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ABSTRACT 

We study the question of renormalization of gauge invariant 

operators in the gauge theories. Our discussion applies to gauge 

invariant operators of arbitrary dimensions and tensor structure. 

We show that the gauge noninvariant (and ghost 1 operators that mix with 

a given set of gauge invariant operators form a complete set of local 

solutions of a functional differential equation. We show that this set 

of gauge noninvariant operators together with the gauge invariant 

operators close under renormalization to all orders. We obtain a 

complete set of local solutions of the differential equation. The form 

of these solutions has recently been conjectured by Kluberg-Stern and 

Zuber. With the help of our solutions, we show that there exists a basis 

of operators in which the gauge noninvariant operators “decouple” from 

the gauge invariant operators to all orders in the sense that eigenvalues 

corresponding to the eigenstates containing gauge invariant operators can 

be computed without having to compute the full renormalization metrix. 

We further discuss the substructure of the renormalization matrix. 
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I. INTRODUCTION 

The problem of operator product expansion in gauge theories’ 

has been studied extensively following the initial work of Georgi and 

Politze rs 
2 and Gross and Wilczek. 

3 
A salient feature of this problem, 

unique to gauge theories, is the possibility that the so-called Faddeev- 

Popov4 ghost fields may participate in the operator product expansion of, 

say, two gauge invariant currents. Gross and Wilczek’ dealt with this 

situation in the axial gauge, where the Faddeev-Popov ghost fields are 

absent (i. e. o are free fields), and showed that the anomalous dimensions 

of gauge invariant operators are correctly given when possible couplings 

of the ghost fields are ignored in other gauges, at least in one-loop 

approximation. Subsequently, a number of authors, including Dixon and 

Taylor, 
5 

Klube rg-Ste rn and Zube rp 6,7 Sarkar and Strubbe a 
8 have 

elaborated on and extended this result in some respects. 

The purpose of this paper is to give a general discussion of the 

renormalization of gauge invariant operators of arbitrary dimension and 

twist, and valid to any order of perturbation theory, along the lines 

exploited previously by Dixon and Taylor, 
5 

and Kluberg-Stern and Zuber. 687 

In the course of this discussion, we will extend their results and prove 

conjectures made by some of the previous workers, 

We base our discussion on the proof of renormalizability of gauge 

theories in the form presented by one of us9 and streamlined by 
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Z&n-Justin 
10 

by means of the Becchi-Rouet-Stora 
11 

(BRS) transformation, 

This is briefly summarized in Sec. II. The BRS transformation is a 

transformation of fields by an anticommuting c-number A which leaves 

invariant the effective action seff defined in the gauge specified by f : 
c2 

6Ai = cnD;k: D;= (;pi + gt;Aj) o 

where A i is the gauge field, c and c 
L-t cl! are the Fadeev-Popov ghost 

fields, and g is the coupling constant. 

In Sec. III, we show that only a subset of possible gauge noninvariant 

operators together with a set of gauge invariant operators of the same 

dimension and twist form a closed set under renormalization to all orders, 

and in Sec. IV, we give a complete characterization of the gauge 

noninvariant operators in this set, The problem reduces to finding a 

complete set of local functionals H[@*c,ac,L] of a given dimension and 

ghost number which satisfy 

@‘H = 0 (1.2) 

where the differential operator v is 

(cont. ) 



-4- FERMILAB-Pub-75/50-THY 

-6s 6 6: 6 -F+-- 
6Ai 6 (W i6c6L ’ (1.3) 

CY Q 

La being the source of the operator if 
“PY% O 

We solve Eq. (1. 2) completely in Sec. IV, by a method suggested 

by Dixon and Taylor. Various mathematical lemmas necessary are 

proved in Appendices A and B. In all of these, the observation that 

(gm2=0 , (I. 4) 

or more generally that the BRS transformation on A. and c 1 Q is nilpotent, 

plays a crucial role. We confirm the conjecture of Kluberg-Stern and 

Zuber7 on solutions of Eq. (1.2), for arbitrary dimension and twist. 

Actually, the construction suggested by Dixon and Taylor does not make 

it clear the locality of solution, 
12 

but we have explicitly shown in Sec. IV 

and in Appendix C, the locality of solutions which is crucial to the 

arguments of Sec. V. 

Section V is devoted to the study of the renormalization matrix 

of these operators. It is shown there that the renormalization matrix is 

in a block triangle form when the basis of operators closed under 

renormalization is appropriately chosen, and that, in this basis, eigenvalues 

of the matrix corresponding to the eigenvectors containing gauge invariant 

operators are computable by neglecting couplings to gauge noninvariant 

ope rat0 rs 0 



-5- FERMILAB-Pub-751 50-THY 

We do not discuss the operator product expansion of gauge 

invariant currents per se in this paper, leaving it to a future communication. 
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II. REVIEW 

A. Preliminary 

In this section we shall briefly review the definitions of generating 

functionals in a gauge theory, the BRSil(Becchi, Rouet, Stora) 

transformations and WT identities satisfied by the generating functionals. 

We shall use the condensed summation-integration convention as used 

for example in Ref, 9. 

It is well-known that the Feynman rules for constructing Greengs 

functions of a gauge theory can be deduced from the effective action &eff 0 

seff[ A&] =zo[A] -+{ fJ Al 1 2 +;M c 
ff 4 P 

where zo[ Al is the Lagrangian for the Yang-Mills fields (possible 

interacting with matter fields, in which case A denotes collectively 

gauge fields and matter fields), and 

(2.1) 

(2.2) 

are the gauge fixing terms and c 3 c 
cr B 

are the Faddeev-Popov ghost 

fields. 

The Lagrangian L<[ A] is invariant under the infinitesimal local 

gauge transformations of a compact Lie group G , which we shall choose 

to be a simple group solely for the sake of notational simplicity. Extention 

to the case of a direct product of simple compact groups is obvious. 
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Thus xti[ A] is invariant under the infinitesimal transformation, 

A.- A 1 i = Ai + (a;+ got;Aj)6 CY 

E Ai + D;[ A]6 
Q (2.3) 

Airs are hermitian fields so that the matrices { tcu : (t”)ij = tiy} are real 

antisymrnetric representation of the generators of G 0 g, is the 

(unrenormalized) coupling constant of the group G ., 

We shall work in linear gauges defined by, 

where np 
is an arbitrary real positive number. 

Then MQ8[ A] of Eq. (2.1) is defined by 

-1 6 f,E Al 
Mryp[ Al = rlo2 6 A 

i 

(2.4) 

(2.5) 

The BRS super-transformations consist of 

6Ai = c,DS6 A 

6 ecu = - igofcYpy cc 6X p y 

ac = 
cl 

-$fQ[ A]6X (2.6) 

where 6 A is an x-independent infinitesimal anticommuting c-number, 

We note that under the BRS transformations 

6 (go) = 0 ; 6 (cnD;) = 0 ; 6 (- ~fc,pvcpcy) = 0 ; 

a(-$[ A] +cMc) = 0; 

6(cfff[ A,c,c] ) = 0 0 (2. 7) 
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We shall also find it useful to consider only the following 

transformations: 

6A i 
=c D%A ; 

LY i 

(2.8) 

Under these transformations (-xo[ A] + CMc) is invariant. This is 

expressed as 

vo(rq[ A] + :Mc) = 0 (2.9) 

where F. is the differential operator defined by 

6{ F[ A&c]} = vOF[ A,c& A (2.iOa) 

where 6 F refers to the change in the functional F [ A, c, i] under the 

transformations of Eq. (2.8). If F[ A, c, 61 is a functional containing an 

equal number of c, 6 with all cls appearing before all cas 0 % may 

be expressed as 

.- 

In terms of q p the group condition on Dy[ A] viz. o 

i. e. , 
tQ .p _ tp Da = f+y,y 

ij j ij j i 

(2.10b) 

(2.Iia) 

(2. Ilb) 

can be expressed elegantly as the operator identity: 
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(2.12) 

-. 

B. Generating Functionals of a Gauge Theory; WT Identities 

In the following, we shall be dealing with unrenormalized but 

dimensionally regularized quantities. Following Zinn-Justin, we introduce 

a 
sources for the composite operators c D. and igofq3ycpcy 

and define: 
Q 1 

S[ A,c,&I] =xeff[ A,c,c] + kiD;cQ - %of~pycpcy~ (y a (2.13) 

We define the generating functional of Greenis functions, 

W[ j,& &, K,1 ] = I[ dAdcdc] Exp i{ S[ A, C, <, K, .l] + jiAi + g,c, +COcU} 

(2.14) 

where 5, 5 are anticommuting sources for the ghost fields. The generating 

functional of the connected GreenIs functions is defined by, 

We define expectation values of fields in presence of sources: 

(2.16) 

where it is understood that the partial derivatives are taken with the rest 

of the sources fixed. 

The generating functional of the proper vertices is given by 

q#h a, fib 11 =Z[j,S,~~K,m]-jiAi-~,C,-c,S, 0 (2.17) 
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The sources j, 5, 5 can be expressed as a functional of ~$,a pfi,K, 1 by 

the relations : 

(2.18) 

where as a matter of convention partial derivatives of 6r r such as - 
64. 1 

stand for 

With this convention, we also note, 

x= 62 dr 
6Ki 6 6p 

ALE- 
61 o (2. 20) 

CY a 

By consideration of an arbitrary change 6 6 
CY in the W[ j ,j. C,K, ~‘$1 

of Eq. (2.14) p we can obtain the equation of motion for the antighost field. 

It is expressed in terms of I? as 

(2.21) 

By considering the BRS transformations of Eq. (2.6) in the integration 

variables of W of Eq. (2.14), one can obtain the WT identity for W 0 

It can be transformed into WT identity for I? and simplified using 

Eq. (2. 21). The final result is 

with 

6ro 6ro 6ro dr 0 --- 
6 (bi 6Ki 

-=o 
tina 61 c! 

(2. 22) 
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The theory is made finite by wave-function, and coupling constant 

renormalizations : 

A = A(r)z$ 
i i s c = -&tr) 

CY Is 
; = ?& ;tr) 

CY P Q! * 

go = gxz-1z-9 , 

- 
K. = 2fK 

i ’ 
1 = Z2L 1 CY a (2.24) 

Alternatively, we can write the renormalized effective action as 

sir+ #-), c(r)s $d , K,L] = S[ A,c,~~K~~ ] 

= S[ AtrJs cir), $) K L] + AS[ .(r)s,(r), $) K L] I a s s , (2. 25) 

where AS represents local counterterms. It is a well-known result 

that Z, ?? and X in Eq, (2.24) can be chosen in successive loop 

approximations so that the resulting renormalized I’ is finite in terms 

of g and renormalized quantities. 
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III. 

A. Generating Functionals With An Insertion of a Local Operator 

In order to discuss renormalization of an operator one needs to 

relate two quantities : Green’s functions, involving an insertion of the 

operator which are independent of the renormalization point -- the so- 

called unrenormalized Green’s functions and the finite (i. e., renormalized) 

Green’s functions which however depend on the renormalization point. 

In the following we shall give the definitions for the generating functionals 

for these two Green’s functions. 

We consider a local (though it is not necessary for these definitions) 

operator Oi [ A, c, z 1 , which may carry additional Lorentz indices. Let 

Ni denotes (in general, x-dependent) source for Oi [A, c, Cl . The 

generating functional of the unrenormalized Green’s functions with an 

arbitrary number of insertions of Oi is given by 

W[j,{ ,& K ,a,Nl = [dAdcd;l exp i { S[A,C,~,K,II +jiAi+Cd, +i c 
cycy 

+ NiOi [A,c,:l t (3.1) 

whose derivatives with respect to various sources are independent of the 

renormalization point for obvious reasons. The corresponding generating 

functionals of connected Green’s functions and of proper vertices are 

defined analogous to Eqs. (2. 15) - (2. 18) of the last section viz. 

(3. 2a) 
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r[ d’, a2, a, K,i ,Nl =Z[j,~,[,tc,~!,Nl -ji$i - 6Q5ru-6an 
a’ 

(3. 2b) 

We further note that as in Eq. (2. 20) 

6r 62 = 
6Ni 6N. . 

#', n, 32,K,l l jf;.Edd 

(3.3) 

generates 
N=(-j=K=L 

the unrenormalized proper vertices with a single insertion of Oi at an 

arbitrary momentum. Insertions at zero momentum can be obtained by 

considering 
Jd4xL6N:x) )N~K~L~o * 

To renormalize 

N=K=L= 0 
(3.4) 

in one loop approximation, one needs to compute (rN} y” expressed in 

terms of renormalized field Q, w, w’ and renwmalized parameters: 

[ renormalized according to some convention] and define 

R so that IIN is finite in 4 space-time dimensions. TN as a function of 

renormalized fields and parameters can be best obtained from another 

generating functional 
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wb.- 1 [J,t;,<,K,L,Nl = [dAdcd;l expi S(‘)[A,C,~,K,LJ +JA 
i i 

+5 c CYO! +;&+NiOi[ZfAi,& zt,n,g-x 
cy ’ ..i ’ 

r/z-4 . 
I 

(3. 5) 

Here, the sources J, 5 , [, K, L stand for the renormalized sources. This 

w(r). is in fact equal to W (u-r) of Eq. (3. 1). This can be seen by performing 

the transformations 

j =Z-$J, 
1 

K = z'K, 

with a simultaneous change of integration variables 

A 
i 

= zfA(r), c = k+$! ; = gi;b) 
CY CY Q 

and dropping the overall infinite constant and superscript (r ). 

[ We shall find it convenient to switch back and forth between 

W( U-T.) and w(r)n ,(u* r.) . 1s especially useful to see the symmetry 

properties of W while it is W (r 1 which can give us { IN} div as a functional 

of renormalizaed fields and parameters ~ 1 

B. WT Identity For the Generating Functional of Proper Vertices With 
A Single Insertion of a Gauge Invariant Operator 

Our object here is to write down the WT identity satisfied by 

TN b&j, w, 01 in one loop approximation, when N refers to the source of 

a gauge invariant operator and use it to find the properties of gauge 

noninvariant operators which enter in (I? N [ CD, w , ; I } y”. 

To do this, we consider the BRS transformations of Eq. (2.6) on 
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the integration variables of W[ j,& E,K ,B , NI of Eq. (3. 1), with 

O.[A,c, cl f 0 ‘I [Al. We note that the extra term NO G1[A] is invariant 
I 

under these transformations . Therefore the WT identity satisfied by 

WC J, L, 4, K, L, N1 is [i. e., expressed in terms of renormalized sources 1 

and by r [Q, a, i , K, L, Nl will be identical in form as the WT identities 

for these generating functionals at N = 0. Thus, 

6r 0 6r0 

60 
= a; 6K 

CY i 
and 

6ro 6r 
0 

6ro 6ro 
-- - = 

6y 6Ki 6w 
0 . 

(Y 6Lct 

(3. 6) 

(3.7) 

We differentiate Eqs. (3.8) and (3. 7) with respect to N and set N = 0. We 

thus obtain, 

” N 6rN -= 
6w 

acr- 
CY i 6Ki (3.8 1 

6rN 6ro 6rN 6ro 6rN 6ro 6rN 6ro 
------ - - =o, 

mi T+ 6Ki 6CDi 6L 6w 6w 6L (3.9) 
4 CY CY o! 

with 

rN E rNb,o, ;,K,L] = 
d- o b, w, :, K, L, Nl 

6N N=O ’ 
(3. 10) 

Equating the one-loop divergence on both sides of the Eqs. (3.8) and (3.9 1, 

remembering that r. is a finite functional, we learn, 
N=O 



-16- FERMILAB-Pub-75/ 50-THY 

$ {rN)ldiv= a: -&{I-~}~:~ 
o! i 

(3.11) 

with 

-&,w,;,K,L1 =~okGl+; M cy crp [Qlwp+K.D:w - +L f 11Q Q "PYWPWY 

(3. 13) 

{r&&w,i& K,Lj >“li” is a local polynomial of $ w, w, K, L of dimensions 

equal to that of 0 ‘I[@]. Thus {r,I:Q,u,;,K,LI jdivcanbe expressed 

in terms of a complete set of local polynomial solutions of the equations: 

& oh, w, 
a! 

r - 

;,K,Ll =aa i & O[@,w,&K,Ll 
i 

(3.14) 

1 g; - z & + +- $y Oh, w, W, K, L] = 0. (3.15 ) 
CY CY i i 1 

Thus (I- ,@A w, ;I) 1 div= { rN[Q2 w, w, K, Ll K=L=O }divcan be 

expressed in terms of the complete set of local solutions of the equation 

and 

r;Ol@,w,Wl Q 

6 ka 
= ai Q~[~,vJI 

PO0 [Q, ,;I = -Qik a> wig - 6s 

i 
+ Ro,rQ, w, ~1 60 

CY 

(3. 16) 

(3. 17) 

where Qi [a, w, WI and RLr [@, W, WI are local functionals of a, w, w possessing 
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appropriate transformation properties under the global transformations of 

group G and Lorentz transformations. [ As we shall see later the 

integrability of Eqs. (3,16), (3.17) will restrict the set { Qi} and { RLY} . ] 

We shall obtain the complete set of local solutions of the Eqs. (3.14), 

(3.15) in the next section. In this section, we wish to show that the set 

of operators ( OG1[ @ ] } @ ( O[ @, w ,i } [ the latter being the set of all 

gauge non-invariant solutions of Eqs. (3. l6), (3.17)] ; closes under 

renormalization to all orders. For this purpose, it is not necessary to 
. 

know the set { 0[ cf, w ,i ] } explicitly. 

C. Closure Property in One Loop Approximation: 

We consider the generating functional of Greenfs functions W of 

Eq; (3,5) with Oi[ A, c, c] being any one of the gauge noninvariant 
. div 

operators of the set. Our objective is to show that { FN [ @, w , i ] } 1 

thus computed for any of the gauge noninvariant operators can be expanded 

intermsofthesameset {OG1[O]}@ {O[~,w,~]}. 

We shall find it convenient to use W (II* r. ) 
[ in terms of unrenormalized 

sources] to exhibit its symmetry properties: 

d U’ r.) = J [dAdcdE] expi yo[A] + CMc - i fi [A] +.K:@ c 
I 1 cy 

5 
P 

- z CY fcYpycpcy +N’OIA,c,c]+jiAi+ca{Cy+c~ (3.18) 
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1 2 
We note that {y. + CMc - - 2 fp [Al +N’O[A,c,c] } is 

invariant under the transformations : 

6Ai = (D; c@ +N’Qi)6h C c@D;% 

dc = Q - s gofq3y cpcy + N’R 
CY > 

6h z -gal fP 
2 4eCPCY 

6E1 =-q (Y iJ2fa[A] 6x , (3.19) 

st . 
to the 1 order in N * Here Qi and Ra are the functions corresponding 

to 0[ A, c, c ] that enter Eqs. (3.16), (3.17). To see this, we note 

6 (yeff [A,c,c]+N’O[A,c,:]} = 0 + O(N’) + O(N’2) + 00. 

and O(N@) terms are given by, 

’ -E”,ff 
Q.- 6c R 1 Q LY 

+rl Wf - 60 
0 CY 6C CY t 

(3.20) 

= 0 (3.21) 
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on account of Eqs. (3.16 ) and (3.47 ). We further note that 

6 (D[*c a) = O(N#) # 0 

6 1 f’ 
2 “PY% = O(N’) # 0 e (3. 22) 

We use the invariance of Eq. (3.21) under transformations of Eq. (3.19) 

to write down a WT identity of W 
(U’ 33) 

of Eq. (3.18). We note that the 

change in the Jacobian for the transformations of Eq. (3.19) is 

n: (Qi i - R~ (y) CC b4 (x) or its dirivatives at x Z 0 , 
, , 

since Q. and R are local functionals. 
1 Q We are using dimensional 

regularization, so that the Jacobian can be taken to be unity. We thus 

write the WT identity for W”’ ” [See Eq. (3.18)]. 

0 = 
/ 

[dAdcdc] jiDL” C 
CY - + gOi,,f~~yCpcy+“~‘2f~[A] C LY 

+ terms of O(K’N’, I’N’,N ,2 . . . ) 

X Expi {#.....} o (3.23) 

We note that the W’T identity of Eq. (3. 23) is the same as the WT identity 

for the insertion of a gauge invariant operator, except for terms of 

O(K’N*,I’N’, NH2,. :. ). Further by transformation of the antighost field 

C - -G +6ia [where dc, 
cl CY are independent of fields], we obtain the 

equation of motion for the antighost field. 
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0 = 
J 

[dAdcd:] a; Dpcp+Nd g + E 
-ct expi {.~o~}. 

CY 
(3. 24) 

Using Eq. (3.16) and the definition of DiQ [A] , we may write Eq. (3.24) 

as 

0 = 
f 

[dAdcd;] 
a, > expi {....}. (3.25) 

We can transcribe Eqs. (3.23) and (3.25) in terms of the renormalized 

sources: 

and 

ayL+t; 
’ 6K; 

CY 1 dr) [ J, 5, i , K’, L’, N’ ]. 

These can be translated in terms of the WT identity for proper 

vertices in the usual manner [and Eq. (3.26) simplified with the help 

of Eq. (3.27)] yielding, 

5-i 0 
rNc [ti?,w,w] :'i" =- $$ 

> i 

6 TN, 

c 
6 Ki K’ = L’ = 0 

+ 6s 6 TN& 
60 6L K=L=O 

CY CY 

div 

1 

I 
div 

1 

(3. 26) 

(3. 27) 

(3. 28) 
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and 
6 

div 61: div l 

qp,w,wl N = acu - 
60 i 6K. K=L=o . 

G! 1 I 1 
I 1 

(3.29) 

div 
It is therefore clear that { FNM [a, w , 01) 1 is also expressible in terms 

of the complete set of solutions of Eqs. (3.16) and (3.17). i. e. 

IoGI[~l~@wkw,~lI. This completes the proof of the closure 

property in one loop approximation. 

D. Renormilazation of Insertion of Operators and the Closure Property 
in Higher Orders. 

Next we shall consider the renormalization of Green’s functions 

(and proper vertices) with one insertion of operators in higher orders; 

and show that the closure property holds to all orders. To show the 

closure property it is sufficient to know how to renormalize 

r ’ rN ’ rN 
N K=O=L’ 6K K=L=O ’ 6L K=L=O * 

We consider the complete set of independent triplets of functionals 

([otp)[ a,,0 W] (P) > 9 Qi [Q’r~a~l, R(P) (y [@plw,G ] } (and these include gauge 

invariant operators) such that each member (triplet) of the set satisfies 

Eqs. (3.16) and (3.17). [Some entries in the triplets may be zero. e. g. 

(P) There may be more nonvanishing Qi than there are gauge noninvariant 

operators etc. ] Then 



'N [ 
P 

I 

6rN 

+ i 

Q, 

=N 

Te a! 
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> 

div 
, a;] * = c z F;(e) o(q)[@,w,G] 

?I 

K=L=O 

div 

=c zk’d (9) 
9 

(0 Qi P,w,ij] 

1 

div 

K=L=O = c zr; (E’) RF) [@,~,a] 

1 4 

(q runs over the complete set. ) 

And thus 

I 

P 

I I 

6r R 

6 Ki K=L=o = ‘pq 6K 

1 
i 

K=L=o 
1 

I P 6r R 

6L 
(Y 

= Zpq 6L 
I 

K=L= 0 

1 CY 1 

where Z =fj +a. Z(l) 
Pq Pq Pq ’ 

where a is the loop expansion parameter. 

(3.30) 

(3.31) 

(3. 32) 

The generating functional of Green’s functions with a single operator 

insertion, in which all the internal subtractions up to one loop approximation 
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[for the three types of Green’s functions in Eq. (3.28)] have been 

performed, is expressed as 

W[ j, c, 5, K #, c Np] = j [ dAdcdF] + jiAi+S,‘a+c C CYCY 

+N Z 
P Pq 

dq) [A, c, 61 

+K,(D:C +N z 
1 ff 

P P9 

Q(q) 

i 

+/ I f c c +N Z R(q) 
(Y -z @PY P Y P Pq C-Y 

(3.33) 

We have expressed W in terms of the unrenormalized sources only 

because the expression is simpler. The overall two-loop divergence is 

to be computed by expressing the corresponding generating functional for 

proper vertices in terms of renormalized quantities. 

It is obvious that the definition of Eq. (3. 31) can be extended to all 

orders simply by determining the renormalization matrix Z in successive 
Pq 

orders: 

Z =6 + a z(l) + a2 Z 12) + 
Pq Pq Pq Pq -** 

(3.34) 

where a is the loop expansion parameter, provided the counter terms 

needed are restricted to the set { [ 0 (9) a Q(') R(‘)]} * i’cr ’ in other words, if 

the closure property holds to all orders, In the following, we shall show 

that this is true. 
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The proof proceeds by induction; and is very similar to the proof 

for the case of the one loop approximation. Let us assume that the 

closure property holds up to (n-l)-loop approximation. Then Z ’ 
P4 lS 

determined up to (n-l)-loop approximation in Eq. (3. 33). We note that 

under the transformation of integration variables, 

(P) 6Ai = (D;ca + NpZpqQi )6x 

ljc = -lgf c c +N Z R(‘) 
CY 2 OQPYPY P Pq a 

w 6C = Q-j0 CY fa[Al 6 X 

6 xff [A, c,F ] + NpZpqdP) [A, c,F] 
f 

= 0[ N2] 

(3.35) 

(3.36) 

which is again a consequence of the fact that (O(‘), Qy), RF) } satisfy 

the Eqs. (3. 14) and (3. 15). One can derive the WT identity satisfied by 

I’[@,w,G,K,L,N]. As before the WT identity satisfied by single 

insertions of any of the operators {OG1) @ {O[A,c,F] l is the same,viz. 

\ 
6ro 6rN 6rN 6r 0 -_ , =o 
6w 6L 

(3.37) 
6w o! CY 6 LP CY Kp= L@=O 

We equate the n-loop divergence on both sides noting 
1 

6’rN 
= finite 6rN 

6L 
* = finite rrn-l 

Q r. -loop 
=o ’ jf=L’=N=o 

r-loop 
$fz L’= N 

(3.38) 
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div div 

+ 6r0 6rN 
SF 

i n I II 0 
6Ki 

i n 

div I 

6rN 6r0 -- 
0 6L’ 6L’ a! CY 

n 

and thus 

ie,{rN}div=-i&-! 5 
n i 6K’ 

i 

6: 6rN I 
div 

.- 
-6w 6L K’= L’z 0 

cy a! 
n 

div 

I 1 (3.39) 

n If= L% 0 

(3.40) 

Similarly the equation of motion for the F field has the same form. 

I 6r 
$- [r,j div= a: N 

CY n 6K; 

Thus, it is clear that (rN [a, W, 
div 

a>, can be expressed in terms of 

the same set of operators (OG1[ ‘P] } @ {0[ @,0,0]}. Thus the proof 

by induction is complete. 

, div 

Jfz L’= 0 I 
(3.41) 

n 
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IV, FORM OF THE GAUGE NON-IN-VARIANT OPERATORS 

In this section we shall show that the complete set of gauge noninvariant 

local solutions%f the Eqs. (3.16) and (3.17) can be written in the form 

O[QJ&] = 6S[ @aw,w] 6 F[@,&] + 6S[ @,w,;] 
6 ai ’ !a0) i 6w X,IGGl 

cl! 

+ so1 ~,w,~l F[QZwwl (4.1) 

where F[ @,e,o , ;] and Xly[ @,,w a I;] are arbitrary local polynomials of 

CD,,o,i possessing the appropriate ghost number and appropriate 

transformation properties under global transformations of G and under 

Lorentz transformations. This form of the operators { 0[ $w, ;] 

be the basis of our proof of “decoupling” in the next section. 

Terms in Qi[ @, w , Et K, L] which vanish when multiplied by 

} will 

a: 

do not have a counter part in 0[ $o,o, K, L] as seen from Eq. (3.14). 

We may therefore choose to write 0[ @,,w , ;, K, L] such that 

60[CD,w,&K,L] 
6(aq = Qi[~,W,‘,K,L] (4.2) 

We shall find it convenient to consider Eq. (3. 14)9 (3.15) at K = 0 

instead of Eqs. (3.16), (3.17). Replacing Qi in Eq. (3.15) by the 

expression (4.2) and setting K = 0 , we obtain 

27 s?: 6 6: ---+- 6 = 
0 6wa 6La 6 ai 6 law-1. 

O[C$w,&K,L] 0 
1 

(4.3) 
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We define a new differential operator 

which can be easily shown to satisfy 

p2=o 0 

(4.4) 

(4.5) 

It is easy to see that all functionals of the form w F [ 1 w , (; ] are 

solutions of Eq. (4.3). It is also easy to see that all gauge invariant 

operators are solutions of Eq. (4.3). Our objective is to show that the 

two types of solutions are the o&Local solutions of Eq. (4. 3 ). Thus we 

state our theorem: 
._ 

Main Theorem: The complete set of independent local solutions 

of the Eq. (4.3) with ghost number zero can be expressed as 

( p?+‘F[ %J ,G 3 ) @ { OG1[ @] } ’ 

where F[ @,w , i] are arbitrary local polynomials with ghost number 

(-1). Here, the ghost number is defined as the difference between the 

powers of w and ;in the expression. IOG1[@l)’ refers to the set 

62 of gauge invariant operators not expressible as v F, i. e. , as E Fi'. (14) 

We shall prove first a lemma which we shall find very useful m 

the proof. The method is essentially similar to that employed by Dixon 

and Taylor. 

Lemma 1 (Dixon-Taylor): Let gbe a local differential operator 

in @,w,;,L* Let it be possible to expand v in powers of some 

parameter p as 
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HP, = A + PB + p2C , 

and let BP, satisfy, 

SF (PI = 0 > for arbitrary p 0 

Then all polynomial solutions of the equation 

~(P)WP) = 0 a 

where H(P) can be expanded as a power series in p : 

H(P) = 1 H@)pn o 
n=O 

can be expressed as 

(4.6) 

(4. 7) 

(4. 8) 

(4.9) 

H(P) = g(P)JtP) o (4elO) 

provided that the equation AY = 0 implies that there exists a X such 

that 

Y=AX 9 (4.11) 

where Y has the same quantum numbers as H 0 

Proof: Equation (4. 7) can be written as 

.- 
A2 =o p 

AB+BA=o p 

CA+AC+B2 =O p 

BC +CB = 0 p 

C2 =o 0 

(4.12a) 

(4.12b) 

(4,12c) 

(4.12d) 

(4012c) 
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Equation (4. 9) gives, 

AH(@ + BH(n’i) + cH(n’2) = o o 

We have to show that J (4 exists such that 

= AJb) + BJ(n’*’ + CJtnw2' 
o 

(4.13) 

(4,14) 

Let us assume that we have determined J (4 for n< r0 We thus know 

that 

H(r’i) = AJ(r-l) + BJlrB2) + cJtrB3) 
0 

H(r-2) = AJ(r’2) + BJ(r’3’ + CJirw4) 
0 (4.15) 

Then Eq. (4,13) yields, 

AH(‘) = -B[ AJ(r-1)+BJ(r-2)+CJ(r-3)] _ Cc AJ(r-2)+BJlr-3)+CJ~r-4)] D 

(4.16) 

Using Eqs, (4.12) in Eq. (4.16), 

AH(r) = ABJ(r-i) + ACJ(r-2) 

8 

i.e., A[ Htr) a BJ(-) _ CJ("')] = 0 o (4. 17) 

We can then determine the desired J (r ) if the Eq. (4.17) implies that there 

exists.Jtr) such that 

H(r) - BJ(r-i) _ CJ(r-2) = AJ@) 
0 (4.18) 

Applying the same argument for r = 0 , we learn that we can 

determine J(O) if the equation 

implies that there exists a J (0) such that 

H(O) = AJ(O) * (4.20) 
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Thus Eqs. (4. i9), (4. 20) and Eqs. (4.17), (4,18) imply that J (0) 

and J(r) rz 1 can be determined successively if the equation AY = 0 

implies that there exists an X such that Y = AX o proving the lemma. 

Comments : (i) If Eq. (4.11) holds, J(p) can be found. However 

this J(p) is not unique, for we may add to J(p) a polynomial K(P) such 

that 

~WW = 0 0 (4.21) 

In particular K((3) need not start as (3’ , it may start as some positive 

or some negative integral power of p 0 If J(p) exists, 

J’ (PI = J(P) + K(P) 

is the most general expression satisfying FJ” = H o Therefore, there 

is no loss of generality in assuming that J(p) starts as p” 0 

(ii) We may use special cases of the lemma such as putting 

c=o. 

(iii) Given that H is local, the lemma does not make any statement 

as to whether J can be chosen to be local. 

Now, let us return to the Eq. (4.3) which we have to solve. Let 

us expand a local solution 0 (P) [ @, o, i ] 

otp)[ $0 lz L] * 9 = .(‘)[ CD] + (6) Q(‘) [ f4 
ii a w , L;] + terms proportional to L s 

(4. 22) 

[ We have used Eq. (3.14). ] We note that the terms proportional to L 

involve at least two factors of w o Substituting Eq. (4,22) in Eq. (4.3) 
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and comparing the coefficients of the lowest power in w ,w [ i, e. p (W)‘O ] 9 

we get 

(4.23) 

where o 

(4.24) 
6 Q. 

&;[@I = e [CJJ,~ 1 
CY &J=o 

Our method will be 

(i) To show that all particular solutions of Eq, (4.23) can be 

expressed as 

F[ ~1 = ~0 iSi[ ~1 0 (4.25) 
3 

Si[ @)I being an arbitrary local functional. (Theorem I)@ 

(ii) To isolate all the solutions of Eq. (4. 3 ) which must have a 

nonzero F[ a] in Eq. (4.22). The rest of the independent solutions may 

be assumed to contain at least one ghost (w) ,, 

(iii) To solve for such solutions (containing at least one ghost) by 

using the Dixon-Taylor Lemma in two stages: 

Step I: We write Eq, (4.23) as 

w D~ 6 F [a] 
cy i 6Qi = goFIO]=w Q:q i 

CYl 9 
(4. 26) 

where go is defined in Eq. (2. 10)and satisfies qo2 = 0 o We thus have 

(4. 27) 
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We define an operator 

27= 5q) - covariance terms, (4.28) 

where covariant terms are obtained by fvarying D the free indices of the 

functional on which it acts according to the following law: 

(covariance terms)Ai[ @, o, 0 ] = -g t?.o A .[ $ o, ; ] 
1J Q! J 

(covariance terms)AQ[ @, o S w] = -g f w A [@,a,6 ] 
49 P Y 

(4.29) 

It can be shown that, in general, 

g2=0. 

We note that 

(4.30) 

Using Eq. (4,31), Eq. (4. 27) can be written as 

(4,31) 

(4. 32) 

This is the integrability condition for a solution of Eq, (4. 23) to exist 

given Qg o 

-- 
Using Lemma (AII) in Appendix A, we infer from Eq. (4,32) that 

(4.33) 

where 

y(yp [CD] = cyffp(y) ’ (4.34) 

V2 r ill2 l 0. 
’ [~I ~0 i ‘*’ ~O,i 
lr +2 ’ 3 rt 2 
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with 

c y”P P 1 
hi il no* irly+2 

= 0. 

It is shown in the Appendix B that Eq. (4.33) implies that there 

exist local functions T and U such that 

wq Q; =w T P 
c-2 a$ 

D 
i 

+o U CY Y. j 
, 

+ solutions of v(w~y Qg [ @ ] ) = o 

where 

u” . 
111 2 

[CD]= c ufyt-) f 
r.=O 1l12”’ $+2 

yoi a** YOi 
’ 3 ’ r+2 

c u’y(I‘) . = 0. 
+?I 1~1-4 1Rr+2 

Therefore the set of Qq[@] ‘s for which a solution to Eq. (4.23) 

exist and hence satisfy Eq. (4.32) can be divided into two classes 

class 1 

They satisfy 

Qq(class I) y. i = o 
# 

(4.35) 

(4. 36) 

(4.37) 

(4. 38) 

(4.39) 

(4.40) 

and therefore a particular solution F[@] for QT in class 1 can be taken 

to be zero. 
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(ii) Qy [a] which satisfy 

@?waQ", = 0 . 1 (4.41) 

As shown by Dixon and Taylor, for each such Qg [ @] satisfying Eq. (4.41), 

there exists a polynomial Si [@I such that 

0 ,Q;= %?SiPl. (4.42) 

[These follow essentially by the use of the Dixon Taylor Lemma for the 

operator $$?of Eq. (4.28). ] It is shown in Appendix C that S,[@] can 

be chosen to be local. Therefore a particular solution of Eq. (4. 23) may 

be chosen to be 

F[~I = ~0 iSi[~] 0 (4.43) 
, 

We also note that the particular solution of Eq. (4. 23) is unique 

modulo gauge invariant funct ionals D 

Thus we have proved theorem I. 

Step II: 

We note that because of the property g’2 = 0, g’St)[@] (Z) 
i is 

a solution of Eq. (4. 3). Therefore, we separate independent solutions 

of Eq. (4.3) in to two classes: 

{o(p)[@,w,G,L]} = {@‘SjP)[rn](X&j @ {o(p)[@,w,b,L] 

-g+sIp)[cp](8~)i} , (4.44) 

where S(‘) i 
is related to F(‘) of Eq. (4. 22) by Eq. (4043). 
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We note that 

%G~)[m](aa)i = y. i[q S$D] + g(aa).t% s!p) 
f J Ji Q 1 

+ % (8E) s(p) 
i i 

= F(p)[,] - (ai;r) [ gs(p)l i i ’ 

Thus, we see that 

(i) O(‘)[@ ’ (P) ,W , G, L] -g Si [a] does not contain terms independent 

of w,G 

(ii) The terms linear in W,w are 

( Wi [ Q;(pb.]WLY - @+I], 

which are expressible as (8~ )i 
( 
T (P) ,p + ~6) 

$3 i ij y 2 o,J wQ 
by virtue of 

Eqs. (4. 39) and (4.42). 

The problem is thus, reduced to finding solutions of Eq. (4.3) which 

contain at least one factor of 0 
a’ 

Step III: 

.- 
We note that the operator $$’ can be expressed as 

$j?‘= A+g B+g2C 

where 

(4.45) 

Azo $6 
q k 6’k 

-D..@ ’ 6 
1J j 6(aai 

+ (aq a” - 
1 6L (4.46) 

CY 

Dij aj =_En, i g=o’ (4.47) 
J 

and F’satisfies v’“= 0. 
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Solutions of our interest can be expanded in powers of g. [We may assume 

that the expansion begins as go] 

O[@,w,G,L] = ~gnO(n)[m,w,iT,L] * (4.48) 

The Dixon-Taylor Lemma tells us that there exists a functional 

F[Q,w,G,L] such that, 

O[@,w,i;i,L] = F&F[@,o&L] , (. 4.49) 

if the equation(‘Y[Q,ti ,G, L] has the same quantum numbers as 0 ) 

A Y[@,w,&L] = 0, 

implies that there exists a functional X [@,a, G, L] such that 

(4.50) 

Y[Q,w,G,L] = AX[@,w,i;i,L]. (4. 51) 

We thus have to prove Equation (4.51) given Eq. (4. 50) to do this, we 

consider a scaling transformation on w and L: 

# w = cyi;r@, L = CUL ) @‘= a, op= 0 0 (4. 52) 

Then, in terms of the new variables Eq. (4.50) becomes (dropping 

primes) 

(A0 +t Ai) Y[Q,o,cuW, Cz2L] = 0, (4.53) 

where 

(4.54) 
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Al = - D..@. ’ 
1J J b(aE$ cr 

(4. 55) 

We note that in Eq. (4.50)’ we need to consider X[@, w ,i;T, L] which are 

local polynomials in W and L and therefore Y[@, w , cuW, u2L] contains a 

finite maximum power of CY which may be determined given the dimension 

of the operators we are interested in. Multiplying Eq. (4. 53) by (Y, we 

get 
(A1 +aAo) iy I@, w,cui;i,cr2L]} = 0. (4. 56) 

We further note that, 

(A1 +QA~)~ = 0 for any CY o (4.57) 

Thus, we may apply the Dixon Taylor Lemma to Eq. (4.56) and deduce 

that there exists a local polynomial Y[Q, w , C, L, Q] such that 

Y[Q,w,aw,a’L] = (A1+~AO) X[@,w,G,L,a], (4. 58) 

provided for any local functional Z[ a, w , i3, L] with the same quantum 

numbers as Y{and therefore O[@, o ‘23, L] } satisfying 

AIZ[@, w, %, L] = 0, (4.59) 

implies that there exists a local functional V[Q, o, G, L] such that 

Z[Q,w ¶ G,L] =A$@,w,G,L] 0 (4.60) 

Since O[Q, W, 8i;j, L] is proportional to at least one w , so must be Z 

of Eq. (4. 59). 
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[At this point we note that we could have written Eq. (4. 53) as 

yN (Ao+~A1) YP,~,dy, L/y21 = 0 (4.61) 

with y = 1 /a and N is some finite integer; and attempted proving statement 

of Eq. (4.60) for A0 instead of Al. However since, 

L 
where Q’ r) is the longitudinal gauge field defined by, 

aJi= 2 + a' Q L T 
1 i rl 

; ayai=o 

(4.62) 

(4.63) 

and thus involves a derivative with respect to Q 
L 

which is not a local 

functional of CD. Thus even though statement analogous to Eq. (4.60) 

may hold, it is difficult to decide whether the corresponding V can be 

chosen to be local. In fact, there are instances when a V exists but can 

never be chosen to be local. ] 

To prove Eq. (4.60) given Eq. (4.59)’ we expand Z in powers of 

L: m 
zpJw,m,q = $, Z@), 

z(n) = 1 z(n)‘yineOLyIIL ,** L 
n! @-I cy * n 

(4.64) 
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Compare the coefficients (L)” on both sides of Eq. (4. 59): 

(D’)i qa$ 
cy 6Z(n+l) 

z@) + (aq ai bL = 0 , 
i a 

0 InSm-1, (4. 65) 

and (m)cu ...a 
CD@) i 6(aT5)i 

z I m=(-j. (4.66) 

(m)cu ...a 
In Eq. (4.64) we can always assume Z 1 

n to be completely 

symmetric in cy D . . cy 
1 n 

: 

(n)u . ..a (n)cu . ..Q 
S[(Y1...an] z I n = z I n. (4. 67) 

We will begin with Eq. (4.66). We expand Z(m) further in a=: 

(m)cr . ..a 
1 m= 

2 

(m, r)a . . 0 (Y 
Z (acq. . ..(aq z. . ' mJ 

r ll r li.Jr 

where we may choose 

(m, r) cy *. e cy 
1 m (m,r)a ...a 

A[il...ir] Zi . =Z 1 m 

1 ir 
. . . . 

(4.68) 

(4.69) 

Here A is the total antisymmetrizer of its arguments: 

6P 
= &tl, according as P is an even or odd permutation of (1’2, s s D , r). 

An application of the reasoning of Lemma AI to Eq. (4.66)’ taking 

due account of the antisymmetry in il, 0’0, ir, leads to the decomposition 
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(m,r)a, ...a 
z. . I m ~l...czm 

=z: . 
lln’O1r ‘1. ” ‘r 

A[pl.4rl J 
alO”(Ym 
PI”’ p, 

with 

We may assume that Z’ does not contain terms -ah , s=l J ’ ’ ’ , r. 
S 

The reasoning of lemma AI tells us that 

~@lOOO(ym z. . 
ll’ l ’ ‘r- 

(DQ). =O. 
ll 

(‘lOa*cvm z.’ . = 
(Pb,. . . am 

W. . . 
‘1”*ir 

. (DC@). . . . (DG). , 
Il. l l lr, Jl.. . Jp Jl JP 

where 

3 [I. 
(Pbl.. . am 

. .jp] W. . . . = 0, 
ll.. . lr, J1* 0 oJp 

and 
(Pbl. . . am 

S [is, jl. o p jpl W. 1 
=O, lsslr. 

1 . . . ir.jl.. .jp 

(4. 70) 

(4. 71) 

(4. 72) 

(4. 73) 

(4. 74) 

Therefore, W (P) is completely antisymmetric in i 
1 ““9 i 

r’ symmetric 

in jl...j 
P 

, and satisfies the constraint, Eq, (4. 74). We denote by e 

the identity element of the symmetric group S 
r+P 

on r+p objects, so 

that 
(Pb,. l . am 

e W. 
(Pbl. * . am 

=w. . . . 1 1 . . . irJjl...jp ll...lr,Ji...Jp . (4. 75) 
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The identity element e, has a resolution in terms of Young operators 

Yr where I’s are standard Young Tableaux. 13 
We order the r+ p 

induces i ,...i ,j 
1 *. . . 

jP 
in this order. 

r 1 Then the only Young operators 

which do not annihilate W. . . . i 
5 

rJ jio . . jp with the given symmetries, 

Eqs. (4.69)’ (4. 73) and (4. 74)’ correspond to the Young tableau I’ 
S 

shown in Figure 1. Therefore, we may write Eq. (4. 75) as 

P 

w. . . = 
ll. 4. lr, J1e. o jp 1 ‘IT wi $.jl...jp (4. 76) . . . 

s=l S 1 

where Y 
I? 

Is normalized to be idempotent: 

YrY =d 
s rr 

Y . 
s,r l? S 

(4. 77) 

Using Eq. (4. 76) together with Eq. (4. 72) we can write 

c (acj). Hcrl.4.Qm . ..(aq z. _ 
r ll r 114441r 

= (Da) ’ 
s d(aci~~ ma, 

1 
. . . (aa, (aq 

r r-t-1 

(m,r,p)~l...~ 
x VP m 

1 . . ..t I k k 
r r+2’ 1”’ p-l 

(Wk 
1 

. . . (D@jk 
P-2 1 

(m)a . ..a 
= (DQ) ’ V ’ - 

s 6(ams m EQ,O, w , (4. 78) 

where V(mJ rJ p, satisfies the symmetry conditions 
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(mJ r, P) ml.. .yr+l] v1 ki. ..k 
= 0 , 

1 . ..Ir+l’ P-1 
(4. 79) 

(4.80) 

and, in fact, 

,(m, r, PI . . 
il.. . lr Js; Ji.. . s.. . Jp ; .= 

r ,(P) 
il.. . i ’ ’ (-) . r~Jp..Jp 

(4. 81) 

Similarly, we may write 

c 
(az). 

ll 
..* @ai 4P1...Prl J al...(Ym 

r r 
p,*..p, 

a!?..apr 
l1 ir L~I.4.Lczm 

= (acyaq -$- dm+') m.bad4 , 
a 

(4. 82) 

where 

U(m+l) = 
c (a=). . ..(a=). ---& Q14..Qm 

l2 1 NPP243,1 Jpp 0 . . p 
s=2 S 2 s 

a~Y...a? L . ..L L . 1 3 CY S mP 

Likewise, we define 

v(m) bdff 
pJO,aw,L] = v I- crm [Q&azr]L 

aI 
. ..LQ . 

m 

What we have shown so far is that, given 

(DQ). 6 
1 6(azT)i 

z(m) = 0 J 

(4. 83) 

(4. 84) 

(4. 85) 



-43- FERMILAB-Pub-75/ 50-THY 

there exist V 0-4 and UCm+‘), such that 

ztm) = (Da) 
6 

i 6(%)i 
$-4 #n+ 1) . 

CY 

Further, note that 

CD@) ’ i 6(ai;), 
U(m+l)= 0 J 

as evident from Eq. (4. 83). 

Now assume that 

Ztn) = (Da) ’ 
i 6(aw)i 

$4 Jn+l I+ p+l) 1 J (Y 
CD@) ’ i d (aq 

Jn+f 1 = 0. v(m+l) - 0 J = . 

Then, by virtue of Eq. (4.65), we have 

(DQ) ’ Z(“- ‘) 
i 6 (ao'+ 

+ (aq a: & (Wj 6 & dn) = 0, 
cy J 

because 

(4.86) 

(4. 87) 

(4. 88) 

(4.89) 

Equation (4. 89) can be written as 

(Da) ’ i 6 (aq 
z(n-l) - (a=). a? -L dn) 

J J GLcu 
= 0. (4.90) 

This is the same equation as Eq. (4.85). Therefore, there exist V b-1) 

and U(n) such that 
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with 

z(n-l) = (Da) 6 i 6(acy 
P-l)+ (a=) aa i i -& [I+) + Tp] , (4.91) 

(Y 

(D@)i & I+) = 0. 

Thus, our inductive argument is complete and it terminates when n - 1 = 0 

is reached. That is 

Z = (Dali 6(& 6 

i 
+ (az+ a? - 

1 6L 
I 

w + Ul J 
(Y 

(4.92) 

where m 
v= 

c 
I 

n’ 
V(n) J 

n=O . 
m 

U= 
c 
n=O 

This completes the proof of Eq. (4.60) and, noting the arguments given 

between Eqs. (4.48 ) and (4.60), we conclude that all the solutions of the 

Eq. (4. 3) containing equal numbers of ghosts and antighosts and at least 

one of each can be expressed as g4 F[ @, w, ;, LI. Since we had shown 

earlier that all other solutions with an equal number of c, g#s can be expressed 

as, {$?<Fl-$-ti; G, I) @ { 0” [ Q I } , the main theorem is proved. 14 
-- 

We may now expand F[Q,w,G,L] as 

F[@,w,G,L] = F[Qj,o,T;T] - LOXcy+ o(L2).. . (4. 93) 

Then 

sv+ ‘G’LI F[@,-o ,O] + (4. 94) 
L=O o! 
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V. STRUCTURE OF THE RENORMALIZATION MATRIX 

In this section we shall prove another important result. It was 

shown in the last section that the complete set of gauge noninvariant 

operators that mix with a given set of gauge invariant operators can be 

expressed as 

65 6F 
O[@,,,G] = - - +=-X + F. F, 

mi 6(aq. dw (y 1 CY 
(5.1) 

where F and Xa are arbitrary local polynomials of appropriate ghost 

number and appropriate global and Lorentz transformation properties. 

It is clear that one can expand the divergence in IN[3, w , E] in the basis 

that consists of all independent linear combinations of the operators 

{OGIPIY@ ~wQ-ba~. It is important to recognize the trivial fact 

that the matrix elements of the matrix Z, will depend on the basis one 

has chosen; and therefore any statement about relationships of matrix 

elements of Z with its eigenvalues are bound to be basis dependent, in 

general. 

In this section,we shall show that mixing with gauge noninvariant 

operators (and ghost operators) can be made irrelevant in the limited 

sense that there exists a basis of operators such that when the matrix 

Z is expressed in this basis, the diagonal submatrix Z 
GI 

of Z yields, 

in fact,the correct eigenvalues corresponding to all eigenvectors of Z 

which involve gauge invariant operators. The basis is, in fact, 
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IoGIW@ g au g e noninvariant operators of the form 0[ a, w , z] of 

Eq. (5.1); and the diagonal submatrix Z 
GI 

the insertions of gauge invariant operators 

(0 
GI 

[a] } ‘when expanded in this basis. 

relates the divergences in 

which are proportional to 

To shown this, it is sufficient to show that the divergence in the 

insertion of a gauge non invariant operator of the form O[Q, w , Cjj-1 of 

Eq. (5.1) does not contain terms proportional to gauge invariant 

operators Q GIIN h w en expanded in the above basis. 

We consider the generating functional of Green’s functions 

W[j,N] = 
s 

[dAdcdF] exp i S [A,c,z] 
(I 

- s {farA]}’ + jiAi 

+N O[A,c,z] , 
> (5.2) 

6s 6F[A,c,c] ES 
0[ A,c,c] = dA 

i 6(awi + c Xcr [A, c,C] + @W,c,~] e (5.3) 
CY 

To see if gauge invariant operators appear in the divergence with a 

single insertion it is sufficient to compute FNIO, 0 =O,C?=O] , i. e. p it 

suffices to consider W as a function of j omitting the dependence on 

ghost sources. We perform an N-dependent transformation of the 

integration variables: 

Ai=A: - 1 Nd F[A, c,F] /6(aF). - 1 

C = c’ - NXJA, csF-1, C=T* 
P Q (5.4) 



-47- FERMILAB-Pub-75/50-THY 

We also note that F and Xcu are local functionals and the Jacobian J of 

these transformation is 

lnJ=N 
6F 

6Aid(aF). 1 

and Bn J is proportional to h4(0) or derivatives of h4(x) at x = 0. 

We shall use dimensional regularization wherein fi4(0) or are interpreted 

to be zero. Thus W[j, N] is given by 

WI j,Nl = / 
[dA’dc!d?j exp i $[A’,c:Zj - $ no 

+ JiAi+go F - JiN 
6F 

6(E) 
+ 0 (N2) . (5.5) 

i 

Omitting primes, we obtain 

Lw 
= 

Wbl N=O- 
<> 0 

j 
(5.6) 

= 
s $$) 

i 
+ l-lo a4Aiaq a;a;) + %F 

i 

-pi { Yeff+ jiAiI 

c -ji (h(izi)+ q. ($Ajap $$y + %F> . (5.7) 

j j 
Next consider, 

[dAdcd;] F [A, ~31 expi i ye,,1 A,c,c]+jiAi). (5.8) 
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We perform the BRS transformations on the integration variables given 

in Eq. (2.6) and equate the total change to zero. Noting that the Jacobian 

of the transformation is one we obtain 

0 = go F+ 6Faz) YJ 8OA .a” - ijiDqcrrF 
0 j ji exp i 

i 

, 2 + j.A t eff ii ’ (5.9) 

i. e. 
j swi z>,; iji (DFcpF)j . 

Using Eq. (5.10) in Eq. (5. 7), we get 

@)jz -ji (bp,z)i ) + iji (+cf5Fh ’ 
i 

. We write J 

rO -j,[#] = e = 
6rol$ 1 

- 60. 64 
i 

T)~ a: 
1 

a; 4 j , 

and thus obtain, 

- r a” 4 
Oj j 

P -aTD.c F 
1 P - 

i j 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

The last term vanishes since 
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,a 6F 
i 6(aqi 

-,;D?c F 
1 P 

6F 
6C - i (MC) 

CY 

x0-1/2f2+j.A 
= [dA] e CY 1 i 

& [FeiFMc]= 0. (5.14) 

Therefore, 

- i DycoF 
j 

(5.15) 

6d ) or [:@I 
= 

mi -iDFcIYF (5.16) 
i 

- 6rt)r)pJ 
= 6cD 

i 
3y Ml l (5.17) 

$i41 is to be renormalized in each loop approximation {~[cJ$]}:~~, 

the overall divergence in q$] expressed in terms of renormalized 

fields and parameters, can always be expressed in terms of a complete set of 

functionals with the same Lorentz and global transformation properties and 

dimensions as q41 l Let this set be { .(‘)[@I } 
i e 

Then 1 q$] 1 tiv = z A(pn) Fy) [a] . 

Thus 

1<) I 
0 

div ‘%0[‘1 
j n = 6@i 1 

A$’ Fy)[@] e 

P 

(5.18) 

(5.19) 
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But 6 Xo/6Qi Fy)[Q] are precisely the ghost independent terms of 

the gaugenon-invariant operators in our basis: ’ (P) vFi (aiz)i. It should 

be noted that, in the set of gauge non-invariant operators $?‘F, F runs 

over all functionals of the appropriate kind. Therefore, {CO>. } div 
J n 

lQ’,W, %] is expressible as a linear combination of O’s in Eq. (5.1), 

not including OGI1s. 

We further note that in Eq. (5.1), functionals F[@,w ,i;r] and 

X [a, o , i3] are uncorrelated, so that it is convenient to separate the 
CY 

basis into two parts. 

class I 65 6F operators : - 
6Qi wi;r), + Fop 

(5.20) 

class II GNI operators: - 
6w xpw’q ’ 

Ly 

[class I operators, in addition to GNI operators contains GI operators which have 

the form 6x 0/6A. Fi [A] . z The divergence in the single insertion of a class II 

operator can be expanded in terms of class II operators only. To see this, consider 

the generating functional: 

W[j, c,r,N] = I [dAdcdF] expi S[A,c,F’] - i {fQj2+ jiAi+N $ X0 
cy 

By performing a transformation on cLy only 

(5.21) 

C +c +NX 
cl (Y c!’ 

(5.22) 
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and noting that the change in the Jacobian is zero [X 
0, Q 

- tj4 (0’1 in 

dimentional regularization. We obtain (dropping primes) 

W[j, c,F, N] = / [dAdcdF] exp i 1 - i ft + jiAi + c c CYCY 

+ O(N2) terms . 

Thus 

+-&z +z NX 
CYO? Ly cl t 

(5.23) 

0 X - is a functional of @+.I, E. 
Q j&E 

It is to be renormalized as we 

renormalized F. [See the discussion following Eq. (5.17). ] Thus, 

div = IL 

and is expressible as the sum of class II GNI operators only. 

(5. 25) 

We have thus shown that the matrix Z has the structure: 
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Z= 

GI’ 

I 

II 

GI’ I II 
1 
I 

(5. 26) 

It is obvious that eigenvalues of Z”’ are also the eigenvalues of Z. 

Furthermore the eigenstates of Z corresponding to these engenvalues 

are the only eigenstates which involve a gauge invariant operators 
GI ‘ 

t > 0 in 

this basis. Thus the eigenvalues corresponding to the eigenstates of Z 

which involve a gauge invariant operator in this basis can be obtained 

only by computing Z 
GI’ 

. One cannot, however, compute these eigenstates 

simply by knowing Z 
GI’ 

o In practice, Z can be computed by finding 

some distinguishing property of 0 { G1 [@];I sets it apart from the 

gauge non-invariant operators with which it mixes. For example in the 

case of the twist two operators, only the 2-point function of OG1[CJ ] 

[F.T.(~O~I[,]/~~~~~~)] contains terms proportional to g while 
PV 

the G. N-1 operators with which it mixes do not. 
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APPENDIX A. 

In this appendix we wish to show that a local solution of the equation 

2 0 i[Ql ‘q[~] = O, 9 (Al’ 

has a structure discussed in Lemma A2 below. We begin with a series 

of definitions and a lemma. 

We define 

D 
ij = Q ta2gpv -apav ’ h4(x - y) ) 

where i = (Q, p, x1 and J = (p, v, y)- Note that 

go 
, 

ij[Q=O] = - D 
ij l 

(AZ) 

(A31 

We define the transverse and longitudinal projection operators, 
Tij and 

Lij bY 

which satisfy 

D..= a:T.., 6 
iJ U ij = Tij + L” ’ iJ 

T T . = T.., ik kJ L. L 
iJ ik kj = Lij ’ 

‘I’. L ik kj = Lik T 
kj 

= 0. 

We consider first a simpler case. 

(A4) 

(A51 

(A6) 

Lemma Al : Any functional PT[ $1 which contains at most n fields , 

and which satisfies 
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P;[Q] Dij aj = 0, (A71 

can be represented as 

p;[~] = zQp[q a! + vyj PI D. Q 
Jk k’ 

where 

Vfi2 [@I = 2 ffl 
r+l 

. PI x 
r=l l “lr+i s=3 (Diska4 ’ 

(A81 

(A9) 

with 

c 
v4r) . . = 0. (AlO) 

{il 
‘13 ’ l ’ ‘r+2 

The symbol c denotes sumnation over permutations of the r + 2 indices 
ii) 

{i,,i,, l . - , ir+21. 

Proof of Al: It suffices to consider a monomial 

Pq[@] = P” L,i 1 0D0 i 
CD. a. . . . ai a 

n l1 l2 n 

The kernel Ps i . 
3 1”’ ln 

is completely symmetric in the n indices 

{i,, . D 0 in}. Equation (A 7) then implies 

c {ii, . . . . in+l) py,i,.ae inDi,in+l= O’ 

(All) 

(A121 

where the summation is over permutations of the n+ 1 indices 

We can decompose Pg i . 
, 1”’ Ln 

with respect to each of its indices 

using the partition of identity (A4). For example, we write 
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P” 
i,i 1 .,,. i =L P” 

ik n k,i 1 . -. i 
+T P” 

n ik k, i . D e i ’ (A131 
1 n 

The first term on the right does not contribute at all in Eq. (A12), and 

yields the first term on the right of Eq. (A8), Z@ae with a suitably 

defined functional Z QP D From now we shall assume that Pcy 
i,i . ..i 1 n 

is transverse with respect to i. 

We shall write 

n 

P” 1 
i,i . ..i 

p4S’ 
(i,, o D., in} i+ - a is;is+in. .in (Ai4 1 

1 n 

where P 4s ’ 
i, i is transverse with respect to i., 

1 . ..i ;i i s s+l’“” n J 
15 j 5 s, andisl ongitudinal with respect to i j, j 2 s + 1. Substituting 

Eq. (A14) in Eq. (A121 and setting 

4s 1 - P. J,il”“is;is+l.“in 
= y(s) 

j jlj2.~.js;Ps+~...Pn 

P 
x D..D. . . ..D. s+l 

Jl J1ll J i 
ai ‘n . ..a. ,, 1 ss s+1 n 

we obtain 

‘{ii,... $1 
v4s ’ 

j j,j2. o .js;Ps+l o -. P, 

P 
x D.. D. . . . . D. s+1 

Jl Jill J i 
ai ‘n *. . a. =O. 

1 
ss s+l n 

(A15) 

(A16) 

For s = 0, we must have 

$40’ 
j+. l P, 

=o ~ (A171 
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For s # 0, we may set, without loss of generality, 

y(s ’ 
‘{j j,..ojsl j jl~o~js~Ps+ioo~P, =O ’ (A18) 

The structure implied by Eqs. (A9 ) and (A10) follows from (A17 ) and (A18 ). 

This completes the proof of Lemma Al. 

For later use, we note the special case when Pq [ ip 1 is restricted 

to be a local functional. This means that 

Pgi . = f(aj) h4(x1- x ‘6 
4 

(x. -xLy’... 6 
4 

(x. 
9 fJn a! li 1 

- x& (A191 
n 

where f (8. ) is a polynomial in differential operators. In general, a 
J 

functional of the transverse and longitudinal components of the vector 

field @.: 
J 

or 

QT 
j 

= (6 ji - aj $ a.)‘j 
1 

(A20’ 

is not a local unless Q: and @ 
L 
CY 

enter the expression (i) through the 

2 T 
combination @ . + a or (ii) in the form 8 Q 

j 
= DjiQi and 

a 2aL 
o! = a: G.. 

1 

Consider the term in Eq. (A14) which contains the highest power 

of Q, 
T 
i 

, i.e., the term with s = n. In this case Eq. (A18) reads 
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Suppose now V 4n . 1 -2 -2 
J j,. 4, 

has a factor 8. 8 . e 0 0 
G j2 

8 j2n (note that 

V.. 
q. o An 

must be symmetric in j 1, 0 . D jn) Then Eq. (A211 tells us that 

V.. -2 
JJj”” n j must have a factor 8 . , 

J 
and consequently from Eq. (A15 ) 

p4n 1 4n ) 
j,i,. 0 .in 

; is not local. Therefore V. . 
+-jn 

must be local. Repeating 

this argument, and taking into account the points (i) and (ii) above, we 

Q(r) find that for a local functional satisfying (A7), V . . must be a 
11’ 0 * $.+i 

local functional of 8 4 a. . 
1 

We are now prepared to prove the main lemma. 

Lemma A2: Any local functional Pat@ ) of Qj which satisfies: i-j 

Pq[ml~oih?l =o 
9 

(AZ 1 

can be represented as 

P;[@] =X%1 D+l +Yi;[aQl y. j[Ql 
, (A=) 

where X 4 and Y” ij 
are suitable functionals of Qk 0 

Since Pq [ @ 1 is restricted to a local functional we can meaningfully 

discuss its dimension. Since y. i has a definite dimension, we may 
9 

assume, without loss of generality, that Pg [ @I has a definite dimension 

N. We prove this lemma by means of the previous one. 
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Proof of AZ: We expand Pg [ @I as 

N 

Pp21 = 1 P” 
n=O ij . ..j 1 n mjioo* ‘jn ’ 

(A24 1 

and substitute it in Eq. (A22). We equate the coefficient of lowest power 

of Q to zero and obtain 

By the previous lemma, we have 

We now define 

Q(l) 
‘i [@I . (A27 1 

p”(l 1 
i is a local functional with dimension N, and begins with first power 

of a, and satisfies 

(A25 1 

(A26 1 

‘i @(l) [@I Y. i [al =o . (A28 1 , 

Obviously this process can be continued. Assume P 4n 1 
i is a local 

functional of dimension N and begins with On, and satisfies 

Patn) [ Q I Y. [ @ 1 = i i 0. 3 

4n 1 Let the Q n term of Pi 4n 1 be [Pi 1 . Then 

(A29 ) 

[P a(n)l i Dij Qj = 0. (A30) 
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Then by Lemma Al, we have 

r 

[P V4n, r ) 
ij . ..j 1 r 

[ apkQkl n (D. CD ) 
s=i JSJ 1 

(A311 

where Xcrp(n) and V(Y(n’ r, are nth and (n-r ,th order functionals of @ of 

dimension N - 1 and N -3r, respectively. We then construct 

p4n+i 1 
i [al = p;(n) [al 

n r 

(A3.2) 

which is a local functional of dimension N and begins with Q n+l ~ 

This process must terminate at some step, because the only 

solution to Eq. (A30) for a fixed dimension N and large enough n is zero. 

Suppose that [ P qcn) 1 = 0 for n 2 m. Then Pi h-d = o a 

We can solve the system of equations [ A321 for n = 0,1, . O., m-l 

Q (0) for Pq = Pi and find that it has the form 
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APPENDIX B 

Definitions : We define the syrnmetrizer S [ ii0 0 0 ipl by 

S[il.O.ipl . ..i A’ (B-i 1 

’ 

where the summation is over permutations of the p indices {il.. Dip} 

and A denotes collectively other indices. We define the complement 

S[i*- D o ipl of S[ii”.ipl by 

S[ ii0 0 D i I +S[ii...ipl =i 0 
P 

The symmetrizer and its complement are projection operators and 

commute with v of Eq. (4.28) 

s2 = s, s2 = s ) 

ss = 0 = ss , 

[Fg,sl =o = 

(B3) 

1 D (B4) 

Lemma BI: 

All solutions of 
n 

CY 
+qil.. .sLro. D in [@I D’ =o 

i 
r =1 r 

(B2) 

(B5 1 

can be expressed as 
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c 3 A @,I nil...lr.-.in (%I 

with 

S$...y$E 
(Yy. .Yt) 

=o. (B7 1 

(A hat denotes the absence of that index. ) 

Proof of BI: 

The proof proceeds much the same way as the lemma A II in 

Appendix A. We can always assume that Cy has a definite dimensions. 

We assume that C? 
m 

I~.. .Tr.. . in 
begins with a term Q Q! D We denote 

the em terms in C y by C y(m) D Equating the @ m terms in Eq. (B5) to 

zero we cbtain 

-&-y*, 1 di a; = 0. 
r 1 r”nr 

(B8) 

Now, &m) 
nil0 0 *i,. . .i,, {j} 

E c 
niIe..ireeein, jl...jm 

can be 

expanded in powers of momenta associated with iI’ D D in which are 

independent. We write 

+ c aa 8 cY”P($ * + . . . 0.-s 
Pq lP lP 

ilo o o iriplq. . . in 
(B9) 

Thus Eq. (B8 ) implies 
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s [ y, al c ~~(~~). 1” ; = 0. 
1 i r p”’ n 

s[yl”.ytl c 
Yf - 0 Yt 

A ‘: nilOOOi 1 . ..‘lqO-.in 
= 0, etc. 

rP 
- 
t 

We then form 

cy[ m+ll 
nil. D .?lr.. . in 

=cy r 
7-jil”.ir”.in- . cz 

D~ c w(m) 
- ’ ? r 

P 
ip ~1~. . . irlpe.. in 

+ Da ,P cycrB(m)_A . . . . r 
p,q lp lq nll”‘lrlpiq.~Oin + 1 e 

*.. 

(B. 10) 

(Bii) 

6312 1 

(B13) 

- 

Thus Cy ’ m+l I of Eq. (B13) satisfies Eq. (B5) and begins as terms 

m+l 
fD 0 This process can be continued, in each step increasing the 

power of @in Cy by one. The process will terminate when the power 

of Q exceeds the dimension of Cye Then Eq. (B13) together with its 

analogues imply the structure of Eq. (B6) for Cy. 

Lemma BII? 

Suppose a local functional Pi[ Q , w 1 satisfies 

$?(P& Q,,w 1 ) = w X%D,wl D; [@I CY (B14) 

where Pi may carry additional indices D Then there exists a local 

functional Z P [ Q, o 1 such that 
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F(P.1 a, WI - Z%,wlD;[Ql )=O o (B15) 
1 

Proof of BII : Eq. (B14 ) implies : 

s(w X@%, WI )Dy = 0 0 u346 1 CY i 

We multiply Eq. (B11) by 8 y0 Since 8: DI = May- [ @j is invertible, 

we have 

@(w xq) = 0. (B17) CY 

We can now apply the Dixon-Taylor lemma to Eq. (B17). This together 

with the discussion of locality in Appendix C, implies 

WX cuy = @(ZY) , (Bi8 1 CY 

for some local ZYE a, w 1 e Now since $!?(DT 1 = 0, 

%a zP[ qw] D;[@l 1 = waXayD? 
1 

QED. 

Lemma BIII: 

Given the equation 

n 

C? b&d . D? 
ll...lr...ln lr 1 = 0 , 

we can always redefine C? I**. .?ra. .in 
without altering 

1 
such that 

p 

W9 1 

(B20) 
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where C’s are local functionals and may carry additional indices. 

Proof of BIII: Eq. (B20 1 implies 

n 

0322) 

Lemma BI as applied to Eq. (B22) implies 

&: 0 
1 0.. a.. i I= c s:l”.~o /.\ 
r n t=2 ll...lrlp...lq~..in 

- 
t 

y2 Yt 
xD. . ..D. , 

lP l9 

with 

(B23 1 

S[y,...y$E 
yl’ l mYt = o . (B24) 

Here and henceforth we suppress suffixes whenever inessential. 

We define 

ENyl-yt = Sly 1 . ..y& 2 [yla.. yt I 

n-t 
l * ‘%+p DYt+l 

. . . DYt +P 

p=o 

with 

s[yl =1. 

(B25) 

Then, E’ 
Yl’ * * Yt 

satisfies 
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s[Y1.‘.yrlE’ 
Yy 0 0 Yt 

= 0, 2 < r < t, t > 2, 

because 

s [yl.. .Yrl s IQ. ..yt 1 = 

=S[yi...ytlS[yl...yrl =O, forr ct. 

Further, using 
n 

z 
s[yl”..yr-il SIY1.‘.Yrl 

r=2 

= s [ y*. . . y, 1 

(B26) 

(I=71 

0328) 

and Eq. (B24), we find that 

n 

E’ 
Yy l l Yt 

Dyzo., DYt = j. Eyi- ” yt Dy2.. . Dyt . 
0329 1 

Thus, Eq. (B23 ) implies 

n 

z 
E’ 

YiY2’ 0 l Yt 

(B30) 

t=2 

or 
n 

~[y,y2] vx (E,YIYZ.*.Yt Dy3...Dyt) = g(E’YiY2) = 0 
> (B31) 

t =2 

where use has been made of Eq. (B26). Repeating this process we find 

that 

v(E @“** l yt ) = 0, 2<t<n , - - (B32) 
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By the Dixon-Taylor lemma, therefore, there exist 

Fyi* ’ - Yt , such that 

E’ 
Yf l l Yt 

= ~Fyl*‘oyt , 

with 

s[yio. .ytl F 
Yy ‘.Yt 

=o , 

We can write Eq. (B23) as 

Tiw2? 4 
ii.. . ir. O O it I = 0 

with 

n 

-z 
FyJt* ~ .y2 . . D’t 

t =2 
il..~iripO..iq~~.in lp “* lq ’ 

, and 
n n 

c/y . Dy = CY /? D.y 
r =1 

il.. .‘;,. . .ln ir 
r =1 

il...ir.-.in lr 

on account of Eq. (B34) Q. E. D. 

Lemma BIV: 

(B33 1 

(B34) 

(B35) 

(B36) 

Let a set of local functionals B?” [ @I,, 
‘1” ‘f** in 

(1 <,r < n) 

andA! [a I 
ii . . . ink satisfy 
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n 

c 
Bps’ 0 . D! = A.’ ik%k’ 

r =1 
il...ir...ln ir id... n , 

Then there exist local functionals C ?“[ Qh i k suck 
‘l”*ir**’ n n n 

I that 

c 
BPa’ . D”1! = 

r =1 
il.. r...ln 2 ir 

r =1 

(B37) 

(B38 1 

A, B and C may carry additional indices. 

Proof of B IV: 

Since y. k and Dy have definite dimensions we may assume 
, 

that A and B have also. We assume that A begins with a term m-l 9 

and B with Q m . We expand Q m-l terms in A and am terms in B in 

powers of independent momenta associated with the points (i,. . .Tr.. . in): 

Ap(m-i ) = h; p(m-i ) 
ik ’ ik 

+ 
c 

a 7 A-pcY(mn-;) 
. ..i i * + 

‘1’** n ‘-lo** n lP ‘1 r p*.*‘n 
c 

$ ap dp4%+l-l) . . 
P9 1P19’1 

Ad& ‘1.L.. lrTplq... . in 

+ . . . * (B39 1 

BP(m) ,, + . il...ir...im 

+ 
c 

El! 8Y BP6Y(?.!,,,, . . . 
Pp iP lo 

il. . . iripzq. . . in (B40) 

+ . . . . 
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We now compare the coefficients of 3 m in Eq. (B37) and thus obtain, 

n m 

Bfa’ /\ 
r =1 

il...ire..in, {j} aqr = c 
s =i 

A~~...ink,jl..~~s...jmDkjs ‘(B41) 

with B?” 4 
ii . . . ir - -. in, {j) ’ “Tiy... 2 . . . in, j O.. j . (B42) 

r 1 m 

We substitute the expansions of Eqs. (B39 ) and (B40) in Eq. (B41) and 

compare coefficients of various independent polynomials of momenta 

and obtain a set of equations: 

c li’: 
ink, j . ..T ’ 

D = 0, 
S 

li.. . 1 s---Jm kj, 

- . . . . . . 

c 

pai.. . cYt 

A. o $\ 
S 

ll”.lp...lq...ink,j,‘... sO..j, 7 
D 

pcui.. . cYt 

kjs = (t! )Stai...atlB. e 

7 
ll".lp...Tq... in, {j 

t 
etc. (B43 1 

We then define 

(m-j)! C9”“-,” ) = [ AP(Y(m2) 
.~lo..lr...ink il...ir....ink,jl...jmSl 

+ 

+ c a p Ap@(m;2 . + 
P 

ip il.. . irip.. . n ik,j * 1.. .J,-~ 

(contd. ) 
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+ a? al: Ap.aPY 903 p,q lp lq ~i-olrlplqn~o n i k,j I-ojm-i (B44) 

From Eqs. (B43) it follows that 

n 

c 
r =i 

n 
B pcutrn )A 

il.:.ir...in, {j) “yr = c 
c p&n- 1) 

r=1 
il...rro..ink “yrDkj @j ’ 

We define, 

n 
dP[ml 

ik ‘1” n 
‘A! 

ik - c Cp4m-J) 
DQ I*... n r=l il...ir.*.ink ir 

and 

- 

gpa I rnz.1 I . 
i *... lr...in = By T . - Cycrn-$ 

. . . r...ln 
1 

T k l . ..rr...ink , 

(B45) 

(B46 1 

U347) 

lplrn1 It is clear that A and $PCYE m+‘l 
may contain terms which go 

as @ m-l 
and @ m 

respectively. But they satisfy 

dptml 
. 
Q... ink Dkj ‘j =o +O[Gm+31 

and 
n 

1 
BtpctIm+ll ap 

il.. .Tr.. .in ir = 0 +o[mm+2] 
r=l 

(B48) 

(B49) 

From the proof of Lemma AI and AII, we know that given Eq. (B48) 

we can always construct a local functional H! [ @I 
l1 . . . ink such that 
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HP i k % k =’ 11”’ n 2 

. . .i,k 
= ,dml ’ 

’ ik 
‘I”’ n 

+Ohrnl 0 

0350 1 

(B51) 

From the proof of lemma (BI) we know that there exists a local functional 

Jpa [ %] 
il... re oD n 

i k such that 

c Jpcr /? 
ik D; il...lre.. n r = 0 (B52) 

r 

and 

Jpa A . il.. . ir.. . n ik =B!(lr + . +O[ Go+*] . 
ll”olr*o’ln 

Then we form, 

Adml = AP[ml’- HP, O[ am] 

Bpa[m+ll = BpaLm+ll’- Jg40[ @m+i 1 

which satisfy Eq. (B37) viz. 

APIrnl 
1 k% . 

‘i*** n _, ’ 
k 

= 
c 
r 

Bpalmh+ 11 Dcz 
ije..i,“.in ir . 

0353 1 

U354 1 

(I3551 

(B56) 

This process can obviously be repeated. Each step increases the power 

of @ in A and B by one; th while their dimension remain coastant. The 

process terminates when the power of @ exceeds their dimension. 

Structure of Eq. (B47) and its analogues lead i-is to the statement of 

Eq. U338). 
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We consider a local polynomial functional Q iA [ a, w 1 . Here, 

A denotes the additional indices (if any) collectively. Let the power of 

w in& iA be PO Let D = dim(QiA ). We define dim ‘(QiA) = B- p. 

Lemma B V: Let 

(~QiA)~o i =O* f (B57 1 

Then there exists a local functional PiA[ a, o 1 such that 

~( QiA + PiA) = 0 , (B58) 

PiAYO i = 0. 
, 

We note that Q iA and P iA have the same power of w and the same 

- 
dimens ions. 

In other words, given Eq. (B57) one can redefine Q iA such 

that FQ iA = 0 without altering Q iA y. i . 
, 

We shall prove the lemma by induction. We shall omit the 

additional indices A whenever unessential. 

Proof of BV: 

According to lemma AII, 

~QiA =XYADY+YijA~o j ) t 

(B59 1 

(B60) 

with 
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n 

Y.. = c 
y(r ) 

1J ij i . ..i 
1 r 

~0 i”’ ~0 i ) 
’ 1 

r=O ’ r 
0361) 

with 

(r 1 S[iloe.ir+21 Y. . 
‘1’ l “r+2 

=o . (B62) 

(i) Suppose that dim’ (Q iA) < 3. Then Yij = 0 and the proposition 

is true for dim ’ (Q iA) < 3 by virtue of lemma B II. 

(ii) Let us assume that the proposition is true for dim’(Q iA) < N, 

for all possible A and all possible p 10. 

We wish now to prove it for dim’ (Q iA) = N. From Eq. (B60) 

(B63) 

- According to lemma BIV, there exists a local functional W such that 
rj 

Fky = WyjPO j , 
or 

‘(WYj) -q. j = 0. 
9 

(B64) 

(B65) 

Since dim ’ ( Wvj ) = dim (XGj ) - 3 = N - 4, we can apply the 

proposition of this lemma to Eq. (B65) to conclude that we can always 

redefine (if necessary) W 
Yi 

without altering W Yj % j such that 
, 

$awyj 1 = 0 0 (B66 1 

We can apply the Dixon-Taylor lemma and write 
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w =5x 
yj Yi - 

(B67 1 

Therefore from Eqs. (B64 1 and (B67 1, 

my - XyjYO j) = 0 
, 

or 

x = 
Y 

XyjYO j + x”Y f 

with 

gYxoy = 0 0 

Substituting Eq. (B68) in Eq. (B60), we obtain, 

Eli =X”,D~+ (XyjD~+Yij)~ O,j 

where from Eq. (B69) 

(B68 1 

(B69 1 

(B70) 

F{Xo,,D? = 0 . (B71) 
1 

By lemma (BII), there exists a local functional T:, such that 

X”Y = ii? (B72) 

or 

and thus 

F(Q. - T;D:) = (X 
1 1 yj 

D; +Yij)yo j 
, 

Trudy +Yij)~O j =O* 
j 

, 

(B73) 

(B74) 

Further dim’(Xy DT + Y ij 1 = N - 3. Therefore we may apply the 

j 
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proposition to conclude that there exists a local functional Pij such that 

and 

“y + Y.. -t P..) = 0 . 
1J 1J 

From lemma AI1 we may express P.. as 
1J 

P.. = X;iD; + c 
pW 

1J r=l ij k . ..k 
1 I? y %k 0,k me. 1 ’ r 

with 

(r ) S[il...ir+21 P. . 
‘1’ l l lr+2 

=o . 

We define 

,A9 
. . = y(r) 

‘i12* l l lr+2 i,i 
2 

. ..i f P?! . . 
r+2 ‘i12’ * * ‘r-+2 

Then on account of Eqs. (B78 ; and (I3621 

Jr) S[il. ..ir+21 Y. 
ii.. .ir+2 

=o, 

and 

yij% , 
= 

j Yi; Y. , 

n 
= 

j- c 
y--(1”) 

ij i . ..i 
9 ..A? 9 

r=1 1 r 0,i 1 0, i r O,j 

We may thus write Eq. (B76) as 

v(X .D’! +X ’ D‘i + Y:. ) = 0 . 
YJ 1 yi J 1J 

(B75) 

(B76) 

(B77 1 

(B78 1 

(B79 1 

cm01 

. (I381 1 

(B82) 

We now define 
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c(O)= S[ij] (XyjDy+X;iDY +Yi:) 
ij 

n 

= $XVjD; + Xy;Dj-XVjD;-Xy;D;l +Y;;)+ 1 

r=1 
(B83) 

and from Eq. (B82) it satisfies 

gdO)) - 0 ij - S[ijl CE’= 0 0 (B84) 

By the Dixon-Taylor lemma, there exists a local functional U (0) 
ij such that 

c(O) = g?p) 
ij ij SEijl U(O) = 0 D ij (B85) 

Using Eqs. (B85), (B83) in Eq. (B73 ), it may be written as 

$%Q -T”Dy 
i y i - Ug’q 

f 
jl = {$[Xyj’x;J 1 Dy + (i--j)]+ S[ijl Yi’j}q j 

2 

= { X$Dl + X;fDj + S[ ij,] Yii>yo j 
, 

with 

X #, = 
yj 

t’xuj + XGj ) . 

(B86) 

(B87) 

Further from Eq. (B82 1 

~{X~~D’ +X”.D’ +S[ij]Y’ 
yj i Yl j 

ij > = 

S[ij@kYjDi +X. D-j +Y 
Yl 

ij I = 0 . (NM 1 
: 

We note that S [ ij I Y .‘. 
13 

contains bt least one factor of y. k since 
> , 
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SEijl Y(O) = 0. Let 
ij 

S 1 ij I Y 1. 
11 

= -zijkq i 0 
I 

Thus Eq. (B88) can be written as 

(BSS) 

0390) 

Applying lemma BIV to Eq. (B90 ),we learn that there exist local functionals 

C 
Vjk such that 

%?X;(D; + FCC;; ID’: = ‘CyjkDyi + CyikD; 1% k = z 
J 

9 
f ijk 0, k’ (‘9’) 

Thus 

%Cy jkyo k) D; + tii%C yikq ,,D‘I: = 0 . 
3 (B92) , , 

We apply lemma BIII to Eq. (B92) to c:onclude that we can choose C 4 
yjk\ 0, k 

such that 

mcyjk’zo k = 0 
9 (B93) 

without altering (C Dy +C yjk i Dy&fo k e 
Yikj , 

Further dim ’ (C Yjk) = dim’(Xyj) 

= N -3. Thus we may further apply the proposition to conclude that we 

may redefine C 
Yjk 

further so that 
. 

ii%,j,) = o (B94) 

with C b!f 
yjk , 

o k unchanged. By the Dixon-Taylor lemma, there exists 

a local functional W 
yjk 

such that 
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C yjk = F(vl;jk) ’ (B95) 

We may write Eq. (B91) as, 

g[WyjkD;+ WyikD; - Zijklxo k = o . , (B96) 

Since dim ’ [ W Dy + (i-j) - 
Yjk i 

Z ijkI = dim I(Cyjk) = N-3, we may 

apply the proposition to conclude that there exists a local functional 

R ijk such that 

gi. WyjkD; + WyikD; - Zijk- Rijkl = 0, (B97) 

with 

Rijk z. k = 0. 
t (B98 1 

From lemma AI1 

R =- 
ijk 

R’ D;+ c 
R(r+l) x 3 

Y ij r=1 
ijki *..i, 0,1”’ 0,i’ (B99 1 

1 

with 

(r ) S[i3...ir+31 R. . = 0. 
‘1’ l ‘lr+3 

(B100 ) 

We define 

Z’ 
ijk 

=z.. + 
1Jk c 

Rk+‘) 2 x 
r=1 

ijk i . ..i. G,ii’*’ O,i, l 

(5101) 
1 

From the discussion under Eq, (B78 ), it is clear that we may define 

Y,Ar) 
ii’. . ir+2 (r 2 1) so that 
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2c S[ijlYij’ = -ZF. . - Ilk 0, k - 
z CQz 

ijk 0, k ’ 

whileY” . 
‘1’ l l lx-t-2 

still satisfy 

S[il”.ir+21Y.“(i-! = 0 ~ 
‘1’ l “r+2 

We thus have 

gI[wyjk D? +Wyik~y +R’.. Dl - Zcjkl = 0 D 
1 Y 1J 

We further note that Eq. (B91) implies, with the help of Eq. (B95) 

~[(X”-Wyjk~o ,)D?+(i--j)] = 0, 
yj t 1 

i.e. s 

P[(X” - 
yj 

wyjk;zb k)so j 1”; = 0. , I - 

(B102) 

(B103) 

(B104) 

(B105) 

We may, now, express Eq. (B86) as 

F(Q -T’DY-U(‘)x 
i y i ij 0,j 

]=(X”-TN 2 
yci Yjk O,k)=tD,j Dr 

+ Ew Dy + W 
yjk i 

DY+R’ 
yik j Y ij D;-Z;jklzo jzo k . (B106) 

# 9 

0n account of Eq. (B105) we may write 

ix;; - wyjkzo k)?zro j Dr = GjW(‘)) D‘! l 

f , Y 1 

(B107) 

Further Eq. (B104 ) yields 
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~[~[ijklCWyjkD:+WyikDY+~y;jD~ - z,‘j,)l =o. 

Thus there exists a local functional U (1) 
ijk such that 

S[ijkl { WyjkDr + WyikDi + RiijDi - ‘ij;,) = $?(U(.!) ) 
1Jk 

(B108) 

(BiO9) 

with 

s[ijl U (1) 
ijk =o, S[ijkl U(‘)(ijk) = 0 . (Bi10) 

using Eq. (B107) and (BiO9) in Eq. (B106) we get 

51 Q 1 Y 
i - (7" + Ty)D 

Y i 

= IS[ijk]x;;i DI - Slijkl ZGk}xo k =ZO j 
* t 

- 

and 

x& jzO k 3 , 

where 

n 

= {S[ijklX;j~D~ +SCijkl 1 YijE+‘.) x0 i . ..zo i } 

r =1 
il...ir , 1 

’ r 

S[ijkl X :‘Dy G S[ijkl (W 
y# i 

Dy + W 
yjk i Dy + RyijD’k’ yik j 

(B111) 

(B112) 

$?(S[ijkl “;j;rDl +S[ijkl 2 YifF’) .x0 i . . . 1 ir ‘i 
. ..4 i 1 =o 

r =1 ’ r 
(B113) 

This process can clearly be continued to the end with the help 
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of lemmas BIII, BIV. In the end one would obtain 

n+l n 

] ~0 

(B114) 

tr 1 SIi10.eir+21 U. . 
l1’ ’ l ‘r+2 

=O. (B115) 

Further, 

T:‘bl-f U?i, . zO i....$Pc i 
l “lr+2 ’ 2 

z. i =0 

r =O 1 ‘r+2 ’ 
(B116) 

Q. E. D. 
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APPENDIX C 

In Appendix B we have applied the Dixon Taylor lemma to the 

operator ebf Eq. (4.28 ). One may apply the lemma since the Eq. (4.11) 

hold for A = o 6 

rl 6@ 
L when X is proportional to at least one ghost field 

rl 
O. Here we have decomposed eas 

@=A +gB; 

However, because of the presence of 

T. 

5Y2=o. 

the derivative with respect to 

(Ci) 

rl 
in A, one does not know, as mentioned in Sec. IV, whether X of 

Eq. (4.11) can be chosen to be local given that Y is local. It should be 

emphasized that there are instances in which the Dixon Taylor construction 

can be used to construct J of Eq. (4. lo), however, it is impossible to 

choose J to be local even though H of Eq. (4.9) is local. We shall show 

that in the cases of our interest in Appendix B, it is possible to choose 

the solution “J” to be local by showing that in the cases of our interest the 

Eq. 

BY = 0 Y local 

implies that Y may be expressed as 

(C2) 

Y =BX+AW (C3 1 

for some local X and W. [ In particular W may be zero, which will be 

the case in all applications of Appendix B 1 SO that the Dixon Taylor 

construction can be carried out “backwards ‘I. This way the locality 
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of the solution is clear. We consider the Eq. (C2) where Y carried a 

free index say 1 a The following relations are easily varified. 

B(y) = 0 ; B(t yj ) = 0; Btf 4% )=O. 

The last two imply 

Further, 

Bk py) = 0. 

B(dij) = 0 Bt6 @Q = 0 . 

Also, we define 

B( ~S~(x-y)) = 0 . 

However, 

and 

B(w (~1 = ~gf~py~p~y # 0 , ’ (C9) 

nevertheless, 

B(wi3) i = 0 . (CiO) 

Without loss of generality we may consider Y( w, a) which involves a 

fixed number of w and Q 



-83- FERMILAB-F’ub-75/ 50-THY 

Then Eq. (C2) together with B(Qi) = 0 implies 

B 
cui* ’ * @n 

. ..w =o o 3 cz yl, kl...km 1 n 

Thus, it is sufficient to consider Y not 

an arbitrary number of indices, Now, 

number of derivatives in a functional. 

contains a fixed number of derivatives. 

containing fields 4, but carrying 

the operator B does not alter the 

Hence we may assume that Y 

We shall first consider the case in which Y does not contain any 

derivatives e The considerations involved in this case will be useful in 
(Y e.. 

the case in which Y contains derivatives. In this case Ypik 
c! 

nk 
’ 1”’ m 

consists only of the B-invariants, so that Eq. (C12) implies 

B 
c 

cy . . m cy 
n 

w . ..w 
1 

Y1 = 0 
3 CY 

n 

where we have suppressed the extra free indices. Thus, 

W . ..a 
ycui’ l l “n+l ’ = o. 

(C13) 

(C14 1 

Thus the totally antisymmetric 

n+l 
It consists of a sum of 2 = 

( 1 
already antisymmetric in (cyl.. 

of these terms as 

cy 
Yi 

. . . (Y 
n- 1 rl part of f vanishes. 

n(n+l ) 
r)(yna;l+l 

2 terms, since the above is 

.Q n-l) and in (a;l, un+*) e We write one 
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a 
-f Y3 

. ..a CY rl nn+l + 
D . . . 

rly1cy2 
(C15) 

where we have shown two typical terms on the r. h. s. Since Y does not 

contain derivatives, each term contains a product of same 6 functions 

which can be extracted. Thus in Eq. (10) we shall assume that the terms 

have no spaze-time dependence. We multiply Eq. (C15) by f 
5 

a cy 
n n+l 

and use, 

f LY(Y rj n n+lfSolnQ;l+l 
=6 

r/P2 ’ (Ci6 1 

so that, 

c-2 . . . cy 0 xrl 
-f 

?yY2 f&Jxy 3 
n-l + . . . 

and thus 

(C17) 

In the first term on the r. h. s. of Eq. (C18), we use, 
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1 
f f = z wcz-1w6 Q&t K AK r7 cc19 ) 

and thus we can write Eq. (C18) as 

cy . . . 

W . ..w 

5 

~ y4 

a 

n-l=lf 

n 2 y6K wrw6 

’ AifKAqY 
c 

LY 
n-2 r7 

W 
cr n-2 

KQ! 
+Af Y 1 . ..a 

n-3 DAY) 

2 gox 
“6 Wai’ l l wcY-3 3 

(C20) 

where A1 and A2 are some numbers depending on n and C2. 

Even though the argument following Eq. (C14) does not go through 

in the case when n equals the number of generators of the group, the 

relation of the form of Eq. (C20) still holds (with A2 = 0 1. This can be 

seen by explicitly working out the right hand side of Eq. (C20) for this 

case. As we shall see later, we shall need the relation only for the 

case of SU(2) (i. e. , 3 ghosts) in which case we see that 

1 
z ‘y&K wywtj ‘AK~ 

AQr Y w 
CY 

1 = z wywd wcY c -6 
YA6b 

+6 6 3 A Qrl 
Yrl 6X 

Y 

= y+y w 

Ly OpWy * (C21) 
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K Cy . ..cY 

Using Eq. (C20 ) we define an X 1 
n-2 by, 

0 D D Q n 
W e.0 w = 

5 (Y - 
n 3 (Y 

n-2 
(C22 1 

K(IY . ..Ly x 1 n-2. is clearly antisymmetric in its last (n-2) indices. Therefore 

it can be expressed as a sum of two terms each having either one of the 

permutation symmetries of Young Tableaux in Fig. 2. We write 

X=X’ .X” (C23) 

where X’ is totally antisymmetric in (KQ 1 0 0 0 CY n-2 1. Substituting the 

decomposition of Eq. (C23 ) in Eq. (C22 1, we get a corresponding 

decomposition for Y: 

y =Y’ .Y” . (c24) 

It is clear that Y’ may be expressed as, 

cy . ..Q 

Y’ i nw . ..w 

KCt 
1 

. ..(Y 

2: B(wKX n-2 
W . ..w 

3 
CY 1 (C25 1 
n 5 CY 

n-2 

where = means equal within a numerical factor, and that 

BY” =o e (C26) 

Thus showing that BY = 0 * Y = BX (X local), in our cases of interest 

amounts to examining B-invariants of the form Y’ ’ [related to X’ ’ 

with the permutation symmetry of the Young Tableau of Fig. (2b) by 
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by Eq. (C22)] and showing that such B-invariants do not occur in the 

cases of our interest. We define such B-invariants as anomalous 

invariant s o The anomalous invariants cannot be expressed as BZ since 

the X-function of Eq. (C22) for BZ for any Z can always be chosen to be 

antisymmetric (and in fact proportional to Z). Since the classification 

of B-invariants depends entirely on the indices o:f.Y contracted with 

ghosts; it follows that, 

(i ) if Yi [ W, @ 1 is an anomalous invariant, so is Yi [ Q ] Ti [ Q ] 

where Ti [ Q I is a local functional not containing derivatives. 

(ii) if Y(l) and Y(2) are anomalous invariants so is Y (1) + yt2). 

- 

(iii ) If Yi [ w, @ 1 is an anomalous invariant, and Yi [ w , @I = 

K.. [ W, @I L. 1 @ 1 where L is local, K.. [ w , @ 1 is also an anomalous 
11 J 11 

invariant, [ i. e. , the part of K which contributes to KijLj I o 

Let us therefore consider Eq. (C22) where Y is an anomalous 

invariant a Using B(Y) = 0, we get, 

Z 
KCt 1 . ..a n-2 

(C27) 

with, 

Z =A+.LY-~~(~ 1 

KC! e.. 1 Qn-2 

CC28 1 
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and thus Z as well as X has the permutation symmetry of the Young 

Tableau of Fig. (2b ). Further for n = 3, Z satisfies 

CYK 
6 z =0 

KC&J 

on account of the Jacobi Identity. 

An examination of the lemmas BIII and BV shows that, we have 

applied the Dixon Taylor lemma for v in the cases when H of 

Eq. (4.8 ) contains 2 or 3 or 4 ghosts. We shall therefore need to 

examine only these possibilities, 

(i) Two ghosts: Here, Eq. (C22) gives 

ww Y 4 = 
a P KY6 OyWd XK = B(w XK) 

K 

without exceptions o Thus there are no anomalous invariants containing 

two ghosts. 

(ii) Three ghosts: Eq. (C27) and (C29) imply that the traceless 

symmetric part of XK (y (which is already given to be symmetric in (K, (u) ) 

vanishes a Thus XK (y must be proportional to 6 K (y a This argument does 

not apply to the case of the group SU(2) because there Z vanishes 

identically. But in this case, it is clear that only the part of XK (y 

proportional to 6 K Q contributes to f w w aXK (yw 
KY6 Y ct’ Thus such 

anomalous B-invariants have the disconnected form 

f QPY w w w XI@1 
ffPY 
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where X carries all other indices that Y does. 

(iii) four ghosts: Here, we shall not need to know the form of the 

anomalous invariant s . We have used the Dixon Taylor lemma after 

Eq. (B. 32) where E’ contains 4 ghosts. We shall show that E’ can be 

chosen not to contain anomalous invariants. We note that in Eq. (B. 23 ) 

the terms containing no derivatives on the r. h. s. arise entirely from the 

action of B on the terms in C not containing derivatives, since C is local. 

Thus this term on the r. h. s. of Eq. (B. 32) are expressible as BZ and 

by definition do not contain anomalous invariants. Therefore it is clear 

that terms in E not containing derivatives may be chosen not to contain 

anomalous invariant s . Since E’ are a linear combination of product of 

Eand Dyts 
i ’ 

it is clear that terms with no derivatives in E ’ do not 

contain anomalous invariants, if such terms in E do not. 

Therefore, we need only to worry about the application of the 

lemma to terms containing 3 ghosts. Application to Eq. (B. 66 ) is a 

typical example which was repeated at each subsequent stage in 

Appendix B. 

We note that in Eq. (B. 64), Xy is a local functional containing 

two ghosts. Thus, terms in W fz 
yj O,j 

not containing derivatives do 

not contain the anomalous invariants as argued in the discussion in the 

case of 4 ghosts. Therefore, terms in W 
xi 

not containing derivatives 

may be assumed not to contain anomalous invariants. The question, 

then, is whether one needs to add such terms to W 
yj 

so as to make 
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Eq. (B66 ) valid. This will be so if 

&qwrj I @,I ) = - gtfarJyWcvwpWyx [ @I ) 

=- f QPY wawPwY 
$j?tx [ Ql 1 0 (C30 1 

On the right hand side, X[ @ I is a local functional with no derivatives 

in it. Thus, 

~(Xh,l) = AXI@] = w 

Then Eq. (C. 30) becomes 

~~wrj~pll)=-fLupyW,WpWyW~~?X,. [@I . 
11 

(C30a 1 

The terms in the 1. h. s. of Eq. (C30a) which contain one derivative 

- can come from either the action of A on terms containing no derivatives 

(Z www 
QPY 

uaPy [ Q! I ) or the action on B on terms containing one 

derivative (Z w w w VQPY 6 
QPY k 

Thus we have to see if the following 

eqiration is possible: 

-0 

+www v 
Q P Y 

Z’” Bca;, = -f 
QPY WQwPWYWrl 

a: x,i . (C31) 

6 
From Eq. (C. 31), it is clear that 8 k must be contracted with a ghost. 

Then letting, 



-91- FERMILAB-Pub-75/ 50-THY 

we get 

But this is impossible, since U QPY does not contain a factor of the 

form f 
QPY o 
Next, we consider the case when Y contains derivatives. Let 

Y contain exactly r derivatives at least p (0 5 p 5 r) of which are 

contracted with o in the form w 8 
a 

a, i’ BY, therefore, consists of a 

sum of terms containing (n + 1) ghosts, r derivatives at least p of which 

are contracted with w ’ se We write 

Q . . . 

Yli 
C-Y 

Yd . ..w =o . ..a ( 
‘1 ‘r-p 

f 3 ct o! w” 8. . ..(woa). ak’..ak 
n 3 n-p J1 JP r-p 

(Y 00e 
y, 1 

CY 
n-P 

3 P,- l 0 Prsp 

.!,j,...j k . ..k 

+ 
. . . . 

~1 r-p 
(C32) 

The terms in BY containing precisely p derivatives contracted with ghosts 

come from the action of B on (w a a a wQ 1 only. These terms must 
5 n-p 

separately vanish. Thus 
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0 =B(w . ..w 
P, Prmp :I-. . a;lmp, PI. - - P 

5 
cy 

n-p 
)(W’ a ). . . . (w- 8). ak . . . arBp YQ j r-p 

Jl jP 1 
, I...jp3 k l...kr-p 

(C33 1 

We note that the momenta carried by all free space-time points except 

I are independent. Further Y’ Q,j,. ..j is totally antisymmetrized 
P 

in (j,. . . jp). Using these and comparing coefficients of independent 

moment a, we find, 

B(w . ..w 
cyl’e*an-p’ P P 

5 
c! ‘Y; 

1”’ r-p = D 

n-p 
,j,. . . jp.kl. ..krwp 

(C34 1 

which is precisely the equation we solved earlier; with the result that 

(we suppress some indices here) 

cy 
Y1 

. . . Q 
(0 . ..w 

n-P’ - - l ) = B(w 

CY 

x I 

. 

Q 
. . . w 

cy P 1 . 
n-p ‘***’ ‘yn-p-j ’ l ’ ’ 

We now construct 

y(l) 
I = Ye - B o . . . wQ 

,?I’ ’ ’ “n-p-l’ ‘1.. l ‘r-p 

3 n-p-l a,j,...j ,kl...k 

. . . 8>;p 

1 - 
P r-p 

(w- a)j,. . . (w- a)jp (C35) 

Now, Y(i) satisfies BY’: ) = 0 and contains at least (p + 1) derivatives 

contracted with ghosts. This process can be obviously continued until 

the end. 
15 

Finally, we prove the locality of Si of Eq. (4.22) which together 
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with proof given by Dixon and Taylor in Ref. (5) completes the proof of 

the statement of Eq. (4.43 1. Here we use the Dixon-Taylor lemma for 

functionals with one ghost. We thus have to show that 

B(w~Y;[@])=O (C. 36) 

implies that for some local X4 [ Q 1 and Zqr Q 1 , 

From the discussion given earlier in this 

Yi which is independent of a, carrying an 

indices in 

1 + W; [@I ) . (C37) 

Appendix, we need to consider 

arbitrary number of additional 

B[ wcvY;l =o , 

Now, Ys must contain at least one derivative for otherwise 

(C38 1 

B t way;1 = $gf 
ct 

cypyw/3wyyi 
=0 (C39) 

implies Y4 ; 0. Further one of the derivatives in Yy must be contracted 

with wa in the form (~~8: ) for if we write 

WY Q 
(Y i 

=w a Q Y’ 
P, P, %P,...P 

a m mi [al+wcy ak . . . ak Y’{ k ,kn (C40 1 
I n ’ 1” n 

where the last term does not contain a factor w a 
(Y 

cr m’ then comparing 

coefficients of terms in Eq. (C. 38) not containing such a factor, we get 
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“‘P,...P, 
yiT:k . ..k 1 = 0 

I n 
(C41) 

showing that the last term in Eq. (C. 40) vanishes. Let us first consider 

the case in which Y ’ mi 
does not contain derivatives. Then, remembering 

that Y’ is a local functional either 
15 

mi 

Y’ mi,.. . 
,tY **/ 

mp ypi,.... (C42) 

or 

waY;hk w BQ Y ’ [@I = w 8 “(a 
cr m mi cy m 

(6,.Q.)PF.[@]64( 
m JJ 1 l -- 

) } (C43) 

where in F[ 3 1 all G are contracted with f’s or t “s. In the latter case 

we may write 

way; [a] = -wa, apn ‘4 @j)p+l 
6Fi[~l 

by h4(. . . ) 
m 

+ A{ 1 
2(p+l) (‘j’j) ‘+I I?[@] b4(. . . ) ) i 

where, the 1st term on the r. h. s. is itself a B-invariant and has the 

form of the term in Eq. (C. 42). Thus we need consider Y ’ of the mi 
form of the r. h-s. of Eq. (C. 42) only. Then, 

WQaz~I;li = w a@ t y ~0." 
a m mp pl 

(C44 ) 

= g 1 B(a;, Yif7 . (C45 1 
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Equations (C. 44) and (C. 45) prove the result for this case. Finally, 

in the case when Ymi contains derivatives, we write 

CY PI 
cy a. 

P, P - - .P 
WY =w a . ..a Y1 n 

cy i Qrn Ji jn mijl...j ’ CC46 1 
n 

PI.. ‘P, 
where Y. . 

J1-. .J, 
has the appropriate symmetry. Then B(o YQ) = 0 

(Y i 
implies 

w a 
CY P P, 

V a 
P PI..4 

any CY m wyak kj, j, . . . . jn 
n 

mi,j . ..j =0 (C47 1 
1 n’..... 

i. e., 

P t I 
4 1 

- (k-m) =o . t-8 1 

It is easy to verify that such a relation necessarily requires that the 

group index in m is attached to a tz I . Then Eq. ((246) can be written as 

w Ya, =w a@ tQ 
cy i cy m mP 

/.I,,,, apn Kpl...‘n ’ 

J, jn i,jl...jnI cc491 

Then Eq. (C48) implies that K 
P,...P, 7-l 
i, j,. . .jnl is symmetric under the 

interchange of (p,, jr ) -(r/Q). Thus we may write 

WY CY ‘1 ‘n 
cy i =B@ 

P 
a. . ..a 

KPI. - l P, r-l 

J1 
jn i,jl...jn P) 

cc501 

proving the result. 
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FIGURE CAPTIONS 

Fig. 1 

Fig. 2 

Young tableaux Ts, s = 1, . . . , m whose Young operators 

do not annihilate W. . lie e .ir, j,. . . jp . 

Young Tableaux for the permutation symmetries of 

X’ and X” of Eq. (C. 23). 
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