corrections. 

In Fig. 11, we have, for the purpose of illustration, also 
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plotted the thrust distribution of a four-body final-state 

toy model (for convenience, we choose the matrix element to 

be a smooth-behaving function such that the thrust axis is 

always along the direction of the most energetic particle). 

It is properly normalized, with an average thrust <l-T> 4-body= 
0.16; this bigger value for <l-T> will typically characterize 

the contribution of four(or more)-body phase-space models. 

We should point out that the experimental thrust dis- 

tribution of a quarkonium decay into hadrons is expected to 

peak towards large T more than that shown in Fig. 11. This 

is due to the electromagnetic decay mode (QQ) -f y* + qs + hadrons, 

where Q is a heavy quark and q is a light quark. Fortunately 

this decay mode can be determined accurately from the measure- 
+- ments of the background e e + y 

* - 
+ qq + hadrons and the 

leptonic width of the l-- quarkonium state. 

We conclude the discussion with a few remarks. 

(1) we do not expect to observe the gluon-jet structure in 

T decay. Probably even the acoplanarity structure is not 

observable. It is difficult to estimate the threshold energy 

of a gluon above which its jet structure is observable. Our 

best guess of this threshold value is somewhere above 10 GeV 

per jet. 

(2) The three-gluon decay mode is infrared finite. A comparison 

of its thrust and sphericity distributions would reveal 

properties of the gluon fragmentation. Properties such 

as multiplicity and quantum number correlations are of utmost 

interest, even though they cannot be unambiguously calculated 

within the framework of perturbative &CD. 21 
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(3) Theoretically, the hadronic decay of a pseudoscalar (or 

a higher angular momentum) state via two gluons (Fig. 9(c)) 

would be most useful, 22 since this decay width is much bigger 

than that of the three-gluon decay mode. Typically we arrive 

at the decay of a state X via radiative transition 

(l--) -+ y + x 
t-4 two gluons 

for any quarkonium system. We can always go to the rest frame 

of the state X by measuring the photon momentum. Our Eqs. (3.7) 

and (3.13) should be directly applicable to the hadronic decay 

of x. 

(4) As pointed out originally by Appelquist and Politzer,23 the 

hadronic decay of an orthoquarkonium state provides a measure- 

ment of the QCD coupling 

rhad 
RQ = i- + _ eQ2 = Cl["CC(E)13 = C2 

u 1-1 
(4.7) 

where C 1, C2 are known constants and e 
Q 

is the fraction of the 

electric charge of the heavy quark Q. This cubic logarithmic 

dependence on the bound-state mass E provides a good test of 

perturbative QCD. However, there may be parts of the phase 

space where some of the energy-momentum invariants involved 

are not big enough to justify the use of perturbative QCD.24 

The situation can be somewhat improved by considering the 

partially integrated r 
%' say r3,(To) 

TO 

r3g (To) = Wgg/dT)dT 
% 

(4.6) 
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instead Of r3g (T3g(To=l) = r3g) since for T away from 1, 

all energy-momentum invariants involved are large. Hence 

we replace eq. (4.7) by 

RQ(TO) = eQ 2(r hadcTO) lr + m.) ’ 
u IJ 

If we take A=500 MeV, we have 

RY Ry(To) 

T = RT(To) 2, 4 

(4.9) 

(4.10) 

for any value of the thrust threshold To#l. 
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APPENDIX 

In this appendix we shall outline the calculation of the 

inclusive jet cross section for the color-singlet, gauge- 

invariant pseudoscalar source F" uv [A1 3Ev (A1 = +E~~,& b:Al FiT [Al . 

In particular, we shall express the cross section for real 

particle emission processes in terms of the parton splitting 

functions of Altarelli and Parisi. 10 

The pseudoscalar source FFv[A]8Fy[A] effectively rep- 

resents the two-gluon decay of a O-' quark-antiquark bound 

system in the limit of heavy quark mass. 25 To discuss this 

source in the framework of dimensional regularization, special 

care must be taken to define the Levi-Civita tensor E 

(which is peculiar to four dimensions) in arbitrary dimensions. 

In four dimensions the product of two of these tensors is 

expressed in the form of a determinant 

E”11J2!J3u4EU1V2v3V4 = - det(gu,v.). (i,j = 1%4) (A.1) 
1J 

Since only such products appear in our present case, we shall 

define the n(=4+D)-dimensional generalization of this product 

by the right hand side of eq. (A.l). 

In the real-particle emission processes shown in Fig. 2 

a virtual gluon (with momentum p) decays into two gluons or 

ghosts or quarks (with momentum k and 1). Let us denote by 

e the angle between the three-momenta $ and $ in the center- 

of-mass frame, and introduce the fractional energy Z=Zk'/E, 

O<Z<l. In terms of these variables the cross section is 

given by 
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where r is the square of the one-loop Feynman amplitude 

Mdivided by the lowest-order amplitude ,Ao,r= I~(l-l0op)/~~1~. 

In the Feynman gauge the contributions from diagrams Fig. 2 

(f) Q (j) are given by 

3=-( 
f)+(g)+(h)+(i) = 2g2 {C2(G)(1+2Z(1-Z)) + NfT(R ,)2 (1 - 

+ . . . 

r(j) = 2g2C2(G)[4{(2-Z)(l-Z)/(Z(l-cos@))[ 
1; 

(l/P2) + a** 1 , (A.3) 

where only terms singular for p2+0 are retained. (The contri- 

butions from the mirror image diagrams have also been included.) 

As may be checked easily, the l/p2 terms in Ftake exactly 

the same form for both scalar and pseudoscalar sources (diagram 

by diagram). It is simple to see that the leading contribution 

(i.e., excluding nonleading terms of order E and/or 6) to the 

jet cross section comes from those parts of y that are 

singular for p2+0. This, combined with the above fact, implies 

that both sources lead to the same short-distance features of 

0 = oo(8T2)-1f(D)(+E)2+D I dZ(Z(l-Z))l+D I d cos 0 

[ 
(sin Ei)D/(l-Z cos2 i)2+Dp ' 

(A.21 

gluon jets. 

The hard-momentum region which gives rise to mass sing- 

ularities is characterized by the phase space 2e<Z<1-2~ and -- 

0<8<2(1-Z)6, where the latter follows from the restriction -- 
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that the angle between 2 and x be less than 26. Note that 

Fig. 2(b) involves two collinear configurations ZIIx or 

-gII G) that lead to mass singularities. The infrared 

divergences arise from the soft-momentum configuration 

0<2<2~ and O<B<n as well as another similar configuration 

corresponding to O<l-2~2~. - - Let us add up and rearrange 

the contributions from the hard-and soft-momentum config- 

urations within the phase-space integral for each amplitude 

in (A.3). Then we perform the angular integration and put 

all the expressions together. The result is the cross 

section 

ol= o,(a,/~)f(D) L (; - & r2D)j1 
0 

dW'zU-WDG'GG(z) + P,,(Z)) 

1-2s 
+(ln6) s 2E 

dZ(PGG(Z) + PqGCW + $ NfT(R)l , 

(A.4) 

where PGG(Z) and Pqg(Z) are the parton-splitting functions" 

PGG(z) = C2(G) 1-z 2 + & + Z(l-Z) 1 I 

P ,,(Z) = Nf T(R)[Z2 + (1-Z)2] . (A.5) 

In the above expression (A.4), the limit D+O is understood 

and terms of order E and/or 6 are neglected. The l/D term 

in (A.3) represents mass singularities arising from the angular 

integration, e.g., 

d8(sin8)'D = B(+,@) = (2 '+'/D)[i- &T~D~+~(D~)] . 

The constant term 4 NfT(R) is related to the use of dimensional 
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regularization; in fact, we could remove it by assigning 

suitable D=n-4 dependence to the tract Tr(yVyv) 6Nhich is 

chosen to be 4g 
uv in our present calculation) so that 

Tr(yuyV) = (4-D)g,,v. Of course, all physical results are 

independent of the choice of definition, as long as it is 

used consistently. The integration over Z leads to our 

preVioUS result (3.5) and hence the fraction f(e,6) in eq. (3.7). 

The interpretation of (A.4) in terms of the generalized 

parton language is obvious. The parton language, in 

particular, suggests that the structure of the In S term 

in (A.4) is quite universal, being independent of how gluon 

and quark jets are produced. 

It is straightforward to calculate the fraction f(e,8) for 

the quark-jet case. 26 Eq. (3.9) is obtained after the cancellation 

of divergences. The parton functions 10 are 

PqqW = C2(W(l+Z2)/Wz) , 
P,,(Z) = C2(R)[l+(l-Z)2]/Z _ 
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Fig. 1 

Fig. 2 

Fig. 3 

FIGURE CAPTIONS 

+ - e e annihilation processes that lead to 

hadronic jet phenomena. The wavy line de- 

noted by y 
* 

is the virtual photon. 4 and g 

stand for a quark and a gluon, respectively. 

Gluon-jet production from a source. Wavy 

lines are gluons, dotted lines are Faddeev- 

Popov ghosts and solid lines are massless 

quarks. (a) lowest order diagram. (b) - (e) 

particle emission processes to leading order. 

(f) - (k) squared amplitudes; the dashed lines 

denote unitary cuts. Mirror reflections of 

these diagrams are not shown. (1) three- 

body configuration. 

Three-body phase space expressed in terms of 

the energy fractions xi(i=1,2,3) (Dalitz plot). 

The physical region is 05~~51, x1+x2+x3=2. 

The shaded area along the boundary of the 

phase-space region corresponds to the two-jet 

like final state configuration specified by 

c and 6 . 

Leading-order virtual corrections to two- 

gluon production. Diagrams (f) and (g) 

involve only ultraviolet divergences. 

Comparison of the gluon-jet angular radius 

and the quark-jet angular radius for fixed 

Fig, 4 

Fig. 5 
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Fig. 6 

Fig. 7 

Fig. 8 

Fig. 9 

Thrust distributions (ol,/n) -l(l-T)(l/~tot)(d~/dT). 

The solid line corresponds to the gluon jet while 

the dashed line corresponds to the quark jet. 

The long-dashed line corresponds to the thrust 

distribution for the quark fragmentation with 

exponential pI 2 dependence at ECM = 16 GeV 

with aC(E=16 GeV) % 0.21. (See Ref. 17) 

The ratio of the differential cross sections 

(l/oo)(du/dT) for the gluon-jet and quark-jet 

cases. The vertical scale is measured in units 

of C2(G)/C2(R) = 9/4. The dashed line represents 

the contribution to (da/dT)(gluon) from the 

gluon-gluon interaction only. The solid 

line includes the quark-gluon interaction 

as well. (Nf=4). 

The n=2 thrust distribution (a,/~) -1(l-T)2 

(l'atot )(do/dT). The solid line and the dashed 

correspond to the gluon and quark jets, res- 

pectively. The long-dashed line corresponds 

to the quark fragmentation. 

(a) The three-gluon decay mode of an ortho- 

quarkonium state; (b) a typical higher-order 

diagram for the decay of a quarkonium state 

(c) the two-gluon decay mode of a para- 

quarkonium or a P state. 
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Fig. 10 

Fig. 11 

The plot of 

as a function of the angle BT for different 

values of T. 

The thrust distribution of (l/utot)(du/dT). 

The solid line is for the three-body phase 

space. The dashed line is for the three- 

gluon decay. The long-dashed line is for the 

four-body toy model. The last is provided 

to illustrate a typical four-body thrust 

distribution. 
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