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ABSTRACT 

The expression 1%$(O) 1 2 = (2p)3’2En1’2(dEn/dn)/4m2, relating the square 

of the n-th s-wave wavefunction at the origin to the bound state reduced mass 

p and the excitation energy En, is derived semiclassically. The relation is 

then used to obtain several sum rules for electron-positron annihilation and 

an expression for the contribution of a given flavor of heavy quark 

to the photon-nucleon total cross section. 
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I. INTRODUCTION 

Nonrelativistic models have been remarkably successful in describing 

many properties of mesons composed entirely of heavy quarks. A good 

deal has been learned by applying simple Schadinger em&ion physics to 

the charmonium system, 
1 and one expects. the nonrelativistic approximations 

used with so much success for that system to be evexl more reliable for the 

recent1.y discovered ?’ family. 2,3 

It was our interest in quarkonium families that led us to survey4 

the behavior of simple quantities such as the excitation energy En of s-wave 

states and the squares of their wavefunctions at the origin 1 yn(0) 1 2 as 

functions of the bound state reduced mass TV and the principal quantum 

number n. These investigations were carried out for potentials of the form 

V = a r”‘4 and for a potential V = C ln(r/ ro), 5 (The latter has the interesting 

property that it gives a level spacing independent of quark mass for which there 

is some evidence in Qa s~ystem~,‘~~ In discussing behavior as a function of 

n, the semiclassical (WKB) approximation’ was found to be particularly 

4,5,7 helpful. A potential-independent relation for the number of narrow 

quarkonium states below flavor threshold also was derived with the aid 

of the WKB approximation. 8 

In the present article we point out an interesting relation between 

1 JqO) I 2 and En that is independent of the potential, as long as that potential 

is not singular at the origin. This relation follows from an application of the 
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WKB approximation entirely analogous to those of Ref. 4, but the ,possibility 

of a more general result was overlooked there. We were led to search for a 

more general result by an exhortation at the end of an interesting paper by 

Farrar et al. ,9 which discusses the seemingly unrelated subject of sum -- 

rules in electron-positron annihilation. The relation between 1 Qn(0) 1 
2 and 

En obtained here in fact implies the existence of a family of sum rules 

derived in a somewhat different manner in Ref. 9 and in several other 

works 0 10, Ii From these sum rules it has been possible to infer that the 

mass m c of the charmed quark is rather low (see also Ref. 11): 

m = 1.2 f 0.1 GeV/c2. 
C 

Moreover, the relation for bn(O) 1 2 permits an 

immediate (though probably rough) estimate of the contribution of higher 

Qa vector meson states in a vector dominance model 
12 

for OQ(y p), the 

contribution of a given flavor of heavy quark to the photon-nucleon total 

cross section. 

The expression for 1 Gn(0) 1 2 is derived in Section II.. Section III treats the 

sum rtiles for electron-positron annihilation, while Section IV: is devoted to 

an estimate of aQ(yp) o Section V contains.‘a brief discussion. 

II. RELATION FOR l*,(O) 1 2 

For a two-body nonrelativistic bound state with reduced mass p , it 

can be shown 
13 

that 

1 Q-JO) 1 2 = 2 c-g> 0 
n 
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We shall construct a simple semiclassical approximation for <dV/dr>n. 

This may be written 

<dV/dr> 2: 
f’“* g [IumBkij2 

mB(r) 2 ’ 1 
(2) 

where r. is the classical turning point. 

The reduced radial WKB wavefunction uWYB(r) contains a factor \r 

C En - VW 
I 

-’ times an oscillatory term the square of whYch approximately 

averages to $. Then 

cdv> _ co* g [En - Wr)]-t drn- 
- V(r) -’ 1 

. (3) 

The integral in the numerator of (3) is elementary, as noted..in Ref. 4, 
. 

and, yieJds+ 2 E Be n We are defining V(0) 2 0. This derivation fails. if 

V(0) = - Q), but alternative results. which apply toa certajn, singular ,potentials 

are noted in Ref o 4. 

The quantization condition 

1” drd2p[En - V(r)] = (n - $ )n 
0 

(4) 

may be differentiated with respect to n:7 



-50 FERMILAB-Pub-77/ I06-THY 

sdEn O dr 
2dn f o p-pm-l = TT 

But Eq. (5) permits one to evaluate the denominator in Eq. (3). With 

the help of Eq. (1), we then find that 

312 dE, / 
1 ~-(o)[~ = + En1’2 -$ 

4Tr 
. (6) 

14 
Eq. (6) is our central result. It is a concise summary of expressions 

obtained previously for power -law potentials. 
4 As an illustration, for a 

linear <potential <dV/dr> is independent of the energy level and hence SO 

is 1 an(O) 12. Thus En ’ (dEn/dn) = constant, and E e n 
213 

n , which is the 

correct nonrelativistic result. 

III. SUM RULES FOR ELECTRON-POSITRON ANNIHILATION 
- ii 

It is expected that the onset of the ,productjon in e’e--annihilation 

of new quark flavors~ will be signalled.. by discrete narrow peaks (like 

+, \G1) in the cross section. Then, as the threshold for production of 

pairs of flavored m.esons is ,passed, the ,peaks become .broader and 

eventually merge into the multiparticle continuum. 

It has been noted by several authors 
9-11 that one can write sum rules 

for leptonic widths of the narrow states below flavor threshold. We shall 

use Eq. (6 j to derive a family of such sum rules. 
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The leptonic width rn of the n-th 3S4 &a vector meson may be related 

to the corresponding square of its wavefunction 

denotes the quark charge, 

at the origin: 15 if e 
Q 

rn = 16acr2e Q2 

3 
&$o) 12/Mnu (7) 

One may then form a weighted sum over the states below flavor threshold: 

narrow 
states 

‘ndn 4a2e 2m3’ 2 
- = Q 

(8) Tr MP 
n 

Sp’ 2T2 1 
‘n - = 

ae Q 
MP 

(2m) d-P hjZIp(A/2m) , (9) 

narrow n 
states 

where 

Ip(v) Z /” dyd$‘l* +y) 2-tP . 
0 

The quark mass m is twice the reduced mass p. The zero of energy is 

set at 2m, so that we have taken Mn = 2m f En, and flavor threshold 

(ZM, for the charmonium system) lies at 2m + A. 

The sum rules (9) may be tested for the charmonium system, in 

which the narrow states consist only of 
16 

(10) 
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+ (3095): r ee = 4.8 f 0.6 keV 

q’(3684): I- ee = 2.1 f 0.3 keV 0 

For each value of p z 0, we find a range of values of the charmed quark 

mass mc for which Eq. (9 ) is satisfied. (We take 2MI, = 3730 MeV). 

These ranges are shown in Fig. 1. Notice the very slow increase of the 

quark mass with increasing p. Very large values of p, which give all 

weight to the contribution of the +, do not make sense in view of the 

discreteness (and sparse nature’,) of the spectrum. (Recall that our 

discussion is a semiclassical one, wherein we approximate the sum 

in Eq. (8 ) by an integral. This step is perhaps an unwarranted exercise 

in boldness for charmonium, We are comforted by the expectation that 

such a sum will include more states for heavier quarks. 8, The sum 

rules for small values of ‘p also ap’pear unreliable, if only for their rapid variatic 

with p. But between ‘p = 3 and p = 14, the central value of mc varies 

only between 1.1 and 1.3 GeV. We are thus led to the inference that 

m = 1.2 f 0.1 GeV. 
C 

A small value of the charmed quark mass has been deduced before 

from related sum rules. II We have also encountered the possibility 

that mc 2: 1. I GeV within the context of a potential model that reproduced 

features of both the + and ‘K’ families, 5 (This value was favored by the 

leptonic width of the + in that model. ) 
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The sum rule (9 ) for ‘p = 3 and A/ 2m << 1 is extremely similar 

to one derived in Ref. 9 in a similar limit, when one neglects effects 

due to the strong interactions. In Ref. 9, however, the term corresponding 

to the right -hand side of Eq, (9) is evaluated with the help of a vacuum 

polarization Feynman diagram. Evidently some of the information 

contained therein is of a very general and simple nature since 

we are able to reproduce it semiclassically. 

IV. PHOTOPRODUCTION OF NEW FLAVORS 

The suppression of charmed ,particle ,production in hadron physics 

is an,.obstacle to the study of new-flavor spectroscopy with hadron 

beams. No such suppression is seen in electron-positron annihilation 

above charm threshold, and there are suggestions 17,18 that charmed 

particle pairs also are ,photoproduced above threshold, ,possibly at 

a rate of several percent of all hadronic interactions. 18 

There have been numerous estimates of the photoproduction of 

new flavors, both of charm and of the new flavor that is ,presumably 

associated with the quarks in the r family. 19,20 We would like to 

focus on just one of these estimates, 20 in which the relation (6) allows 

the immediate expression of an electromagnetic cross section in terms of 

a hadronic one. It is not our purpose here to make a critical study of 

models of ,photoproduction. 
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We express oQ(yp), the contribution of the new flavor to the ,photon- 

,proton total cross section, as a sum of contributions of vector mesons 

F. Within a family, each vector meson is taken to have the same 

total cross section a( yp) for scattering on the proton. Using vector 

dominant e , 12 we then find 
03 

Qyp) = @O(TP) c 4TT -r: 2 ao(Yp) a-l % D 

n=1 gn I[ 1 gn 

Here the nth vector-meson-photon coupling eM 
r 

is related to 

4Tr cY2 rn = 32Mn 

gn 

and to [Qn(O)l’ by 

41T = 4*ren2 1 TV IA’ r2 ,llW 3 
? . 

(13) 

(14) 

But now, with the help of Eq. (61, we can do the integral in Eq. (12) in 

closed form, first transforming it to an integral over E: 
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The integral in (15) can be evaluated by elementary means, and-leads 

to the simple result: 

3cde 2 

O-Q(YP) = x Q dip) . 

Eq. (16) would underestimate the total photon-nucleon total cross 

section (> 100 pb) if we were to ascribe it mainly to the coupling of 

the photon to the p and w families: 

DJY’P) = -& 0 + 0 I 2: 50 pb 

d wp 1 = 5.6 pb 

where we have taken a(pp) = o(wp) = 26 mb.21S In fact, the coefficient 

of aa in (/7) which is ascribed to the whole p family is smaller 

[3/&/-z) = 0 . 271 than that expected from the first term alone 

(4dgp2 = 0.4) in the sum (32). This certainly indicates the crudeness 

of our approximations for light quarks. We expect matters to improve 

somewhat as the quark mass increases, the nonrelativistic approximation 

gets better, and the semiclassical approximation is more justified. 

Let us assume that vector-meson-nucleon total cross sections 

scale as M1 -2, where M1 is the mass of the ground state of the QQ 

system. 
22 Eq. (46) then predicts the results shown in Table 1. It is 

important to note that the predictions for heavy-quark production apply 

(a61 

(17) 

(18) 
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far above threshold. Considerations such as those in Ref. 23 lead one 

to expect the charm production cross section to attain half its maximum 

for photon energies somewhere between 50 and 100 GeV, and the cross 

section for production of pairs of quarks in the ‘r not to reach half its . 

asymptotic value until at least 200 (and possibly as much as 500) GeV. 

One can improve these estimates of energy dependence somewhat with 

the help of photoproduction sum rules derived in Ref. 24, or with the. 

aid of. the ;rno r.e:, spe c if&:. tiodeksconside red in Ref. 19 0 

V, DISCUSSION 

We have derived a semiclassical expression for the square of the 

1 s-wave bound state wave function at the origin in terms of the level 

density. There is another semiclassical expression which incorporates 

the level density. It is the relation between the potential and the bound 

state energies: 25 

Substituting Eq. (6) into this relation, one obtains a consistency condition 

r(V) = % 
Tr 

(20) 

The potential thus derived must reproduce the observed energy levels. 

While we believe the charmonium data are too sparse to permit a test 
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of this relation, bound states of heavier quarks (as in the r ) may prove 

rich enough. At present we are exploring alternative means of estimating 

the quarkonium #potential (if such a concept makes sense) in a model- 

independent way with the help of the inverse scattering formalism. 26 

The relation between sum rules such as those we have derived in 

Sec. III and duality has been stressed by several authors. 9-11 Duality 

relates an integral over bound states or resonances to an integral over the 

continuum. It is amusing that the result (6), based on a simple semi- 

classical approximation to nonrelativistic quantum mechanics, makes 

contact with the duality between bound state and free-quark creation. 

It would be interesting to know the degree to which such semiclassical 

arguments are res,po.nsible for the success of duality in other contexts. 
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Table I. Cross sections for photoproduction 
of new flavors (at asymptotic energies ) 

LOWEST QQ 
STATES ’ Q 

S WO20) “14.8 mb -al3 6.4 IJ.b 

C U309 5 1 1.6 mb 213 2.8 pb 

b 

t 
T(9400 1 

-113 75 nb 
174 pb 

213 300 nb 

FIGURE CAPTION 

Fig. 1: Ranges of charmed quark masses m 
C 

implied by the sum 

rules of Eq. (9 1. 
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