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I. INTRODUCTION

An extensive 1iteraﬂ:u]:'e1 now supports the notion2 that mesons
which are composed of massive quarks may be described in terms of
the nonrelativistic Schrodinger equation., An impressive phenomenology
of the psion family has been constructed following the analogy between
(e+e-) positronium and (cC) charmonium. Several approaches to the
problem have been fruitful. The most thoroughly explored of these
has been the explicit-potential technique in which a specific form is
assumed for the interquark potential. In most applications, this
potential (which is thought to result from the exchange of massless
gluons) has been assumed to be a superposition of a Coulomb term and
a linear confining potential. 3 However, no compelling derivation of
this form from the underlying field theory has been given, and alternative
suggestions4 have met with some degree of phenomenological success.
Consequently it has been of interest to obtain general results which
permit the properties of the potential to be inferred from experiment.
For example, the scaling of observables with quark mass has been
investigated by a number of authors, > and several important theorems
on the order of levels and on leptonic widths have been proved. 6 In
addition, .general results (which do not depend upon details of the
potential) on the number of levels below new-~flavor thr‘esholdl7 and on
other connections between observables8 have been exhibited. We present
here the first application of the inverse scattering method to the determination

of the interquark potential.
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In the preceding paper9 (hereafter denoted as I) we developed a
technique for reconstructing a symmetric, confining, one-dimensional
potential V(x) from the energy spectrum of its bound states. The
energies En of the N lowest-lying bound states determine an approximate
potential VN(X) which is a rational function of exponentials. The approxi-
mation VN(X) is a symmetric. reflectionless potential which supports N
bound states at the first N bound-state energies of V(x). It is not
confining, but approximates V(x) over a range which is roughly
delimited by the classical turning point [ XN, of the highest level

included, where

Vi [xg ) = E (1.1)

N 9
(For simplicity we consider a potential which is monotonically increasing
for x > 0.) Beyond the classical turning point, VN(X) approaches a

value E0 which lies between the highest level included in the approximation

and the lowest level omitted,

Eg< By <Eg,., . (1. 2)

In particular examples it was seen that the choice

n

E E_+E

o -z Byt By (1.3)

resulted in excellent approximations. For values of x within the expected

range of validity, the sequence of approximations VN(X)‘ was shown to
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approach rapidly the exact result, yielding faithful representations
of V(x) for N as small as 3 or 4. We now apply this method to the
problem for which it was conceived.

Within the framework of the nonrelativistic Schrodinger equation
with a central potential,

-2
(:—2‘7;; +V(r)) ¥r) = EXr) s (1.4)

the procedure we shall describe for calculating V(r) is explicit and
essentially unambiguous. We restrict our attention to spin-triplet giarkonium
states. The possibility of going beyond (1.4) to incorporate spin-spin,
spin-orbit, and other relativistic effects will not be discussed. In
Section II we collect some important formulae derived for the one-
dimensional problem in I and make the necessary extensions to the
s-wave radial equation in three dimensions. The approximate potential
V4(r) deduced from the masses and leptonic decay widths of  and

is the subject of Section III. Assuming the interquark potential to be
independent of quark flavor, as it would be in quantum chromodynamics,
we apply the reconstructed cC potential to predict properties of the new
quarkonium system suggested by the discoveryio of the T family. We
also solve the p-wave S.‘chrb'dinger equation in the reconstructed

3
potential to determine the positions of P _levels and radiative decay

J

rates. The manner in which such derived predictions may be used to
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resolve ambiguities in the reconstructed potential is explained. Section

IV contains a summary and conclusions.

I, INVERSE PROBLEM FOR THE
RADIAL SCHRODINGER EQUATION

We first summarize the procedure derived in I whereby a symmetric,
confining, one-dimensional potential V(x) is locally reconstructed from
the energies En of its first N bound states. The reconstructed

potential is specified by the N bound-state parameters

2 _
k" = 2p(E, - E) . (2.1)

where p is the reduced mass and E0 has been chosen according to (1. 3).

We define an N X N matrix A with elements

)\m)\n
= + —
Amn 6mn kK +k ? (2.2)
n
where
"n(X) = c,exp (-KnX) s (2.3)

and the constants c, are given in terms of the k's by

. (2. 4)
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We showed using the Gel'fand-Levitan inverse scattering formalism
that a symmetric, reflectionless potential which supports bound states

at Ei’ Ez,.,., E__is given by

N
dZ
VN(X) = EO -2 d—XZ- log (Det A) R

The corresponding normalized bound-state wavefunctions, which obey

the condition

I:dx [LIJ n(X)} 2 . 1 .

are obtained from the formula

Gy = A Det Al
Yn X Det 4 y

The matrix A (n)

is simply given by A, with the elements of the n-th
column replaced by their derivatives with respect to x. Eguations (2. 5)
and (2. 7) provide a sequence of approximations to V(x) and its bound-
state wavefunctions.

The reduced radial equation which follows from (1.4) upon

substitution of
¥(x) = R(DY, 60,9)

and

(2. 5)

(2.6)

(2. 7)

(2. 8)
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u(r) = rR(r) (2.9)
is
- —21—u“ﬂ(r) + [E(—Iizi—)— + V(r) - E]u(r) = 0 . (2.10)
K 2pr

For s-waves, eq. (2.10) is identical to the one-dimensional Schrddinger
equation. As a result, the formulas:(2.5) and (2. 7) may be applied to
the study of quarkonium systems. However, because of the boundary

condition
u(0) = 0 (2.11)

imposed by the finiteness of the radial wavefunction at the origin, only

K., «so COrrespond to energy levels

the even-numbered parameters k 00 Ky

of physical states. The remaining parameters Kys Kgo soo describe

3
states of a one-dimensional system which have even parity and hence do
not satisfy (2.11). Consequently, in order to apply the one-dimensional
formalism to the s-wave charmonium system, we must regard ¢ and

' as the second and fourth levels of a symmetric one-dimensional
potential V(r) = ¥(=r). The even-parity levels which occur in the one-
dimensional problem are interleaved with the physical psions, one below
the y, one between Y and", and so on.

The values of the parameters « that correspond to

2, K4; oo e

physical states are determined directly from particle masses (with a
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given choice of E = and charmed quark mass). The others (K1, K gs oo o)

0

do not have immediate physical significance. However, the wave functions
of the physical states depend through (2. 7) upon the 'unphysical"

parameters « The square of a 3S 1 wave -function at the

1, K3, LRI

origin is measured by the leptonic decayurate as“

M 2

[w(0)] * =

= MY = e'e) , (2.12)
16ma e

Q

Q is the charge of the

constituent quark. This piece of information permits the determination

where M% is the vector meson mass and e

of the odd-numbered k's from experimental data.
To illustrate these points let us construct the N = 2 approximation
to the charmonium potential from the mass and leptonic width of $(3.095).

We must first choose a charmed quark mass m and a parameter E0°

According to the rule (1.3), the latter should lie about halfway between

E2 = MLp and the unphysical level at E3. The parameter « 2 is then

given by

1
2

< = [mC(EO - MLP)] . (2.13)

To compute k , we employ eq. (2.7) to construct the approximate

1

wavefunction. Imposing the condition

fd3l" [‘P(}:)]z =1 , (2. 14)
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which allows the identification

un(r) = AJ?-LIJn(r) s
we obtain
2 2
K _(x ~ =-x_")
2 2'1 2
[\II(O)] - 411_ ’

from which

2.2, 4n[%0) 17

1
2 Kz

The formula (2. 5) yields a reconstructed potential Vz(r) in terms of
K1 and Kz.

In the next Section we shall construct the approximate interquark
potential V4(r). For N > 2 we have found no simple analog of (2.17)
for the odd-numbered «*s. We shall determine them implicitly through

(2. 7) and (2.12).

(2.15)

(2. 16)

(2.17)
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I, HEAVY QUARK SPECTROSCOPY
A. Calculation of Central Potentials
The N = 4 gpproximation to a central potential is calculated from
the masses and wavefunctions at the origin of the two lowest-lying s-wave
bound states. For the 3S 1 states of the charmonium system, the

parameters Ky and k 4 2re obtained from the { and ' masses,

-
I

5 ° [mC(EO~qu}]'§' ,

A
i

- [mC(EO —Mqﬂ)]% .

The remaining parameters Ky and K, are determined implicitly by the

inverse scattering formulas which express the wavefunctions at r = 0

in terms of the xis. Introducing the notation

we may write the wavefunctions at the origin using (2. 7) as

1

5} ';Z[K Y, 5Y52Y ]3
i 2'12%23%24
W = -k - K>
xﬁ(o) D(0)T “13"14("1 K3 *“4)

+ +x -k + i, - + k. +
T A e N I TR L G S B (R

(3.1)

(3.2)

(3.3)

(3.4)
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1

2
2 [“4%4”24"34]

& (0) = -k -
' D(O)NT 1Y 3l ~ 0y~ K3)
(3. 5)
+ - - + - - +
Yyp¥a3lky ~ Ky T3 T yyaVyslig sk s ko) H il Fa, Fg))
Here werhave abbreviated
D(x) = Det A(x) s (3. 6)
where A is defined in (2.2). In particular, we have
= + + +
D(O) = 244 4 v, ¥ 3Yy 0 T Y Y03V, T Y 3Yp3Y3y
(3.7)

+ + + .+
AT PV CVILIR TIPS PPN PUR CYRLIN PPR PPR FUR AW FPN PPN JUR PUN L SIE

The mrameters Ky and K, are fixed by solving (3.4) and (3. 5) numerically
with:the experimentally measured wavefunctions:at the.origin.

Before displaying the N = 4 approximation to the charmonium
potential, we shall briefly discuss two three-dimensional examples which
illustrate the technique. They also indicate the response of the inverse
scattering equations to potentials singular at r = 0, This is an issue of
some practical importance because general arguments based upon
quantum chromodynamics suggest that the interquark potential will

have such a singularity. For these examples we set 2n = 1.

We first consider the Coulomb potential

V(r) = -4/r s (3. 8)
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which is neither confining nor reflectionless. Our cencern, however, is
not the convergence of the method to the exact potential, but to learn
how the singilarity is imitated. In this case there is a natural choice

for the parameter E_, namely

OJ

E =0 . (3.9)

The k's are dete:r'minedt’"‘z by the bound-state energies

Ei = —1/4 2 (30 10&)
E2 = -1/16 » (3.10b)
and wavefunctions at the origin
2
’\Ifi(O)l = 1/87 ) (3.11a)
2
I\Ifz(O) l = 1/64w . (3.11b)

The resulting approximation V 4(r) is compared with the true potential
(3.8) in Fig. 4. The manner in which the pole at the origin is simulated
is noteworthy.

As a second example we consider the logarithmic potential

V(r) = log (r) . (3.12)



-13- FERMILAB-Pub-77/109-THY

An interquark potential of this form is suggested13 by the equality of
the ¢ - Yt and T - T!' level spacings. Numerical evaluation of the energy
levels and wavefunctions leads to the appropriate parameters14 for the
inverse scattering equations. The approximation V 4(r) is compared with
the true potential (3.12) in Fig. 2.
B. The Charmonium System
The observables from which we shall reconstruct the charmonium

potential are the masses

M(y) = 3.095 GeV/c2 (3.13a)
M) = 3.684 GeV/CZ (3. 13Db)
. . 15
and leptonic decay widths

+ -
T(y—>ee) = 4.8+0.6 keV (3.14a)

4+ .
T'Wr—-e e ) = 2.1 £0.3 keV . (3. 14b)

For a given choice of E0 and m_, the parameters« 5 and k, are given by

(3.1) and (3.2). The value of Eo‘ce;rtl‘ain“ly' must lie between M(y!) and

2
4,03 GeV/c , the position of the 33S1 level. In practice we find it

sufficient to restrict attention to the slightly smaller range,
3. 75 GeV = EO < 3.9 GeV . (3.15)

It remains to choose the charmed quark mass.
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In Fig. 3 we show twenty distinct charmonium potentials corres-

ponding to the choices E_ = 3,75, 3.80, 3.85, 3.90 GeV and m = 1.1,

0
2
1.2, 1.3, 1.4, 1.5 GeV/c . All of these reproduce--by construction--the

observables (3.13) and (3.14). If is striking that smooth potentials
of such diverse character ranging from Coulombic (mc =i.1, 'MFI‘*O ==73,715)

to linear (mC =1,5, E0 = 3, 8) and beyond (mC =1.4, E_ = 3,85), are

0

achieved.

We shall also explore the implications of the reconstructed
charmonium potentials for the T system. The T(9.4) and T '(10.0) are
regarded as the 1381 and .2.381 levels of a QQ system. The appropriate

value of the heavy quark mass m_ for each of the twenty potentials

Q
displayed in Fig. 3 is chosen by requiring M(T) = 9.4 GeV/cZ. The

ordinates for the Y and T systems are then related by

EO(T) = EO(L!J) +2(m_ . - mc) . (3.16)

Q

We find mQ/mC essentially independent of EO(Lp), and varying between
4.1 (for m = 1.1 GeV/cZ) and 3.2 (for m = 1.5 GeV/cZ).
The presence of four T levels in all the potentials of Fig. 3 is

a consequence of the choice of E m ., and of the stipulation that

0’

7
m(T) =9.4 GeV/cZ, The value of E0 is not necessarily correlated with

flavor threshold. However, it is possible to estimate the number of

narrow T levels (those below flavor threshold) directly from Fig., 3 if

the two flavor thresholds differ by 2m Q- ch = EO(T) - Eo(kp). 16 The
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flavor threshold for the charmonium system is a line lying 45 MeV above
the Y' on the left-hand side of each picture in Fig. 3. The corresponding
flavor threshold for the T family is the extension of this line to the
right. Thus, one would expect four narrow T levels for small mc and
Eok(léwér left-hand corner of Fig. 3), and three for large m and EO
(upper right-hand corner of Fig. 3). This is in accord with the expectation
of three or four narrow T levels obtained in Ref, 7 in a semiclassical’
approximation.

For a given value of E_ , Fig. 3 shows that smaller values of m

0’

are correlated with deeper potentials, Since the levels
E =<T+V> = <=—> +<V> (3.17)
n n n n

are fixed, decreasing m is correlated here with more negative < V> and
larger < % %\{? (steeper potential, greater kinetic energy). The potentials
also become deeper for fixed m, and decreasing EO’ corresponding to
a decreasing ratio of »K4/|<2.

In order to sharpen the estimates of m and E0 we now focus on
two spectral quantities which are, to some degree, known from available
data: the p-wave charmonium levels and the T - T" mass difference.

The predicted mass of the 2P charmonium state X o is shown as a

function of m and EO in Fig., 4. To compare it with experiment, we

note that spin-orbit and tensor force contributions vanish for the combination
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1 3 3 3
= +
(o) + () + smr,)

3.52 GeV/(:2 .

<M2>py>

(3.18)

n

The numerical value in (3.18) comes from masses quoted in Ref. 17.
Values of m and E0 in the lower right-hand corner of Fig. 4 are
preferred. Many of the models noted in Ref. 3 predict too low a value
of M(x C); this may be connected with the higher charmed quark masses
occurring in such models.

A contour plot of the predicted T - T ! mass difference is shown
in Fig. 5. The shapes of the contours are similar tothose in Fig. 4.
The experimental values18

2
0.61 = 0,04 GeV/c
’,‘ (three-peak hypothesis)
m(th - M(1) = (3.19)

0.65+0.03 GeV/c2
(two-peak hypothesis)

again favor values of E_ and m in the lower right-hand corner of the

0
figure, A specific potential which reproduced the result (3.18)
when constructed to give the observed T' - T spacing already has been
noted in Ref. v13.

The: small values of m, = 1.1 -1.3 G‘reV/c2 implied by comparison

of Figs., 4 and 5 with (3.18) and (3. 19) «tend t6 weaken<some what the

case for a nonrelativistic approach to charmonium spectroscopy. However,
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these small values have been encountered previously: they are obtained
from sum rules for e+e_ annihilation, 8 and are required if the specific
madel of Re,f :;}13 is constrained to fit IT'(y — e+e_). 19

The similarity of contours in Figs, 4 and 5 prevents an unambiguous
choice of EO and m . A very different dependence is exhibited by the
leptonic width of T, shown in Fig. 6. This quantity is particularly
sensitive to short-distance behavior of the potential not probed by
existing data. A clear correlation may be noted between large values of
T - e+e—) and highly singular potentials. (See the lower left-hand
corners of Figs., 6 and 3, respectively.)zo

The higher-lying T samples values of the potential that include
those related to charmonium spectroscopy. Indeed, the predicted

+ -
values of I'(T* - e e ), shown in Fig. 7, vary less strikingly than those

+ =i
of I(T - e e i This relative insensitivity to parameters may be
21
Q.

Additional information on the preferred values of m and E

useful for a test of the ‘heawy: qq"gr‘f:ﬁcharge e
0’ Very
different from that provided by present data, will come from measurement
of the 25-2P splittings in the T system. The predicted values are shown
in Fig. 8, For singular (Coulomb-like) potentials, such as occur in the
lower left-hand corner of Fig. 3, the 2S and 2P levels are nearly
degenerate. They move apart as the potentials become shallower.

The T" - Tt splitting is displayed in Fig. 9. It is slowly varying

over the range of interest, a feature compatible with previous expectations



~-18- FERMILAB-Pub-77/109-THY

based on specific models. 22 The three-peak hypothesis of Ref. 18

gives
M(T") - M(TY) = 0.39 £0.13 GeV/c2 . (3. 20)

For the purpose of further discussion we have chosen two specific

values of m and E _, lying along approximate contours of Figsi;44-and 5:

0’
(mc, EO) = (1.1 GeV/cz, 3.8 GeV) and (1.2 GeV/cZ, 3.85 GeV). These
choices ensure (i) approximate agreement with the constraints (3.18),
(3. 19); (ii) reasonably smooth behavior with r, and (ifik a pair of potentials
between which new experimental data can provide a reasonable distinction.
Some properties of levels in these two potentials are shown in Table L
The uncertainty in the value of T'( T —» e+e-) apparent from Table I
already has been noted in connection with Fig. 6. The other leptonic
widths are more stable. They fail to decrease monotonically: compare
T and T "', This effect is an artifact of the oscillating convexity of
the reconstructed potential. 23
The predicted radiative decay widths of the Y ! states into XY
are considerably too large. A similar discrepancy arises in specific
potential models?’ 13 and may indicate a general shortcoming in the
non-relativistic Schrédinger bound-state picture of charmonium. 24
However, radiative decays are particularly demanding tests of structure, 25

probably requiring more pieces of information than the four (less two

free parameters) at our disposal.



-19- FERMILAB-Pub-77/109-THY

IV. SUMMARY AND CONCLUSIONS

With the wealth of charmonium data now available.and the
prospects for measurement of a still richer T spectrum, it seems
likely that future efforts toward a theory of heavy quark bound states
will fall along two main lines of investigation, one theoretical, the
other phenomenological. Attempts to relate the interquayk potential
function V(r) to fundamental theoryz'é‘A‘u&il];:\be:.@atp;pi:em@n}t@dj}?y .
phenomenological determination of this function from the measured
bound-state parameters. The work described here and in I is directed
toward the phenomenological investigation. Within the ‘framework of
the nonrelativistic Schrodinger equation with a central interquark
potential V(r), we have developed a systematic method for reconstructing
V(r) from the masses and leptonic decay widths of s-wave bound states.
With information about N bound state levels, the method provides an

explicit formula for a reconstructed potential V (r). A mathematical

2N
proof that VZN(r) converges to the exact potential V(r) is still lacking.
However, the examples studied in Sec. IV of I leave little doubt that this
is the case for any reasonably smooth function V(r). More importantly,
these examples clearly show that the number of bound states needed

for the practical application of this method is very small, with V 4(1:')

(two bound states) already providing a rather accurate approximation to

V(r) over some range of r.
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The charmonium potential V 4:(:r-) constructed from ¢ and Lp' data
was discussed extensively in Sec. III, The ambiguities in V4(r) associated
with the choice of charmed quark mass and EO parameter may be viewed
as a commentary on the limits of our present knowledge of V(r) and the
manner in which this kﬁowledge will be refined and extended by future
measurements of the T system. Already the combined evidence of the
T-T " splitting and the p-wave charmonium levels suggests a rather
small value for the charmed quark mass, m = 1,1 - 1,2 G’eV/CZe The
sensitivity of quantities such as I'(T - e+e_) and the ! Xy, (2S - 2P)
splitting to the remaining ambiguities in V 4(Jc-) serves to emphasize that
these quantities probe values of r which are not explored in the charmonium
system,
We conclude that inverse scattering technigues provide a valuable
tool for analyzing and correlating presently available quarkonium data
and for using these data to estimate the spectral parameters of the T
system, This approach can complement the more familiar explicit
potential techniques that allow the incorporation of theoretical prejudices
regarding the form of the potential at short and long distances.
But in our view, the most encouraging aspect of the present work
‘is the prospect of reconstructing the quark ‘potential from forthcoming
'dat.a on the T system. According to general arguments, ! which are borne
out by the specific potentials studied in Sec. III, this system is expected
to have at least three and possibly four narrow 381 bound-state levels,
From the examples described in Sec. IV of I, we expect V6(r) or V8(r)
to provide a very accurate representation of the true potential. Moreover,

the assumptions and approximations which go into a nonrelativistic
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potential model should be much more reliable for the heavier quarks

which form the T states. Thus, when the T levels are accessible to
+ -

e e machines, they will provide an extremely detailed and accurate

measurement of the potential which binds quarkonium.
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2'OIn this context the logarithmic potential of Ref. 13 is seen to be very

similar to the choice (mc, EO) = (1.4 GeV/cZ, 3,8 GeV) in the present
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Table I. Predicted properties of levels
in two quarkonium potentials

m, = 1.1 GeV/c2 m, = 1.2 (E‘reV/c2
EO = 3.8 GeV E0 = 3,85 GeV
M, GeV/cZ 9.40 (input) 9.40 (input)
T a)
I , keV 1,19 | 0.69
ee
, :
M, GeV/c 9.98 9.96
f
T
r , kev® 0.32 0.27
ee
2
M, GeV/c 10, 32 10,27
11
T .
r , kev® 0.33 0.30
ee
2
M, GeV/c 10.58 10. 54
T"'
a)
I' , keV 0.18 0.18
ee
X (2P) <M, GeV/c? 9. 89 9. 81
Experi.mentb)
s
X. = P, 76 71 15 = 5
3
'.—) -
(g xcy), Xe Pi 64 60 155
keV") X, = 3P2 50 47 15 + 4

a) eQ = -1/3 is assumed,
b) Ref. 17
. , 3 _ 2 3 2
c) In the expression I'(y'~>x | "P;| V) = 40!eQ (ZJ"‘i)RY I<¢![ r| x>’ /21,
the experimental values of the photon energy, ky’ derived from the

particle masses of Ref. 17, are used.
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FIGURE CAPTIONS

Fig. 1: Two-bound-state approximate reconstruction V 4(r)
of the Coulomb potential compared with the exact
potential (3.8). The physical and unphysical levels
are indicated by solid and dashed lines, respectively.

Fig, 2: Two~-bound-state approximate reconstruction V 4(r)
of the logarithmic potential compared with the
exact potential (3.42). The physical and unphysical
levels are indicated by solid and dashed lines,
respectively.

Fig. 3: Interquark potentials reconstructed from the masses
and leptonic widths of {(3.095) and (3. 684). The
levels of charmonium are indicated on the left-hand
side of each graph. Those of the upsilon family
are shown on the right-hand side of each graph.

The solid lines denote 3S 1 levels; dashed lines

indicate the 23PJ levels. The twenty potentials

depicted correspond to the choices E0 = 3,75, .
3.8, 3.85, 3.9 GeV and mc =4.1, 1.2, 1.3,
1.4, 1.5 GeV/cP,

Fig. 4: Contours of the predicted mass of the Z?’PJ (x c)

level of the charmonium system as functions of

the parameters E_ and m .

0
Fig, 5: Contours of the predicted T- 7' level splitting

as functions of the parameters E0 and m .
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Fig, 6: Contours of the predicted leptonic width of T as

functions of the parameters E0 and m .

Fig. 7: Contours of the predicted leptonic width of T'
as functions of the parameters E0 and m .
Fig. 8: Contours of the predicted 25-2P splittings of the T

family as functions of the parameters E0 ‘and m .
Fig. 9: Contours of the predicted 7! - 7" level splitting

as functions of the parameters E0 and m .
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