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ABSTRACT

We study the question of renormalization of gauge invariant
operators in the gauge theories. Our discussion applies to gauge
invariant operators of arbitrary dimensions and tensor structure.

We show that the gauge noninvariant (and ghost) operators that mix with
a given set of gauge invariant operators form a complete set of local
solutions of a functional differential equation. We show that this set

of gauge noninvariant operators together with the gauge invariant
operators close under renormalization to all orders, We obtain a
complete set of local solutions of the differential equation. The form

of these solutions has recently been conjectured by Kluberg-Stern and
Zuber. With the help of our solutions, we show that there exists a basis
of operators in which the gauge noninvariant operators 'decouple' from
the gauge invariant operators to all orders in the sense that eigenvalues
corresponding to the eigenstates containing gauge invariant operators can
be computed without having to compute the full renormalization metrix.

We further discuss the substructure of the renormalization matrix.
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I. INTRODUCTION

The problem of operator product expansion in gauge theories1
has been studied extensively following the initial work of Georgi and
Politzer, 2 and Gross and Wilczek. 3 A salient feature of this problem,
unique to gauge theories, is the possibility that the so-called Faddeev-
Popov4 ghost fields may participate in the operator product expansion of,
say, two gauge invariant currents. Gross and Wilczek3 dealt with this
situation in the axial gauge, where the Faddeev-Popov ghost fields are
absent (i.e., are free fields), and showed that the anomalous dimensions
of gauge invariant operators are correctly given when possible couplings
of the ghost fields are ignored in other gauges, at least in one-loop
approximation. Subsequently, a number of authors, including Dixon and
Taylor, > Kluberg-Stern and Zuber, 6,7 Sarkar and Strubbe, 8 have
elaborated on and extended this result in some respects.

The purpose of this paper is to give a general discussion of the
renormalization of gauge invariant operators of arbitrary dimension and
twist, and valid to any order of perturbation theory, along the lines
exploited previously by Dixon and Taylor, > and Kluberg-Stern and Zuber,
In the course of this discussion, we will extend their results and prove
conjectures made by some of the previous workers.

We base our discussion on the proof of renormalizability of gauge

theories in the form presented by one of u89 and streamlined by

6,7



-3~ FERMILAB-Pub-75/50-THY

1
Zi.nn-JustiniO by means of the Becchi-Rouet~Stora ! (BRS) transformation,
This is briefly summarized in Sec, II. The BRS transformation is a
transformation of fields by an anticommuting c-number A which leaves

invariant the effective action %ff defined in the gauge specified by fa:

6A =c D¥n; D= (F +gt¥A) ,
i a i i i ij j

= -1
0 c, 5 gofaﬁycﬁcY A,

1

e =-nif A . (1.1)

where Ai is the gauge field, ca and c-:a are the Fadeev~Popov ghost
fields, and g is the coupling constant.

In Sec. III, we show that only a subset of possible gauge noninvariant
operators together with a set of gauge invariant operators of the same
dimension and twist form a closed set under renormalization to all orders,
and in Sec. IV, we give a complete characterization of the gauge
noninvariant operators in this set. The problem reduces to finding a
complete set of local functionals H[, c,aE, L] of a given dimension and
ghost number which satisfy

E"H =0 (1. 2)

where the differential operator <* is
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53 _6 5S 5
- on — .85 _ 6
SA, 6(80) éc S L 2 (10 3)
1 1 o a
L. being the source of the operator if c.c
@ OTE P 2 tapy 8y

We solve Eq. (1.2) completely in Sec. IV, by a method suggested
by Dixon and Taylor. Various mathematical lemmas necessary are

proved in Appendices A and B. In all of these, the observation that
2
(€*)" =0 , (1. 4)

or more generally that the BRS transformation on Ai and <, is nilpotent,
plays a crucial role. We confirm the conjecture of Kluberg-Stern and
Zuber-7 on solutions of Eq. (1.2), for arbitrary dimension and twist.
Actually, the construction suggested by Dixon and Taylor does not make
it clear the locality of solution, 12 but we have explicitly shown in Sec. IV
and in Appendix C, the locality of solutions which is crucial to the
arguments of Sec. V.

Section V is devoted to the study of the renormalization matrix
of these operators. It is shown there that the renormalization matrix is
in a block triangle form when the basis of operators closed under
renormalization is appropriately chosen, and that, in this basis, eigenvalues
of the matrix corresponding to the eigenvectors containing gauge invariant
operators are computable by neglecting couplings to gauge noninvariant

operators.
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We do not discuss the operator product expansion of gauge

invariant currents per se in this paper, leaving it to a future communication.
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II. REVIEW
A, Preliminary

In this section we shall briefly review the definitions of generating
functionals in a gauge theory, the BRSM(Becchi, Rouet, Stora)
transformations and WT identities satisfied by the generating functionals.
We shall use the condensed summation-integration convention as used
for example in Ref. 9.

It is well-known that the Feynman rules for constructing Greenfs

functions of a gauge theory can be deduced from the effective action -Sé(; Py

—w - . 2 -
oéeff[A,c,c]—ozo[A] -3 {£ A1} +E M

1 (2.1)

c
B P
where afo[ Al 1is the Lagrangian for the Yang-Mills fields (possible

interacting with matter fields, in which case A denotes collectively

gauge fields and matter fields), and

o "
CARNERFICNRAE (2.2)

are the gauge fixing terms and Ea , cq are the Faddeev-Popov ghost
fields.

The Lagrangian JZ;)[ Al 1is invariant under the infinitesimal local
gauge transformations of a compact Lie group G, which we shall choose
to be a simple group solely for the sake of notational simplicity. Extention

to the case of a direct product of simple compact groups is obvious.
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Thus :0[ Al is invariant under the infinitesimal transformation,

o a
- A =A + +
A~ A=A (3] Eoti270 o
(+4
= +
= A +DI[Al0_ (2. 3)

Ai's are hermitian fields so that the matrices {ta: (ta)ij = t;;} are real
antisymmetric representation of the generators of G . g is the
(unrenormalized) coupling constant of the group G .

We shall work in linear gauges defined by,

£[A] =n2 5%A
a[ ]_no i 1 (204)

where T is an arbitrary real positive number,

Then MQ[-”[ A] of Eq. (2.1) is defined by
L SEIAT
= 2
ap[A] U SAi Di[A] . (2. 5)

The BRS supertransformations consist of
§A =c D6\
i o i

-1
o™ "2%0apy’py 0

o
0
1

1
= - Zfa[A]E,}\ (2. 6)
where &\ is an x-independent infinitesimal anticommuting c-number.,
We note that under the BRS transformations
=0 - % -0, -1 =0 :
8(Ly) =05 6(c, D)) =0; 5(-1f ANELE
§(-1f°[ A] +cMc) = 0 ;
27y ’

5 (L ool Ac,é]) =0 . (2. 7)
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We shall also find it useful to consider only the following

transformations:

A =c D%)\ :
i a i

ccya)\, dc=0 ., (2. 8)

= -1
6ca agofam 6

Under these transformations (-:2%[ Al + EMc) is invariant. This is

expressed as
GolLi [ A] +cMc) = 0 (2.9)
where % is the differential operator defined by
§ { F[ A,¢c,c]} = %F[A,C,E]ﬁ)\ (2. 10a)

where 6 F refers to the change in the functional F[ A,c, E] under the
transformations of Eq. (2.8). If F[ A,c, 5] is a functional containing an

equal number of c,c with all cls appearing before all c's . ? may

0
be expressed as
— a & o)
= -— + i f ° °
D= %P 3 A " 280apy°py5c (2. 10D)
In terms of % , the group condition on Dia[ Al viz.,
a & B 6 ] - aBY~Y O
[Di 53 ' Disa gl Disa (2.11a)
i i i
i.e.,
2P - P p2- #BYRY (2. 11b)
.l 3] 1

can be expressed elegantly as the operator identity:



gzz 0 . (2.12)

dimensionally regularized quantities. Following Zinn-=-Justin, we introduce

sources for the composite operators caD? and and define:

lg f
280" apy B Y

k41 =2 c a. .
S[ A,c, ek, 4] =ol [ A,c,c] +x.Dic (2.13)

1
280%apy°py  a °
We define the generating functional of Green's functions,
. 1 - - . - + . + - +-
W[ js& &« L] .([ dAdcdc] Exp i{S[ A,c,c,x, 4] JiAi gaca caga}
(2. 14)

where £ £ are anticommuting sources for the ghost fields. The generating

functional of the connected Green's functions is defined by,
2] b Er 2] = -1 ln W[ j, 6,8, 0] o (2.15)
We define expectation values of fields in presence of sources:

52 62 = 6 Z
i l = —— T em— 2 o e—
(bi[ J,gﬂg’Kl ] 6ji » Qa 6£a 3 Qa 6 ga (2. 16)

where it is understood that the partial derivatives are taken with the rest

of the sources fixed.

The generating functional of the proper vertices is given by

F[(]_’),Q,Sa,l(,l] =Z[ jsg:é:K:‘e]'jiAi— gaca-caga ° (2017)
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urri

The sources j, § can be expressed as a functional of ¢,Q,Q,«, £ by

the relations:

.- _ 6T - _or z _ o
i77% %7 sa. % (2.18)
1 (23 o
where as a matter of convention partial derivatives of I such as %
’ i
stand for
oI
5 ¢i i (2.19)
7,2, ,k,4
With this convention, we also note,
6" 6 Z o8I 8 Z
5k, bk, Y . (2. 20)
1 1 (4 o

By consideration of an arbitrary change § Ea in the W[j ,& &,x, £ 3
of Eq. (2.14), we can obtain the equation of motion for the antighost field.
It is expressed in terms of I' as

oI adl

—:8.

658 1 6k,
a i

o (2.21)

By considering the BRS transformations of Eq. (2. 6) in the integration
variables of W of Eq. (2.14), one can obtain the WT identity for W,
It can be transformed into WT identity for I" and simplified using

Eq. (2.21). The final result is

GPO 6FO 61"0 61"0

6¢. 6k, &6Q ol
1 1 o

=0 (2.22)
with @

Tol 9:2.8,81 = T16,0,8, 6,41 +4{1 [¢]}° (2..23)
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The theory is made finite by wave-function, and coupling constant

renormalizations:
Py 1 - 1_
A = Agr)zz , c = Eac(r) , o = 220(1‘) ,
i i o a o a

g, - ex27'z7E
A, L i

kK, = Z2 K, , £ =2Z2L (2. 24)

i i a o

Alternatively, we can write the renormalized effective action as

r)

s A0 ) 20 1) = S[ A, e, 8,0,

=5t A, D W kg vasta®, P 0 kL L (@225

where AS represents local counterterms. It is a well-known result
that Z, 'Z\: and X in Eg. (2.24) can be chosen in successive loop

approximations so that the resulting renormalized I' is finite in terms

of g and renormalized quantities.
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111,

A. Generating Functionals With An Insertion of a Local Operator

In order to discuss renormalization of an operator one needs to
relate two quantities: Green's functions, involving an insertion of the
operator which are independent of the renormalization point -- the so-
called unrenormalized Green's functions and the finite (i.e., renormalized)
Green's functions which however depend on the renormalization point.

In the following we shall give the definitions for the generating functionals
for these two Green's functions.

We consider a local (though it is not necessary for these definitions)
operator Oi[A’ c, cl , which may carry additional Lorentz indices. Let
Ni denotes (in general, x-dependent) source for Oi [A,c, cl. The
generating functional of the unrenormalized Green's functions with an

arbitrary number of insertions of Oi is given by

i = c i c i +c +£
wlj,&,6,x,2,N] f[dAdcdc]expl {S[A,c,c,x,ﬁlﬂiAi c kb, tE e,
+N.O. [4,c,cl} (3.1)
whose derivatives with respect to various sources are independent of the
renormalization point for obvious reasons. The corresponding generating

functionals of connected Green's functions and of proper vertices are

defined analogous to Egs. (2.415) - (2. 18) of the last section viz.

zj,t€,k £,N] =-ienWI[j, £, ,x,e,Nl , (3. 2a)
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rl4,9Q,%2,N =2[j,6,6,00,N -j 6 -QF -£ @ . (3.2b)

We further note that as in Eq. (2. 20)

oT _ 8Z
5N, _ 8N, ) ' (3.3)
. ’:d)’QJQJK"q . jg,g,K,ﬂ
The (Fourier transform of the above quantity {6_?\53 generates

N=0=K=L
the unrenormalized proper vertices with a single insertion of O.1 at an

arbitrary momentum. Insertions at zero momentum can be obtained by

. . 4 8T
considering fd X(‘m) .
N=K=1.=0
To renormalize

= 6T

Q, Q] = —
rN[du, , 21 oN (3.4)
N=K=L=0

in one loop approximation, one needs to compute {I“N} olw expressed in

terms of renormalized field & w, w and renarmalized parameters:

[ renormalized according to some convention] and define

R - < Ta oz, i-qldiv
rN[@,w,w] = I‘N[¢,Q,Q] - I'N[ZZQ,ZZw,ZZw] (3. 4)
1 1 1

Q, w=Z2Q, (3. 4a)

N‘n—-
N

@, w = 7Z

so that FE is finite in 4 space-time dimensions. FN as a function of

renormalized fields and parameters can be best obtained from another

generating functional
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W(r)[J,g,Z,K,L,N] =f[dAdcd€] expi{S(r)[A,c,é,K,L] +JiAi

_ _ ~1 ~l_ 1
+¢ c +c t +NOI[Z%A ,Z%¢c ,Z%c ,-g:}%—,nz ]} . (3.5)
o o 23 [ 11 1 [o4 a ZZ;

M=

Here, the sources J, ¢, g- , K, L stand for the renormalized sources. This

W(r) is in fact equal to W(u. r) of Eq. (3.1). This can be seen by performing

the transformations

S
(V10

(ST

...—1_ -~ - ~ ~
j=Z 3, £=Z°t, £=Z°( k=2

N

gy ~eX2Z2Z°, n,=nZ
with a simultaneous change of integration variables

1 ~1 ~ ~1
A =z2aA®) o ozz{m) T L5z

i a a
and dropping the overall infinite constant and superscript (r).

[ We shall find it convenient to switch back and forth between

W(u. %) and W(r), W(u‘ r) is especially useful to see the symmetry

properties of W while it is wr) which can give us {I‘N} div as a functional

of renormalizaed fields and parameters . ]

B. WT Identity For the Generating Functional of Proper Vertices With
A Single Insertion of a Gauge Invariant Operator

Our object here is to write down the WT identity satisfied by

].“N [3 w, w] in one loop approximation, when N refers to the source of
a gauge invariant operator and use it to find the properties of gauge

. . . . - div
noninvariant operators which enter in {T N[ b w,wl} P

To do this, we consider the BRS transformations of Eq. (2.6) on
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the integration variables of WIj,& €,k ,£ ,N] of Eq. (3.1), with

G [A]. We note that the extra term NOGI[A] is invariant

O.[A,c,cl= O
L

under these transformations. Therefore the WT identity satisfied by

WlJ,¢,¢t,K,L,N] is [i.e., expressed in terms of renormalized sources]

and by T[®, w, @, K, L, N] will be identical in form as the WT identities

for these generating functionals at N = 0. Thus,

oT 6T
0 R 0
5w =9 5K (3.6)
and
6
5]."0 6r0 ) 6]__'0 TO o 5. 7)
6®, 6K. o w S L * °
1 1 @ o

We differentiate Eqs. (3.8)and (3. 7) with respect to N and set N = 0, We

thus obtain,

N e N
5o %i 3K (3.8)

a i

61"N 6T0 . 61“N 6I’O ) 61“N 6TO ) 6TN 6T0 I 5.9)

6, oK, 6K. 0@, 0L dw dbw 6L : :

i i i i o @ o a
with

- 6]—‘0[¢’ w’ Q,K’ LJN]

rN = FN[Q’('O’ w:K’L] = 5N . (3. 10)

N=0

Equating the one-loop divergence on both sides of the Eqs. (3.8) and (3.9),

is a finite functional, we learn,
N=0

remembering that ro
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3 div_.a & div
o {TN}i = 81 34 {FN} 1 (3.11)
a 1
5 1 5 div_ _ 6S 6 div
[“’aDi 6@1+5gfo43y By 6w Hryd 68, 6K, Tyt
65 ) div
o 5L {TN} L (3.12)
a (o3
with
sle, w0, KLl =Llel+aM [6le+KD% -1Lf o
0 a off B i i «a aafy By

(3.13)
div

1 is a local polynomial of &, w, «, K, L of dimensions

{r.lew,s, K,LI}
N
GI - div

equal to that of O™ [ &], Thus {TN[@,w,w,K,L]} , can be expressed

in terms of a complete set of local polynomial solutions of the equations:

5 - L 6 -
6:) O[@’ W, W, K: L] _ai 6K' O[@, w, W, K,L] (3' 14)
a i
L, 8S & 55 6 _ i
[go dw oL, + 58 oK. Olg, w, ®,K, L] =0, (3.15)
24 o 1 1
Thus {T [® w ‘:’]}div= {ryl® o, «,K, 1] }divcan be
N 1 N T K=1.=0 1

expressed in terms of the complete set of local solutions of the equation

60[<P_,w,w] - 9® Q. (2 0 ol (3. 16)
55 i i
a
and
- - §S - &S
?00 [® wwl = 'Qi[@, w, w]'s—q?i +Ra[<I>, w, w] E‘-;-a (3.17)

where Q. [8, w, w] and Ra [®, w, w] are local functionals of &, w, w possessing
i
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appropriate transformation properties under the global transformations of
group G and Lorentz transformations. [ As we shall see later the
integrability of Egs. (3.16), (3.17) will restrict the set {Qi} and { Ra} .
We shall obtain the complete set of local solutions of the Egs. (3.14),
(3.15) in the next section. In this section, we wish to show that the set

GI[ o]} @ {O[®,w,w } [the latter being the set of all

of operators {O
gauge non-invariant solutions of Eqs. (3.16), (3.17)] ; closes under

renormalization to all orders. For this purpose, it is not necessary to

know the set {O[®,w,w ] } explicitly.

C. Closure Property in One Loop Approximation:
| We consider the generating functional of Green's functions W of
Eq.. (3 5) with Oi[ A, c, c_:] being any one of the gauge noninvariant div
opéfators of the set. Our objective is to show that { I‘N [, w,w]} L
thus computed for any of the gauge noninvariant operators can be expanded
in terms of the same set {OGI[ ®]} @ {0[2,0,w 1}.
(uer.)

We shall find it convenient to use W [ in terms of unrenormalized

. sources] to exhibit its symmetry properties:

W T f [dAdcdd] expi gO[A] + cMec - %_ 2 [A] +;K;D‘_" c
p 1

o

1 . - _ -
-= + + + + . .
=2 Ly ety TN OlA,c,cl+j A +c & +Ec (3.18)
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2

We note that {,% + cMec - % fp

[A] +N“O[A,c,c]} is

invariant under the transformations:

A, = (D¢ +N“Q.)6x = c D %
1 1 [e4 1

1 "
= - — f + = - il
o ( 2 g0 afy Cﬁcy N Ra> oA = gOZ fafﬁy cﬁcy

@]
]
1

- 1/2
6¢c =-n/

N 0 fa[A] &N, (3.19)

to the 1St order in N’. Here Qi and Ra are the functions corresponding

to O[A,c, E] that enter Eqgs. (3.16), (3.17). To see this, we note

o Lot [A,c,c]+ N O[A,c,c]} = 0+ON) +ON"?%) +

and O(N’) terms are given by,

" L S Lt Q 8Ly 2 len
8A. i Sc o
1 o
. &0 1/2
— + 2=
+ N 3 ?Oo 33 ng £ % 6N, (3. 20)
. 6 §S , . 1/2 . .«
= + = - = + + -
N cSAi Ql 6ca Ra ?Ooim N g 0 fozalQl
1/2 . 60
+ r—
My Iy 3G %
o

=0 (3.21)
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on account of Eqs. (3.16) and (3.17). We further note that
L4 P
6<D.Ca>=O(N)#O
5<1f’ ce )= OM’)# o0 (3. 22)
2 opy B v) ' )

We use the invariance of Eq. (3. 21) under transformations of Eq. (3.19)

(u- r)

to write down a WT identity of W of Eq. (3.18). We note that the

change in the Jacobian for the transformations of Eq. (3.19) is

4
« _ « . e % =
(Qi,i Ra, a) &5 (x) or its dirivatives atX = 0,

since Qi and Ra are local functionals. We are using dimensional
regularization, so that the Jacobian can be taken to be unity. We thus

write the WT identity for W' ©" [See Eq. (3.18)].

'%géf cc+1’li/2

N SN
O=f[d.Adcdc]gJiDi c 0fafapy Sy T Mo T, [ATE,

o

+ terms of O(K’N’,ﬁ’N’,N’Z...)

X Bxpi {.ov... b (3. 23)

We note that the WT identity of Eq. (3.23) is the same as the WT identity

for the insertion of a gauge invariant operator, except for terms of

O(x*N*,L°N”, N'z, ... ). Further by transformation of the antighost field

Ea—> c +6 ca [ where § Ea are independent of fields], we obtain the
o

equation of motion for the antighost field.
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0 =f[dAdch];8?D?CB+N'§%+§a$ expi {....}. (3. 24)
o

Using Eq. (3.16) and the definition of DZQ [A], we may write Eq. (3.24)
as

0 =f[dAdcd6] {a‘i"Di’ﬁcﬁ+ga}expi {....}). (3. 25)

We can transcribe Eqs. (3.23) and (3.25) in terms of the renormalized

sources:

0= [Ji —+ - +ntl? fa[-i _53]%
s K * §L

K2 172 N 0 (3. 26)

and

. (3.27)
5 K,
1
These can be translated in terms of the WT identity for proper
vertices in the usual manner [and Eq. (3.26) simplified with the help
of Eq. (3.27)] yielding,
div
Iy [2,0,0] div__ s8[°Tw
g‘{ N sW,Ww } 5 @ 6K KzL;:O
0 1 1 i
1
div
~ 6T .-
. 85 N (3. 28)
6w 5L K=L=20
o [+
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and 5 div o 6FN' div
G {FN[‘I”“”“’] } " %) 3K | K=L=0 - B.29)
o 1 1 1

div
It is therefore clear that {FN, [®,w,w] }11V is also expressible in terms
of the complete set of solutions of Eqgs. (3.16) and (3.17). i.e.
GI - .
{O7[21} @ {O[®,w,%]}. This completes the proof of the closure
property in one loop approximation.
D. Renormilazation of Insertion of Operators and the Closure Property
in Higher Orders.

Next we shall consider the renormalization of Green's functions
(and proper vertices) with one insertion of operators in higher orders;
and show that the closure property holds to all orders. To show the
closure property it is sufficient to know how to renormalize

6 T

r _N
N |[K=0=L" &K

61"N

K=L=0"’ 6L

K=L=0"

We consider the complete set of independent triplets of functionals
(10®18,0,51], Qgp)[Q,w,a], Rfyp’[@,w,a)]} (and these include gauge
invariant operators) such that each member (triplet) of the set satisfies
Egs.(3.16) and (3.17). [Some entries in the triplets may be zero. e.g.

)

There may be more nonvanishing Q(ip than there are gauge noninvariant

operators etc,] Then
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p ! 4
6FN div
6K1 K=L=0 q jolo] '
1
6FN div
P - 2% ) R [4,4,5]
6La K=L=0 q joJe] a P
1

(q runs over the complete set.)

And thus
{rl‘i{r‘[@,w,;]} = {z I‘S [@,w,a]}
p 1 Pl q 1
6ru-r.
N
P I s T
& K. K=L=0 pg 6K, K=L=0
i i
1 1
u-r.
6]."N R
p - 7 6T
5L K=L=0 pgq &L K=L=20
o o
1 1
where Z =9 +a . Z(i) ,
pPq jole] Pq

where a is the loop expansion parameter.

(3.30)

(3.31)

(3.32)

The generating functional of Green's functions with a single operator

insertion, in which all the internal subtractions up to one loop approximation
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[ for the three types of Green's functions in Eq. (3.28)] have been

performed, is expressed as
CEE Wt =fddd_ i +j A +ECT +
W[J,g,g,K » > Np] [ Adc C] exp1l "%ff J]_Al_ gaca Caga
+N z 0 D4, c, 3
P pPq

+k? (D% +N z Q9
i1 e TpTpqg i

o (q)
L [ > faﬁychYmpzqua ]; (3. 33)

We have expressed W in terms of the unrenormalized sources only
because the expression is simpler. The overall two-loop divergence is
to be computed by expressing the corresponding generating functional for
proper vertices in terms of renormalized quantities.

It is obvious that the definition of Eq. (3.31) can be extended to all
orders simply by determining the renormalization matrix qu in successive

orders:

Z =5 +azt 4220, (3. 34)
pq  pg pq pq

where a is the loop expansion parameter, provided the counter terms

(

needed are restricted to the set {[O Q), ng), Riq)] }; in other words, if
the closure property holds to all orders. In the following, we shall show

that this is true.
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The proof proceeds by induction; and is very similar to the proof
for the case of the one loop approximation. Let us assume that the
closure property holds up to (n-1)-loop approximation. Then qu is
determined up to (n-1)-loop approximation in Eq. (3.33). We note that

under the transformation of integration variables,

5A. = (D%c +N z QP
i i «a p pa i

[og]
[¢]
1

1 (p)
=l-=-gf cc +N Z R &\
a(zgoaﬁvﬁv ppqa)

- 1/2

se = - ny'"f [A]6A (3. 35)
533 [A,c,T]+ N Z O(p)[ACE]E=O[N2] (3. 36)

eff > > p pq 3 3 .

which is again a consequence of the fact that {O(p), Qgp), R(p) } satisfy
o

the Egs. (3.14) and (3.15). One can derive the WT identity satisfied by

I'[®,w,0,K,L,N]. As before the WT identity satisfied by single

insertions of any of the operators {OGI} @ {O[A,c,€]} is the same, viz.

GFN 6TO . 6T0 6I‘N ) 6T0 6FN ) 6FN 6I‘0 o (3.37)
L d @ . rd

6<I>i §K ) i K. 6wa 6La 6wa 5L
1 1 o Pl »

We equate the n-loop divergence on both sides noting

621" ST
N = finite

oL
¢4

N

- = finite r<n-1 (3.38)

6K,
i r-loop r -loop

K=1°=N=0 K=L=N=0
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we get
div div
. . 61"0 GFN . 6F0 61"N
. 6%, 6%, oK.
oK. i i i
i n 0 n
0
- - div 5T 6T div
o) o _N _ 0 N (3. 39)
6wa 0 6L‘ 5L; 6wa n
o n 0 K’: L‘: 0
and thus 3 5T div
g {F }div _ ) N
OV NI 8¢, | sx° | K=L=0
i n
_ 5T div
_88 ) __ N (3. 40)
6w | 6L KZL=0 )
a a n

Similarly the equation of motion for the T field has the same form.

Sy div o GFN
e In] 79 P
o n cSKi K

div
(3.41)

Thus, it is clear that {I‘N [é,w,a]}gw can be expressed in terms of

the same set of operators {OGI[ ] } @ {O[2,w,5]}.

by induction is complete.

Thus the proof
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IV, FORM OF THE GAUGE NON-INVARIANT OPERATORS

In this section we shall show that the complete set of gauge noninvariant

local sjolutionsﬂof the Egs. (3,16) and (3.17) can be written in the form

8S[2w,0] 8 F[Bw,0] , §5[8w,u]
52 5 (0m), 5w

O[&,w,w] = X [8w,0]

+ Gl 20,0] Flow,0] (4. 1)

where F| @,w,;o] and Xa[ Q,w,c:)] are arbitrary local polynomials of
B,w ,0 possessing the appropriate ghost number and appropriate
transformation properties under global transformations of G and under
Lorentz transformations. This form of the operators { O] Sw,»] } will
be the basis of our proof of "decoupling' in the next section.

‘Terms in Q% w,o,K,L] which vanish when multiplied by a‘;
do not have a counter part in O] $,w ,J), K,L] as seen from Eq. (3.14).

We may therefore choose to write O f,w, ws K,L] such that

§0[3w,w, K, L]
5 (88,

=Q[%v,0,K,L] (4.2)

We shall find it convenient to consider Eq. (3.14), (3.15) at K=0
instead of Eqgs. (3.16), (3.17). Replacing Qi in Eq. (3.15) by the

expression (4.2) and setting K =0, we obtain

@ - 68 5 .88 6
0 %w_sL_ 5& 600),
(24 a 1 1

}O[<I>,w,<:>,K,L] =0

(4. 3)
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We define a new differential operator

. 5S & §S &
&= ?o 5w 6L 53 5(am). (4. 4)
[+ o4 1 1

which can be easily shown to satisfy

@l-0 . (4. 5)

It is easy to see that all functionals of the form 5‘5' F[w ,5 ] are
solutions of Eq. (4.3). It is also easy to see that all gauge invariant
operators are solutions of Eq (4.3). Our objective is to show that the
two types of solutions are the onlylocal solutions of Eq. (4.3). Thus we

state our theorem:

Main Theorem: The complete set of independent local solutions

of the Eq. (4.3) with ghost number zero can be expressed as

{@Fl ®w,0]) @ {0 a7}7

where F[ $w, J] are arbitrary local polynomials with ghost number
(-1). Here, the ghost number is defined as the difference between the
powers of w and win the expression. {OGI[ @ | } » refers to the set
of gauge invariant operators not expressible as & F, i.e., as %% Fi’.(M)
We shall prove first a lemma which we shall find very useful 1}1
the proof. The method is essentially similar to that employed by Dixon

and Taylor.

Lemma 1 (Dixon-Taylor): Let & be a local differential operator

in @,w,;),L. Let it be possible to expand ? in powers of some

parameter  as
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Ep) = A +pB +piC (4. 6)

and let %ﬁ) satisfy,

?Z(B) =0, for arbitrary p . 4.7

Then all polynomial solutions of the equation

ZEHEEP) =0 (4. 8)

where H(B) can be expanded as a power series in § :

HE) = » B (4.9)

n=0

can be expressed as
H(B) = Z@NE) .  I) - Z) g (4. 10)
n:

provided that the equation AY =0 implies that there exists a X such
that

Y = AX , (4.11)

where Y has the same quantum numbers as H .
Proof: Equation (4. 7) can be written as

2

A =0 , (4. 12a)
AB+BA=0 , (4. 12b)
CA+AC+B% =0 , (4. 12¢)
BC+CB=0 , (4, 124)

C2 =0 (4.12c)
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Equation (4. 9) gives,

(n) (n=1)

AH +cg®™? ., (4.13)

(n)

+ BH

exists such that

(n) (n=-1)

We have to show that J

(n) (n=-2)

+CJ . (4. 14)
(n)

H " =AJ""" +BJ

Let us assume that we have determined J for n< r. We thus know

that

glr=1) o pog{r=1) | py(r=2) | ;(r-3) )

g2 o ag(2) | gylr=3), oylr-d) (4.15)
Then Eq. (4,13) yields,
a'? - g agF gy (F2og(7=3)) | o ag(ro2)pytr-d) o(r-a))

(4.16)
Using Eqgs. (4.12) in Eq. (4.16),
AT = apg(F-Y) 4 pcgs(m-2)
ive., afE® -prt g2y Ly (4.17)

(r)

We can then determine the desired J if the Eq. (4.17) implies that there

exists- 7T such that
H(r) _ BJ(r-i) _ CJ(r-z) - AJ(r) . (4.18)

Applying the same argument for r = 0 , we learn that we can

(0)

determine J if the equation

aul® - ¢ (4.19)

(0) such that

H(O) = AJ(O) o (4. 20)

implies that there exists a J
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Thus Eqgs. (4.19), (4. 20) and Eqs. (4,17), (4.18) imply that J(O)

and J(r)

r= 1 can be determined successively if the equation AY =0

implies that there exists an X such that Y = AX , proving the lemma.
Comments: (i) If Eq. (4.11) holds, J{B) can be found. However

this J(B) is not unique, for we may add to J(B) a polynomial K(B) such

that

CBIKEB) =0 . (4.21)

0
In particular K(B) need not start as § , it may start as some positive

or some negative integral power of B . If J(B) exists,

J7(B) = J(B) + K(B)

is the most general expression satisfying gJ" =H . Therefore, there
is no loss of generality in assuming that J(B) starts as BO .
(ii) We may use special cases of the lemma such as putting
C=0,
(iii) Given that H is local, the lemma does not make any statement
as to whether J can be chosen to be local.
Now, let us return to the Eq. (4.3) which we have to solve. Let

(p) -

us expand a local solution O [ Qw,w ]

O(p)[ <I>,w,(:>, L] = F(p)[ o]+ (%)iQip) [<I>,w,c:>] + terms proportional to L .
(4. 22)
[ We have used Eq. (3.14).] We note that the terms proportional to L

involve at least two factors of w . Substituting Eq. (4.22) in Eq. (4. 3)
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and comparing the coefficients of the lowest power in w ,5)[ lo€oy (<:>)0 1] s
we get
6 F[®D

D] 5 [ L. Q [¢]_€’ (4. 23)

where,
6 Q,
Q2] = — [B 0,0 ] (4. 24)
i dw P *
o -
w=w=0

Our method will be
(i) To show that all particular solutions of Eq. (4.23) can be

expressed as

F[ 9] =%,1Si[ 3 (4, 25)

Si[ ®] being an arbitrary local functional. (Theorem I),

(ii) To isolate all the solutions of Eq. (4.3 ) which must have a
nonzero F[ @] in Eq. (4.22). The rest of the independent solutions may
be assumed to contain at least one ghost (w) .

(iii) To solve for such solutions (containing at least one ghost) by
using the Dixon-Taylor Lemma in two stages:

Step I: We write Eq. (4.23) as

5 F o
wan T - G Flel-o 2 g (4. 26)

where % is defined in Eq. (2. 10)and satisfies ?2 =0 . We thus have

0

?O(waQ‘.: %’1) =0 . (4,27)
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We define an operator

& = % - covariance terms, (4.28)

where covariant terms are obtained by 'varying! the free indices of the

functional on which it acts according to the following law:

(covariance terms)Ai[ dw,w]= -g t;w aAj[ B w,w]

(covariance terms)Aa[ dw,wl=-gf ) Ay[@,w,& ] (4. 29)

afy B

It can be shown that, in general,

&%-. (4. 30)

We note that

ARAE %%,i-gt‘i’gwa%’fm (4. 31)

Using Eq. (4.31), Eq. (4.27) can be written as

?(waQ‘f[ S =0 - (4.32)

This is the integrability condition for a solution of Eq. (4.23) to exist
given Qc; .

Using Lemma (AII) in Appendix A, we infer from Eq. (4.32) that

@ _ Y
?(waQi [®]) = @, Xaﬁy[é]Di +waw6 thjﬁ[m_goJ , (4. 33)

where

P rp- Bl g 4.34
Yyt ?Yiiiz---lrg.z] Lo,1, 7 Lo ’ (4. 34

12 rirez
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with
> Y?‘mr)“ . = 0. (4. 35)
{n} ny Nyis

It is shown in the Appendix B that Eq. (4.33) implies that there

exist local functions T and U such that

a B a -
= D" +
w Ql w T i w U]_J %,J

p

[#3

+ solutions of ?(waQi [®]) = 0 (4. 36)
where
v, 9] - gl <z . ... £ (4.37)
il Ii_ ...l 0,1 0,1
12 r-=0 12 rt+2 3 r+2
D U‘i"(r) i = 0. (4. 38)
{n} M Mais

Therefore the set of Q?[@] 's for which a solution to Eq. (4.23)
exist and hence satisfy Eq. (4.32) can be divided into two classes
. a B @
= U . .
(1) {Qi} {TapDi } ® { g %’j} (4. 39)

class 1 1

They satisfy

o
Q, (class 1) gg,i =0 (4. 40)

and therefore a particular solution F[®] for Qc; in class 1 can be taken

to be zero.
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(ii) Q‘i" (@] which satisfy

Gl Q) = 0. (4. 41)

As shown by Dixon and Taylor, for each such Q? [2] satisfying Eq. (4.41),

there exists a polynomial S, [®] such that
L

a—
© Q= ?si[@]. (4.42)

[These follow essentially by the use of the Dixon Taylor Lemma for the
operator gof Eq. (4.28).] It is shown in Appendix C that Si[@] can
be chosen to be local. Therefore a particular solution of Eq. (4.23) may

be chosen to be

F[®] = & .s.[?] . (4. 43)

0,1 1

We also note that the particular solution of Eq. (4.23) is unique
modulo gauge invariant functionals.

Thus we have proved theorem I.
Step II:

We note that because of the property ?'2 =0, ?’s@i’)[@] (86)i is
a solution of Eq. (4.3). Therefore, we separate independent solutions

of Eq. (4.3) in to two classes:
0o®s,u,5,L]} - {?’sgp)[é](aa)i}@{O(P)[@,w,a,u
-?fsgp)[él(ami} , (4. 44)

where Sgp) is related to F'P) of Bq. (4.22) by BEq. (4.43).
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We note that

ZsPle10m), = &

0,1

(p) —_ L (p)
[2] S, [¢>]+g<8w)jtjiwas

i

+ g (aa)isgp)

F®e] - (07), (&8P

Thus, we see that
(i) O"'[®,w,w,L] -g Si [2] does not contain terms independent
of w,®

(ii) The terms linear in w,w are

1

(03, [@} P 1210, - @sP1a]],

which are expressible as (0@ ).(T(p) D?’ + Uc.z.(p) .,g . ) w by virtue of
i\ of 1 ij 0,] a
Egs. (4.39) and (4, 42).
The problem is thus, reduced to finding solutions of Eq. (4.3) which
contain at least one factor of w,

Step III:

We note that the operator & can be expressed as

€ =A+g B+g2C (4.45)
where
n ) 6 a 6
=@ 0 ——— -D & —m—— + (3% —
A=e 9 T3 ij j 6(8®), (0%); 9, 5T (4. 46)
k i @
D2 =LK | gm0 (4.47)

and & satisfies & 2= o.
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Solutions of our interest can be expanded in powers of g, [We may assume
that the expansion begins as go]

0[8,6,5,L]= Y g"0™[e.w,5,L]. (4.48)
The Dixon-TaylorLemma tells us that there exists a functional
F[{®,w,o,L] such that,

0[®,w,5,L] = & F[%,0,5,L], (. 4.49)
if the equation(Y[®,w,%,L] has the same quantum numbers as O )

A Y[®,w,m,L] =0, (4. 50)

implies that there exists a functional X [®,0,%, L] such that
Y[, w,5,L] = AX[®,0,5,L]. (4. 51)

We thus have to prove Equation (4. 51) given Eq. (4.50) to do this, we

consider a scaling transformation on w and L:

L4

% =aw’, L=aL’, =0, v'=w . (4. 52)

Then, in terms of the new variables Eq. (4.50) becomes (dropping

primes)
1 - 2 _
(A0+a A1) Y[®,w,a®, a L] =0, (4.53)
where
n )
= 5! —=—
AO wn Kk 50 ; (4. 54)
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) @ 6
=-D,. @ +(0w), d
AL i %5 5w, 0¥ % L

1 o

(4.55)

We note that in Eq. (4.50), we need to consider X[®,w,%, L] which are
local polynomials in @ and L and therefore Y[@,w,aﬁ,azL] contains a
finite maximum power of o which may be determined given the dimension
of the operators we are interested in. Multiplying Eq. (4.53) by «, we

get 2
(A1+aAO) {Y[®,w,0@,a L]} =0. (4. 56)

We further note that,

(A1 +ozAO)2 =0 forany a . (4.57)

Thus, we may apply the Dixon Taylor Lemma to Eq. (4.56) and deduce

that there exists a local polynomial Y[®,w,w,L,a] such that
_ 2
Y[®,w,aw,a L] = (A1+01A0) X[®,w,5,L,a], (4.58)

provided for any local functional Z[®,w,®,L] with the same quantum

numbers as Y{and therefore O[®,w,%,L]} satisfying
Aiz[i,w,aiﬁ,L] =0, (4.59)
implies that there exists a local functional V[®,w, 8%, L] such that

Z[®,0,%,L] =A, V[®,w, 05,L] . (4. 60)

1
Since O[®,w, d&,L] is proportional to at least one w, so must be Z

of Eq. (4.59).
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[At this point we note that we could have written Eq. (4.53) as
N _ 2
Y (AgtvyA)) Y[®,w,&/y, L/y]=0 (4. 61)
with v = 1/a and N is some finite integer; and attempted proving statement

of Eq. (4.60) for AO instead of Ai' However since,

Ag =, % 33

5P ’ (4.62)
L . s . .
where <I>‘n is the longitudinal gauge field defined by,
™, 8% al =0 (4. 63)

and thus involves a derivative with respect to <I>L which is not a local
functional of ®. Thus even though statement analogous to Eq. (4. 60)
may hold, it is difficult to decide whether the corresponding V can be
chosen to be local. In fact, there are instances when a V exists but can
never be chosen to be local. ]

To prove Eq. (4.60) given Eq. (4.59), we expand Z in powers of

m
Z[8,0,%, L] = nZ__:O z®

™. L, L ...L . (4. 64)
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Compare the coefficients (L)r1 on both sides of Eq. (4.59):
(n+1)
& (n) — a §Z
+ 0 =
(D®); $Ewy. 2 (%) % %1 0.
i o
0<sn=m-1, (4.65)
and (m)afi.,..am
Do Z =
D2, 4 (o). 0. (4. 66)
(m)ai°' a
In Eq. (4.64) we can always assume Z % to be completely
symmetric in Qyowea i
M)a,...a ma,...a
1
Sla,+-a ] Z .y 1 m (4.67)

(m)

We will begin with Eq. (4.66). We expand Z further in 9%:

m)e,...a (m,r)a,...a -
z 1 m. Z (&), ...(08), Z. .1 , (4. 68)
L 1 i, e00l
r 1 r 1 r
where we may choose
m,r)e,...c m,r)e. ...«
. . 1 m 1 m
A[11...1r] Zi o =Z . (4. 69)
1 r
Here A is the total antisymmetrizer of its arguments:
L
= — P
A T P 6P s
6P = #1, according as P is an even or odd permutation of (1,2,..., r).

An application of the reasoning of Lemma Al to Eq. (4.66), taking

due account of the antisymmetry in ii’ cees ir’ leads to the decomposition
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(m:r)a vo e U a s O
e N
1 r 1’ r
(4. 70)
Q,ooel B, B B
1 1 2 r
+ | AlB,---B_1J >31 i oo.s O, R
( 1 r [31.. ﬁr 2 lr
with
,cxi...am
Z. . (b®)., =0. (4. 71)
iesdi - i
1 r 1
We may assume that z” does not contain terms ~3i)\ » S=1,...,1.
S
The reasoning of lemma AI tells us that
ai...am (p)ai....ozm
Zi ; = Wi i . (D®)., ... (D2?), , (4. 72)
1.0. r 1'.' r,J1ﬂanp 31 Jp
where
(pla,...a
§[;i1 31w, 11 Mmoo, (4. 73)
p 1.0. r’Ji.'oJ
and
(P)a o
Sligd,- 3 ) W, 11 M -0, 1ss=<r. (4. 74)
S p 1"'r"]1°"3p
. Therefore, W(p) is completely antisymmetric in ii’”"ir’ symmetric
in j1. ..jp, and satisfies the constraint, Eq. (4. 74). We denote by e

the identity element of the symmetric group Sr on r+p objects, so

+p
that
(p)afi...ozm (p)ari.,..ozm
ew, i, T i, i (4. 75)
R r,Ji...Jp e r"]i'”']p° .
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The identity element e, has a resolution in terms of Young operators
YF where I''s are standard Young Tableaux. 13 We order the r+p

induces ii’ e ir" ji' .o jp in this order. Then the only Young operators

which do not annihilate Wi ces iI_,jio - jp with the given symmetries,
1
Eqgs. (4.69), (4.73) and (4. 74), correspond to the Young tableau ]."S

shown in Figure 1. Therefore, we may write Eq. (4. 75) as

p
W. .= Y, W : . (4. 76)

11"'1r"]1°'°3p ~ I‘S liu'lr"]i'”Jp

where Y].'"S normalized to be idempotent:

Y_ Y =8 Y . (4, 77)

__ — 1 m
Z(a‘*’)i e (B0), 2y Ty
r 1 r 1 r
_ & __ _ _
- (D®), = {Z @), ...(0@), (),
r,p 1 r r+1
(m:r:p)a v e O
1 m
X V (D). ... (D®)
11'°°£r£r+2’k1“°kp-1 ki kp-z}
(m)a, ...a
_ 6 1 m _
= (P@)S '6—(8—6-—); Vv | [®,w,0@] , (4. 78)
(m, r,p)

where V satisfies the symmetry conditions
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(m, r, p)
Alf L 1 ] V =0, (4. 79)
+ 0o
1 r r+1 11 £r+1’k1 kp_1
Siky.ek ] Vim’r’f) Lk = (4. 80)
P 1" " Tr+1’ 71" " Tp -1
and, in fact,
V(im’r’ip)‘ e =<r31>YI‘ ng) R N o 1
10 e dgi gt dgetdy s Mctedsecdp
Similarly, we may write
a a B g
Z (0@, .. (03), A{ﬁi...ﬁr]Ji ﬁm aii. 5 "L ...L
T 1 r Byeee r 1 r %1 m
- a _56 (m+1)
—(aﬁ)iai 5L, U [,w,0w,L] . (4. 82)
24
where
o a
m+1 . 1
- ) _ Z (83), ... (8@), 1 {ABB,--.B] JBp rgl >
5=2 2 S Zg.. S
p B
aiz. 5% L_...L L (4. 83)
2 s “1 “m P
Likewise, we define
(m) (m)a'l a
V7 ®,w,00,L] = V e MU w, 0L ... L. (4. 84)
a1 am
What we have shown so far is that, given
(D@ 6 Zm_g (4. 85)

o (%),
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+
there exist V(m) and U(m 1), such that
(m) (m) _ o 5 (m+1)
= V + 8 8 iyrpe— . 40
Z D) T, (%), % 3L U (4. 86)
i o
Further, note that
6 (m+1) _
(D<I>)i 6(85)1 U 0o , (4. 87)
as evident from Eq. (4. 83).
Now assume that
(n) _ 5 (n) 5% 8 [ (n+1) (n+1)]
Z = (D<§)i —_6 (53], Vv + (86)i i 3L U +V s

,_.
Q

Do), —>— g, ymF o (4. 88)
i 6(8(.«))i
Then, by virtue of Eq. (4.65), we have
5 (n-1)
(De), 506 Z
_ a 6 6 (n)
8y —— —_— = .
+ (aw)i i 3L (D<I>)J. 5 (05). Vv ‘ 0, (4. 89)
a J
because
o ) 2
(8w); 9, 3L =0.
@
Equation (4. 89) can be written as
6 (n-1) _ a 6 (n)
) - - —_— = Q. 4,90
(D )i 5 (00). {Z (aw)j aj oL A% } 0 (4.90)
i a
(n-1)

This is the same equation as Eq. (4.85). Therefore, there exist V

(n)

and U such that
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(n-1) _ S (n~-1) _ o o) (n) (n)
Z = (D<I>)i WG—): \Y + (aw)i 8i ——(SLa [vi7'+u, (4.91)
with
) (n)
(Dq))l §(0%) = 0.

Thus, our inductive argument is complete and it terminates when n-1=0

is reached. That is

_ & — a 6
Z = [(D<Iv)i 6(86)i + (am)i Bi ——GLa :l [V + U], (4.92)
where m
EIERL
n!
n=0
m (n+
U = Z A
n!
n=0

This completes the proof of Eq. (4.60) and, noting the arguments given
between Eqgs. (4.48)and (4.60), we conclude that all the solutions of the
Eq. (4. 3) containing equal numbers of ghosts and antighosts and at least
one of each can be expressed as g‘ Fl & w, ;, Ll. Since we had shown
earlier that all other solutions with an equal number of c, c“s can be expressed

as, {Z Flayw; o]} @ {OGI[ @] }, the main theorem is proved, 14
We may now expand F[®,w,w,L] as

F[®,w,a,L] = F[?2,w,%] - LaXa+ O(LZ).. . (4.93)

. _ 85 & _. 8 _
€ Fl®,0,5,L] <%+ i> F[Qﬁ&]‘*@ Xa[‘b,w,w]. (4. 94)
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V. STRUCTURE OF THE RENORMALIZATION MATRIX

In this section we shall prove another important result. It was
shown in the last section that the complete set of gauge noninvariant
operators that mix with a given set of gauge invariant operators can be

expressed as

o6F )
— +
6(0w). ow
1 [0

63
. T e— +
O[®,w,w] 6¢"1 Xa ?O F, (5.1)

where F and Xa are arbitrary local polynomials of appropriate ghost
number and appropriate global and Lorentz transformation properties.
It is clear that one can expand the divergence in I‘N[<I>,w,‘¢3] in the basis
that consists of all independent linear combinations of the operators
{OGI[Q] } '@ {O[®,w,w]}. Itis important to recognize the trivial fact
~ that the matrix elements of the matrix Z, will depend on the basis one
has chosen; and therefore any statement about relationships of matrix
elements of Z with its eigenvalues are bound to be basis dependent, in
general.

In this section,we shall show that mixing with gauge noninvariant
operators (and ghost operators) can be made irrelevant in the limited
sense that there exists a basis of operators such that when the matrix
Z 1is expressed in this basis, the diagonal submatrix ZGI of Z yields,
in fact,the correct eigenvalues corresponding to all eigenvectors of Z

which involve gauge invariant operators. The basis is, in fact,
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o

I[CI:]}’@ gauge noninvariant operators of the form O[®,w,w] of

Eq. (5.1); and the diagonal submatrix ZGrI relates the divergences in

the insertions of gauge invariant operators which are proportional to

{OGI[@]}’When expanded in this basis.

To shown this, it is sufficient to show that the divergence in the

insertion of a gauge non invariant operator of the form O[®,w,T]
Eq. (5.1) does not contain terms proportional to gauge invariant

operators {OGI}?;vhen expanded in the above basis.

We consider the generating functional of Green's functions
. —_ o - 1 2 .
W(j, N] =f[dAdcdc] expl{S[A,c,c] -2 (£ 1A} + A,

+N O[A,c,T] }

~

S T S
O[ 4,c,T] = 65 6F[A,c,c] .+ £

.
6A. ~ 8(@T), 5c X [A,c,C]+ ZFlA,cT]

To see if gauge invariant operators appear in the divergence with a

single insertion it is sufficient to compute I’Nl‘I’,w=0,G=O], i.e., it

suffices to consider W as a function of j omitting the dependence on

ghost sources. We perform an N-dependent transformation of the

integration variables:

A

; Ai - N§ ]5‘[A,c,c]/6(8c)i .

(]
It

¢ - NX [A,c,C], c=c¢ .
a o

(5.2)

(5. 3)

(5.4)
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We also note that F and Xa are local functionals and the Jacobian J of

these transformation is

5F 6Xa

oc).
6A16( C)1 6¢c,

InJ =N

. i 4 . . 4
and In J is proportional to § (0) or derivatives of 6§ (x) at x = 0.
. . . . . 4
We shall use dimensional regularization wherein 6 (0) or are interpreted

to be zero. Thus W[j, N] is given by

1 al ./ SF 2
) _ Ny g . ara’ =4 _ 1 AN ———
W[ j, N] —f [dAdcde ] expi S[A,c,c] > o l:ai[Ai N6(a'5)i:l]

oF 2
- —_— )+
+JiAi+%F JiN 6(83)1 } O(N") . (5. 5)

Omitting primes, we obtain

1 & W[, N _
W] 6N !N:0—<O>j (5. 6)

- OF o a OF
= - 9 ?
f [dAdcdc ] 3 Ji 6(3_5)1 + T)O 0. Ai ; 6(8€)i + OF %

expi{ Lot IiA)

. OF o a oF
3 <6(8€)i>+ o <aj A% 8(6c); %F> - B
j .

: J

Next consider,

(R - f[dAdchlF[A,c,a expi { Lyl B TI+jA ), (5.8)
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We perform the BRS transformations on the integration variables given
in Eq. (2.6) and equate the total change to zero. Noting that the Jacobian

of the transformation is one we obtain.

a o o
) _ D .
/[dAdcdc] ; gF+ 6)1 n, ajAJ.ai ij; iCaneXpl

35( eff+jiAi§ ’ (5.9)

_ N i} B
i.e. <?0F+noa.l . 36(30 > 13 <D c F> (5.10)

Using Eq. (5.10) in Eq. (5.7), we get

B
<o> _ <6(8c) > <D_lc‘3F - (5.14)

- We write

. O 61_‘0[(]5] a .«
-Ji[d>]= '1 = - 8i 8j¢>. , (5.12)

and thus obtain,

o a oF o ﬁ
"7 ) <ai sy, o Dich>j : (5.13)

The last term vanishes since
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a 6F p
<31W—8D C F> —"-l(].\/.[C)ﬁ >
J

i( 1/2f +iA, ) _
=/[dA]e [dcdc]— [Fe“’MC]= 0. (5.14)

Therefore,

61" [4]
_ 0 O F R
<O>. = 5¢i <6(8c)i - i Di co[F>j (5.15)

J

(r)

5T 7 [2]
_ 0 -1/2 oF .
T T s, z Z <6(86). -1 Dy CaF>. (5.16)
i i J
5r(()r')[<1>]
= —wi—— S A (5.17)

;?J(b] is to be renormalized in each loop approximation {Z[qs]}d“’
the overall divergence in “ZT(M expressed in terms of renormalized
fields and parameters, canalways be expressed interms of a complete set of
functionals withthe same Lorentz and global transformation properties and

dimensions as L?Jqﬂ . Let this set be {Fip)['rb] }.
div _ ) _(p)
Then 3?{[(1,] En = Z AT FU(e] (5. 18)

Thus ] 62 [@]

$<O>J' ijw Z ) FPa) (5. 19)
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But 6 éﬁO/‘SQi ng)[é] are precisely the ghost independent terms of
. . . . g’ (P)
the gauge non-invariant operators in our basis: Fi (6T )i . It should
4

be noted that, in the set of gauge non-invariant operators gF, F runs
over a_llk functionals of the appropriate kind. Therefore, {<O>j }glv
[®,w, 9G] is expressible as a linear combination of O's in Eq. (5.1),

. . .
not including OGI S.
We further note that in Eq. (5.1), functionals F[®,w,&] and

X [2,w,w] are uncorrelated, so that it is convenient to separate the
a

basis into two parts.

65 S F
¢ ——== + F
class I operators 6@.1 6(35)i %
(5.20)
&S

class II GNI operators: o Xa[é,w,w] .

[class I operators, in addition to GNIoperators contains GI operators which have
the form 6Z 0/6 A, F.[A]. Thedivergence inthe single insertion ofaclass II

operator can be expanded in terms of class Il operators only. To see this, consider

the generating functional:

W[j,é,-i—,N] =f [dAdcdT] expi {S[A,c,T] - > {fa}. + jiAi+N5?:-; Xa
+§aca tT,E, - (5.21)

By performing a transformation on c, only

¢ -c¢c +NX , (5.22)
a a a
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and noting that the change in the Jacobian is zero [X ~ 6 (0)] in
a,a

dimentional regularization. We obtain (dropping primes)

Wij, €, E,N] = f[dAdch] expi { S[A,c,T] -% fz *iA te

+ O(N?) terms . (5. 23)

Thus

1 &6W —
P3),., 6
(W 5 )N=O *NY 5 e E

) (5. 24)
5T T e,0,5] /m-1/2

= —=— (X = Z X Y..7,
6Qa< a>J,g,€ be < "‘>3§§

o
<Xa>. ¢ g is a functional of ®,w,%. It is to be renormalized as we
2 F

renormalized F. [See the discussion following Eq. (5.17).] Thus,

' - div
—\div _} 1 W[, £, €, N]
{FN[Q’w’w]}n ’W 5N N=0
" ln
_ 85[2,0,3] {<2 -1/2 >} o (5. 25)
Sw @
a n

and is expressible as the sum of class II GNI operators only.

We have thus shown that the matrix Z has the structure:
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GI I II

/ | -
G_I/ FZGI |
T

Z = I 0 | (5. 26)

I T
|
I1 0 ¢ :

GI
It is obvious that eigenvalues of Z are also the eigenvalues of Z.

Furthermore the eigenstates of Z corresponding to these engenvalues
/

are the only eigenstates which involve a gauge invariant operators {OGI} in

this basis. Thus the eigenvalues corresponding to the eigenstates of Z

which involve a gauge invariant operator in this basis can be obtained

only by computing ZGI./ One cannot, however, compute these eigenstates
Gr/ G1’

simply by knowing Z . In practice, Z can be computed by finding

some distinguishing property of{OGI [@]},that sets it apart from the

gauge non-invariant operators with which it mixes. For example in the

case of the twist two operators, only the 2-point function of OGI[/@]

[F. T. (6 OGrI [®]/6 <I>‘:lL 6 éi)] contains terms proportional to gp.v while

the G. N-I operators with which it mixes do not.
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APPENDIX A.

In this appendix we wish to show that a local solution of the equation

td

o ;@1 PV [2] =0, (A1)

has a structure discussed in Lemma A2 below. We begin with a series
of definitions and a lemma.

We define

) 2 4
D = 8,507, 8.8 )6 (x - ), (42)

where i = (@,pn,X) and J = (B, v, y). Note that

%O’ij[q::m = - Dy - (A3)
We define the transverse and longitudinal projection operators, Tij and
Lij by
D = 8T_, 6 =T +L,_, (A4)
ij 11 1j 1j 1]
which satisfy
= L =
'k (45)
Tikij = Lik Tkj =0. (A6)

We consider first a simpler case.

Lemma A1: Any functional P‘:[@] which contains at most n fields,

and which satisfies
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a —_—
Pile] Dij @j =0, (A7)

can be represented as

o4 _ saP B o
&1 =
pie] - 2P(a) of + V(21D @ (A8)
where
e n " r+4
(04 a\r s——
vY . (8] = Z v . [@] <D. g ) , (A9)
1112 &~ 1112.‘,‘,11‘_’_1 S|=3 1Sk k
with a(r)
Z vl . =o. (A10)

1112... r+2

{i}

The symbol {Z denotes sumnation over permutations of the r+2 indices
i}

{11,12, cee ’lr+2}'

Proof of A1: It suffices to consider a monomial

P‘,f[qs] = P‘.fi Lo e e (A11)
" n 1 2 n
The kernel P(: ; i is completely symmetric in the n indices
» 1... n
{11, cee in}. Equation (A7) then implies
o
2 . | . . D . =o, (A12)
{11, cees 1n+1} VS FRRR S ¥ S

where the summation is over permutations of the n+1 indices

{ii,...,' .

i
n+1

We can decompose P‘iz ; ; with respect to each of its indices

r) 1 o © n
using the partition of identity (A4). For example, we write
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= =L, P% . .+ T P% . . (A13)

The first term on the right does not contribute at all in Eq. (A12), and

yields the first term on the right of Eq. (A8), z“ﬁa‘: with a suitably
g

defined functional Za . Prom now we shall assume that P:l i

TYTEEE N
is transverse with respect to i.

We shall write

n
Pfxi i Z Z Pfl(iS) ii i (A14)
1, 1a-cn S=0 {i.,.,,.,i} ’1nocS)S+1nc.n
1 n
a(s) . . .
where P, .. 1s transverse with respect to i.,
i,i,.. .11 ,...,1 ]
1 8 s+1 n

1 = j = s, and is longitudinal with respect to ij’ j ¥ s +1, Substituting

Eq. (A14)in Eq. (A12) and setting

pa(s) - yes)
3’11°"1S;ls+1"'1n JJiJz”'JS;BsH'”ﬁn
B B
x DD, . . .iaf1,..ain,. (A15)
] 311 Jss s+4 n
we obtain
a(s)
Z .. . v, .
{111"‘13} Jigipe e igiBgyy -e By
B . B
x DD . ... D . afi...ain=o. (A16)
31 31'1 Jsss s+ n
For s = 0, we must have
v(0) =0 . (A17)

j;ﬁi. ..B

n
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For s # 0, we may set, without loss of generality,

a(s)

= .. . V.. . =0 (A18)
{331,.,35} Jigee.d

B

s Ps+10e Bn
The structure implied by Eqs. (A9)and (A10) follows from (A17) and (A18).
This completes the proof of Lemma A1,

For later use, we note the special case when Poi! [®] is restricted

to be a local functional. This means that

4 4
PY =886 (k. mx )6 (x, ~x )... 5x. - x ), (A19)
i,1,0001 j 1 «a i o i a

1 n 1 n

where f(9,) is a polynomial in differential operators. In general, a

functional of the transverse and longitudinal components of the vector

field éj:
o L
o, =& + 9. & s
J J J a
or
o =5, -0, =0 )% (A20)
j ji 382 i
L
g ~3% L 5%
a i 82 1]

is not a local unless @rI; and @I; enter the expression (i) through the
T L
combination ‘:I>j + 8? ¢  ,or (ii) in the form 82 ¢>'Ij' = Djiéi and

82<I>L @

=9, @,.
a 1 1

Consider the term in Eq. (A14) which contains the highest power

of <I>’I_‘ , i.e., the term with s =n. In this case Eq. (A18) reads
i
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a(n)

... . V.. . =0 (A21)
{3,3132,..311} Jigee-dy

Suppose now Vo.l(l.l) . has a factor 8.-2 8_? coe 8-.2 (note that
Jyeeeld J J jn
1 n 1 2
ij 3 must be symmetric in ji’ o .jn), Then Eg. (A21)tells us that
15 o n

jj1. . .,jn must have a factor 5? , and consequently from Eq. (A15)

A . ; is not local. Therefore szgn) . must be local. Repeating
Jol, ool §i. e

1 n 1 n
this argument, and taking into account the points (i) and (ii) above, we

a(n)

find that for a local functional satisfying (A7), Vozi(r) . must be a

) R lr' "
local functional of 38 ; @i .

We are now prepared to prove the main lemma.

Lemma A2: Any local functional Poil(ci) of & which satisfies:
J

P¥lel ¥ .lel =0 (A2)
i 0,1

can be represented as

P a] =xPlel DP 2] +Y%(08] F . la] (A23)
i i ij 0,]

where Xap and Yic; are suitable functionals of @k .
Since P‘iz [ ®#] is restricted to a local functional we can meaningfully
discuss its dimension, Since _2”0 i has a definite dimension, we may

assume, without loss of generality, that P‘: [ ®] has a definite dimension

N, We prove this lemma by means of the previous one.
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Proof of A2: We expand PC; [&] as

N
Pilal = z P, . & ...% (A24)
1 n=0 1]1...Jn Ji

and substitute it in Eq. (A22)., We equate the coefficient of lowest power

of & to zero and obtain

P’le=0lD.3. =0 |, (A25)
1 1] ]

By the previous lemma, we have

PC;[<I>=O] =X°‘ﬁa§ . (A26)

We now define
P“i(“[@] =P‘.1’[c1>]-X°‘pD‘§[@] . (A27)
P:[(“ is a local functional with dimension N, and begins with first power

of ® and satisfies

P‘f‘“)[cp]_?.[cb]w. (A28)
1 0,1

(n)

Obviously this process can be continued. Assume P‘: is a local
functional of dimension N and begins with @n, and satisfies
Pio‘(n)[q:] Ly Ll =o. (A29)

Let the & term of P?(n) be [Pc:(n)] . Then

[p¥™); 5 5 -0, (A30)
i ij j
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Then by Lemma A1, we have

n r
[pem) ] _xBm)ray s B LY vy T) P g (D. )
i i - ij,oee] k k jsd 4
r=1 1 r s=1
(A31)
where XQB(H) and Va(n,r) are nth and (n-r )th order functionals of & of
dimension N - 1 and N -3r, respectively., We then construct
p?t) 151 o po0) [ 4
i i
n r
%0 (5] DBla] - D v AT [ag 17 Z . la]
r=1 'Jl4ccdp s=1 g
P“i(n+“[<1>]_§”01[¢]=o, (A32)

which is a local functional of dimension N and begins with q>n+1 .

This process must terminate at some step, because the only

solution to Eq. (A30) for a fixed dimension N and large enough n is zero.

i

a(m)

Suppose that [ P =0forn 2 m. Then P, = 0.

We can solve the system of equations [A32] forn =0,1, ...,m-1

for PC,: = Pl: (0) and find that it has the form

P?ls] -xPla1 DPle]l +Y. (03] % o],
i i 1] 0,j
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APPENDIX B

Definitions: We define the symmetrizer Sl ieee ip] by

) ) 1
S[li'”lp] fi1,..iA’ ] E fi1..,iA’ (B1)
R S p
1 p

where the summation is over permutations of the p indices {ii’ .o ip}
and A denotes collectively other indices. We define the complement

S[li..,lp] of S[11.a.1p] by

S[ii...ip] +S['11...ip] =4 (B2)

The symmetrizer and its complement are proj ection operators and

commute with ? of Eq. (4.28)

?-s §%-§5,
_ } (B3)
SS =0 =SS,
[€,s] =0 = [¥, 8] (B4)
Lemma BI:
All solutions of
n
Z cY - [e] DY =0 (B5
Nieeol ool i )
r=1 1 r n T

can be expressed as
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Y n-=1  (y,...v,) Y Y
1 t 2
ii el =3 B S % lelk iDi..Dt (B6)
nige.eicn il ni,. plp lg e in Tp q
t=1
ith
wi (Yi"'Yt)
S[yi...yt]E =0 . (B7)

(A hat denotes the absence of that index. )

Proof of BI:
The proof proceeds much the same way as the lemma A II in

Appendix A. We can always assume that CY has a definite dimensions.

We assume that CiY | ; begins with a term ~ @mg We denote
PRERE FURES
the & terms in C! by CY(m) . Equating the ¢ terms in Eq. (B5) to

zero we dotain

sc¥™ e ¥ -0, (B8)
ni,...1 ...i_ 091
r 1 r n r
Now, Cvim) i i () = Ci i i . . can be
nigeoed cuel o {j ULTRRRE SERTR Jpeedy

expanded in powers of momenta associated with ii' oo in which are

independent. We write

[*3
Cng) - . =CY(.m) ~ . +23.Cyia(m)—:1i i +
nigeeedenniy nieeieecdy 45 N TR
+ 2 afz 3?3 C.YQB(I?:I)': 4 . T oewoo (B9)
1 1 1 111 ,,.1

pa p p {1 °"rpgq n

Thus Eq. (B8) implies
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=y(m
CYf ) i3 =0 (B. 10)
nliboe roo- n
Sly, ol cY¥®) . = 0, (B11)
NM,ee 1l i o..i
1 rp n
, Yyeoo Yy
Slvye-vy Coiniilil..g 0O ste (B12)
1 rp q n
t
We then form
CYI;m-H‘:] .= Cyl 1 1 LZ D Cva(m) $ 7 i
nli...lr...ln ni... e o 9 LN ] po.ln
3 p¢ pf cvefm) ] : (B13)
1 nl o e o 1 1 .0.1 +°l.
p.a P q 1" 'r'pqn
ylm+] - )
Thus C of Eq. (B413) satisfies Eq. (B5) and begins as terms
m-+4 . . . . .
Lo} . This process can be continued, in each step increasing the

power of &in cY by one. The process will terminate when the power
of & exceeds the dimension of CY. Then Eq. (B413) together with its

analogues imply the structure of Eq. (B6) for cV,

Lemma BII~

Suppose a local functional Pi[ & ,w | satisfies
?(Pi[cp,w])= waXa[CI),w] DYi[<I>] (B14)

where Pi may carry additional indices. Then there exists a local

functional Zﬁ[ ®, w ] such that
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?(Pi[é,w] -zp[@,w]Di’[@]ho . (B15)
Proof of BII: Eq. (B14) implies:
?(waX"Y[@, ol )D\i( =0, (B16)

We multiply Eq. (B41) by aci’. Since aicy D\i( =M°Y [ a] is invertible,
we have

?(wax‘”) = 0. (B17)

We can now apply the Dixon-Taylor lemma to Eq. (B17). This together

with the discussion of locality in Appendix C, implies

waXaY =2z | (B18)

for some local Z¥[ @, w] . Now since g(D\i{) =0,

?[zﬁ[@,w] Df[q:] ] =waX°‘YD\i’ (B19)
QED.

Lemma BIII:

Given the equation

n
?[E cY lawl] | DY]= 0, (B20)
S S | i
r=1 1 r n r
we can always redefine cY s i without altering

1 00e¢l oo
n 1 r n
[ CY o . DY_J such that
i...1...1 i
r=1 1 T n -

?[c\i o [@,wﬂ = 0, (B21)
e

1l ses
r n
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where C's are local functionals and may carry additional indices.

Proof of BIII: Eq. (B20) implies

n
Z ! . o) =0
r=1 1

r'""'n r

Lemma BI as applied to Eq. (B22) implies

Y Y Y.
g(c.i 1\ i ) = Z Eli Ati\ A i
Yger ot iy t=2 1 rp " qd""'n
t
Y Y
><D.2. .Dt s
i i
P q

with

Y1.C.Yt=

S[y1...yt]E 0.

Here and henceforth we suppress suffixes whenever inessential.

We define
Y,ee0¥
1 t _ a
E = S[Yi"'Yt-'l]S[Yi"'Yt]
ot Y Y. Y ‘Y
R 5 + +
xz gl ttp pttt ptte
p=0

with

Slyl =1.

LZERERA
Then, E~° satisfies

(B22)

(B23)

(B24)

(B25)
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- Yi°°°Yt
S[yi...yr]E’ =0, 2<r <t, t>2, (B26)

because

S [Yi"'Yr] S[Yi"'Yt] =
=S[Y1"'Yt]S[Y1"'Yr] =0, forr <t. (B27)

Further, using

N s

S[Y1°"Yr-1] S [Yi"'Y ]

r
r=2
=S[y1...yn] (B28)
and Eq. (B24), we find that
- Y Y, Y Y - Y Y, Y Y,
ZE’i tDZ...Dt=ZE1 'p2..pt, (B29)
t=2 t=2
Thus, Eq. (B23) implies
Y - Y. Y Y Y Y Y
2'0.
g(cii 2 ;) E ZE'i tp3...pt D, (B30)
JEERE SERRE -t

or
VYo )

=0, (B31)

n
- Yy Yoeoo ¥ Y Y :
STv,v,] ?Z (E’ 172 tDz’...Dt)=?(E’
t=2
where use has been made of Eq. (B26). Repeating this process we find

that

Y...Y
1
G E- Yy <o, 2<t<n . (B32)
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By the Dixon-Taylor lemma, therefore, there exist

Yyooo Yy
F , Such that

Yi.

IR Y, Y
E- tngi t

with

S[Yi“'Yt]F =0

We can write Eg. (B23) as

Yy
g[Cf s ]l =0
1,. 1 1

FERRE SEPPE A
with
Y Y
crt 4 1=C11 T ..
Bpoeeipeedy AEEE SRR
2 Y Y Y Y
Z O p?...pf |
11 ..1r1 °"1q' 1n 1p 1q
t=2 P
and
n n
ZC’.Y - DY = Z cY . DY
ERPE SOPRS S i AT S
r=4 r=1
on account of Eq. (B34) ‘ Q. E. D.
Lemma BIV:
Let a set of local functionals BP® [@],i ; 1 <r <)
p 1... r..l n
A .
and i[@ ]i  satisfy

FIRERIE N

(B33)

(B34)

(B35)

(B36)



-67- FERMILAB-Pub-75/50-THY

ZBE’“ ~ . D% =aAP &£ . (B37)
n .

Then there exist local functionals C‘im[ Bla Dk such that
ceed

1"'1r
n
e « . pa & pe
zBi...i‘...i Dy oA ik 2ok D - (B38)
n r =1 i r n r

A, B and C may carry additional indices.

Proof of BIV:

Since . | and Dc: have definite dimensions we may assume
that A and B have also. We assume that A begins with a term g -1
-1
and B with 8. We expand ™" terms in A and 3™ terms in B in

powers of independent momenta associated with the points (i1. . ll\r .. in):

apm=t) . Za A p“(n}\ U +Z & P aPadlm-1)
i,...i k ..1k 11 R | i i vi..A00 ...
1 n rp " "n pg p g 1 rpgq.
+ . e [} (B39)
gPm) ~ =pPm@ +Z o gPPm) .
1 1 ...1 1, e0el 1 1 1 . 11 1
1 r m 1 r n p P 1 rp n
+Z P oY mePYR) o (B40)
1 1 1,...1.11 ,..1
pd P 1 rpq 'n
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We now compare the coefficients of 2 ™ in Eq. (B37) and thus obtain,

m
pa - p
B /_\ = AT . . n . D . (B41)
z: {3} qu 11...1nk,31...JS...Jm kg
witthia 2 i () = B"i"‘ 2 P .. (B42)
1 . o @ r o o & 1 o o r L 4 n’ 1 o & & Jm

We substitute the expansions of Eqs. (B39)and (B40) in Eq. (B41) and
compare coefficients of various independent polynomials of momenta

and obtain a set of equations:

S 1.'
o -
ZA‘? - . D =BP" A 4}
i 1p Ak Jpeedgee i ki i, > j
P, ... pa, ...«
ZAi ! /i\t A i ks ~ ) Dk' =(t'.)S[oz1...ozt]B. 1 /.\t s/~
S grestpeeelgeedy PERES JOPRS P S 11"°1p"'1q"
t S~ —
t
ete, (B43)

We then define

(m-1)! cPe(m-1) . [A‘;a(m:i\“ i +
. 1"']{'."1'1 1-.orl0401n ’Ji."']m

Zaﬁ paP(m=-1)
'f’l\...lkg ..J
p 1...rp 1

(contd, )

G, {j

n
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m-1
+ZB§ EI; Apiaﬁvfi\/i\/i\ ik,j j +"']" ®, - (B44)
p'q p q 1..' I‘pq". 2 1" -1 - JS
s=1
From Eqgs. (B43) it follows that
n n
m a a(m-1)
ZB"i"‘( )Q LGy 9 =Zc‘i’( - ika‘;‘Dk. &, . (B45)
r=1 1.7. Il... n’ J r r=1 1... rﬂ‘. n r J J
We define,
n
A'p[rn] - AP _ Z cpa(m-1) DY (B46)
i...i k i.'.i k - i. ‘i ...i k i
1 n 1 n r= 1 n T
and
Brpa[mii] -pP% . o Cpa(m-i) ¥z . (B47)
i,eeel vooi 1 eoel aual i,...i...i k 70,k
1 r n 1 T n 1 r n

p +
It is clear that Ap[m] and B(pa[ m+1] may contain terms which go

as <I>m-1 and & ™ respectively. But they satisfy
‘ +
welml g cosole™ 1 (B48)
igeced k7Kkj
1 n
and
n
’ +1 * +
ZB"i"‘[mT] ;8. =0+0[a™" 2] (B49)
r=1 10'. r'.l n lr

From the proof of Lemma Al and AIl, we know that given Eq, (B48)

we can always construct a local functional Hf [a] .

such that
. ik
1 n
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P =Ap.[m]. +o[ ™
i...i k i...ik
n 1 n

(B50)

(B51)

From the proof of lemma (BI) we know that there exists a local functional

J°% [ o] . such that
i,e..T...1 k
1 r n
pa a
ZJi...?...ikDi 0
T 1 r n r
and
P =BP* L sola™
ie..i...ik ieeel o..d
1 r 1 r n

Then we form,
artml _pplml” e | opomy

‘ +
Bpa[m+1] =Bpa[m+1] - 7f~0[ 8™t

which satisfy Eq. (B37) viz.

Ap[m]l kg ZBPQ[T:?.].l DY

i
1 T n r

(B52)

(B53)

(B54)

(B55)

(B56)

This process can obviously be repeated. Each step increases the power

of & in A and B by one; th while their dimension remain coastant.
process terminates when the power of & exceeds their dimension.

Structure of Eq, (B47) and its analogues lead is to the statement of

Eq. (B38).

The
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We consider a local polynomial functional Q iA[ 3w ]|, Here,
A denotes the additional indices (if any) collectively, Let the power of

w in QiA be p. Let D = dlm(QiA)“ We define d1m’(QiA) = D- p.

Lemma B V: Let

( gQiA)gO,i =0, (B57)

Then there exists a local functional PiA[ ®, w | such that
Q. +P.,) =0, (B58)
PiA%’i =0, | (B59)

We note that Q (A and P ; have the same power of w and the same

A

dimensions.
In other words, given Eq. (B57) one can redefine Q A such
that ¥€Q AT 0 without altering Q (A "Z),i .

We shall prove the lemma by induction. We shall omit the

additional indices A whenever unessential.

Proof of BV:

According to lemma AII,

oY Y
iA XADi+YijA°Z),j ; (B60)

€Q

with
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n
_ (r)
Yy T ZYiji...i =go,i"' go,i ; (Bé1)
1 r
r=0
with

. . (r)
S[li°"1r+2] Yi1...i

=0 (B62)
r+2

(i) Suppose that dim” (Q i_A.) < 3, Then Yij = 0 and the proposition

is true for dim”’ (Q iA) < 3 by virtue of lemma B II,

(ii) Let us assume that the proposition is true for dim’ (@ iA) < N,
for all possible A and all possible p > 0,
We wish now to prove it for dim ’ (Q iA) = N. From Eq. (B60)
Y - _ ¢ ’
(?XY)Di Sf(Yij ).S’g,j ) (B63)
According to lemma BIV, there exists a local functional er such that
K, =WYJ.,%J (B64)
or
¥ =0
?(WYJ.) 0.1 . (B65)
Since dim'(Wyj) = dim (X\,/j> -3 =N - 4, we can apply the
proposition of this lemma to Eq. (B65) to conclude that we can always
redefine (if necessary) WYj without altering WYj ,Z) j such that
W .)=0 .
G vi! (B66)

We can apply the Dixon-Taylor lemma and write
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Yl

Y

Therefore from Eqs. (B64) and (B67),

g(Xv ) ij’g’/cg,j) =0

or
X =X_. .+X0
Y ¥i~ 0,] Y
with
“x° =0
Y

Substituting Eq. (B68) in Eq. (B60), we obtain,

@6 -xX°D'+(x DY+Y )L
1 Y 1 vyi 1 ij 0,j

where from Eq. (B69)
Z&%)pY = 0
Yy 1
By lemma (BII), there exists a local functional T?{, such that

0 _ 0
X, = ?(TY)
or

- = +
Z(Q - T, D)) = (X, D; Y.lj).%,j

and thus

Y -
g(xiji + Yij) ,E’O’j 0.

Further dim ’(XY D\{ + Yij) =N - 3. Therefore we may apply the

(B67T)

(B68)

(B69)

(B70)

(B71)

(B72)

(B73)

(B74)
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proposition to conclude that there exists a local functional P, such that
1]

P. ¥ . =0 (B75)

and

X .DV+Y_ +P) =0 . (B76)
Y] 1 1] 1)

From lemma AIl we may express Pij as

= ’_DY+Z (r)
Pii 7 %vi P - 1;;k ...k “Z),k ’Z),k (B77)
r=1 r 1 r
with
Sliyeeniy,! P(f) : =0 . (B78)
TS N
We define
L)
Yii..i =Y(f)1 LR . (B9
172" "r+2 P20 T2 172" " r+2

Then on account of Egqs. (B78) and (B62)

sli...i 1vy-&® =0 . (B80)
1 r+2 11...11__'_2

and

AN

n
z 131 Z),i""‘goigw . (B81)

We may thus write Eq. (B76) as

Y Y oy
X DY+X DY +Y2.)= 0 .
A wPi T D i) (B82)

We now define
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c9-5051x 0¥+ x pY 1)
lJ YJ 1 Y1

J 1]
n .
-21x DY+ x D -x pY-x DY +v740)s Z Slij] v4r) L L
2 Ty Yioj viL vl ij 1Jli°°'ir 0,i"""70,i
r=1
(B83)
and from Eq. (B82) it satisfies
.. 0
@c') =0 sfij] ¢! =0 | (B34)
ij 1]
By the Dixon-Taylor lemma, there exists a local functional U((i)j) such that
0
cl9 . &0) stij] u'® -y . (B85)
1] 1] 1

Using Eqs. (B85), (B83)in Eq. (B73), it may be written as
Flq -y -vl9% 1 -(iix +x 1D+ (ie—=j 0+ Slijl Y~ L& .
i v i ij 70,3 2 vy) Tvii 1770,

Y P Y L
={X:D) + XD’ +S[ijl Y.? : B8
XDy + XDy +Sij) Y, 127 (B86)

with

X*“ = 1(X L FX2) . (B87)

Yi  27Vj Y]
Further from Eq. (B82)
/ , Y ;P Y ] ’ —
Xs:D' +X°2. D" +slijly’ } =
%{ Yl 1 Yl j ! 1] J

S[ij D, +X . D.+Y.. ] =10 .
[13]?[X\{J i vi D i .. (B88)

We note that S[ij] Y"J' contains &t least one factor of ,Eﬂo , since
i Kk,
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s[ij] Y(icj)) = 0. Let

S[ij] Yij = _Zijk%,k (B89)
Thus Eq. (B88) can be written as
oY covpyY -
KD+ G NDL = GZ )L (B90)

Applying lemma BIV to Eq. (B90) we learn that there exist local functionals

C. .. such that

Yik
?(X\?{)Dyi PR )DYj - (CvjkD\; * kaD§ 1245,k = ZigZo, i (B9L)
Thus
GC, L5, )P+ FUC F D = 0 (B92)
We apply lemma BIII to Eq. (B92)to conclude that we can choose Cyjk( 0.k
such that
?(Cij)Zo,k =0 (B93)

. . Y Y i . — Qi -
without altering (G DY + chij)f 0,k - Further dim“(C o) = dim (X, )

= N ~3. Thus we may further apply the proposition to conclude that we

may redefine Cij further so that

A(

ij) =0 (B94)

with CijJO K unchanged. By the Dixon-Taylor lemma, there exists

a local functional Wij such that
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C .. = W . i B
vik A YJk) (B95)
We may write Eq. (B91) as,
Y Y _ -
A WijDi + wyiij Zijk ]oZ’O,k 0 . (B96)

Since dim * [ W, DY + (i<==j) - Z.., ] =dim1C

vikDi ik ) = N-3, we may

Yijk
apply the proposition to conclude that there exists a local functional

R... such that

ijk
Al WijD’{ + WYikD\j( - 2y Rijk] =0, (B97)

with
ik tfo’k = 0. (B98)

From lemma AIl

=_R»D¥{+ZR(?_+1_)W.X .z, (B99)

ijk Yij - ijk i, i 0,1 0,i
with
Slige i, ] R(f) . = 0. (B100)
1" " 'r+3
We define

+
Z0 =2 + z k) S SR A (B101)
"'lr 0,11 O,1r

From the discussion under Fg. (B78), it is clear that we may define
Y,.4(r)

11...1r+2

(r 2 1) so that
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-1 <7 = o s ';Z = r\j
S[l]]Yij Zle 0.k zijk 0.k (B102)
while Y’i ’ i still satisfy
PEERE NP
. . (r)
sli,...i_ _ly~-"" =0 (B103)
1 r+2 11...11‘_}_2
We thus have
?TW L DY+ W p¥+Rr-, . DY -z2 1=0 |, (B104)
vik ] vij "k ijk
We further note that Eq. (B91) implies, with the help of Eq. (B95)
Y . .
o o_ 4+ € =
ZI ;. wyjk;z;’k> D, + (i==j)]
i.e., ’
.o Yo
?[(X WYJk&{O 2, FREEY (B105)
We may, now, express Eq. (B86) as
Pl -ty -v V2 Jexer-w T i
i vy i ij  0,j Yi vik 0, k
Y Y . Y .
+ + D' + .
[WijDi W DY £ R4 Dy Z1Jk]JO,j°Z;,k (B106)
On account of Eq. (B105) we may write
re - Z DY - (1)) pY
(77 - W O,k),Z;’j =g,y (B107)

Further Eq. (B104) yields
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- . Y Y », , =
€151 ik] (W, , DY + W, DY+ R 7D , -2 31 0. (B108)
Thus there exists a local functional U(iijz{ such that
S[ i DY +w DY + DY—Z' =
[ijk] ~{va_k LW DY RYJ . } o= ?(U1Jk (B109)
with
é[ij] Ui(jt:) =0, Slijk] U(“(ijk) =0 ., (B110)
Using Eq. (B107) and (B4109) in Eq. (B106) we get
0 1..Y 0 ¥ (1)024 Z
- + -
ZlqQ (T, + T DY = Upomy = Uip ) L ]
- ‘o ’ Y _ .. -’ j
{Slujkl X070 DY - slijkl 25, Y270 | Jo’
n
.o P . 1)
= DY + Z (r+
{S[l]k]ijk : Slijk] Yijk ii...i:ZO,ii"'zO,i }
r=1 r
x%,jxo’k (B1414)
where
P P DY E S --k DY DY Y
S[13k]Xij ) [ijk] {W\(J_k WYlk ; RYIJDk} (B112)
and

e Y /;(I"*"l) _
?{S[uk]X Di +Slijk] ZY ”ircfo’i ...oé,ir} =0
r=4

1 (B113)

This process can clearly be continued to the end with the help
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of lemmas BIII, BIV. In the end one would obtain

n+1 n
?[Qi—z T(r)DYi -Z U(;‘]._) i :fo i aoo% . ] = O
r=0 Y =0 27 42 T2 ’1r+2
{(B114)
sli,...i o™ .o, (B115)
1 r+2 11"°1r+2
Further,
+1 n
Sty -S o) 2 T (Z <o
vy i 112...11.4_2 0,12 0,11._*_2 0,1
=0 r=0 (B116)

Q.E.D.
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APPENDIX C

In Appendix B we have applied the Dixon Taylor lemma to the
operator ?(Of Eq. (4.28). One may apply the lemma since the Eq. (4, 11)

hold for A = w

6L when X is proportional to at least one ghost field

LY
n
w. Here we have decomposed & as

&= A +gB; ¢2.q . (C1)

However, because of the presence of the derivative with respect to

‘I>IT; in A, one does not know, as mentioned in Sec. IV, whether X of

Eq. (4.11) can be chosen to be local given that Y is local. It should be
emphasized that there are instances in which the Dixon Taylor construction
can be used to construct J of Eq. (4.10), however, it is impossible to
choose J to be local even though H of Eq. (4.9) is local. We shall show

that in the cases of our interest in Appendix B, it is possible to choose

the solution 'J" to be local by showing that in the cases of our interest the

Eq.

BY =0 Y local (C2)
implies that Y may be expressed as
Y =BX + AW (C3)

for some local X and W. [In particular W may be zero, which will be
the case in all applications of Appendix B ] so that the Dixon Taylor

construction can be carried out ''backwards'. This way the locality
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of the solution is clear. We consider the Eq. (C2) where Y carried a

free index say 1. The following relations are easily varified,

B(2,) =0 ; Bt = 0; BE*PY) = 0 .
The last two imply
B(gpv =0
Further,
B(6ij)=0 B(6a‘3) =0

Also, we define

B(6(x-y)) = 0

However,
B(8%) =g(w ).t # o0 (wd). = w 8% |
1 J 1] J a ]
and
B(woz)=-1—gf w.ow #0
27 afy By ’
nevertheless,

B wo), =0
i

Without loss of generality we may consider Y(w, ) which involves a

fixed number of w and @

(C4)

(C7)

(C9)

(C10)
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] 1
Yz[w,éj—wai,.. wafnYﬂ,k...k Qka..fbk . (C11)

Then Eq. (C2)together with B(<I>i) = 0 implies

o

1.llan
B[wa... T A ] =0 (C12)
1 n 1 m

Thus, it is sufficient to consider Y not containing fields & but carrying
an arbitrary number of indices. Now, the operator B does not alter the
number of derivatives in a functional. Hence we may assume that Y
contains a fixed number of derivatives.

We shall first consider the case in which Y does not contain any

derivatives. The considerations involved in this case will be useful in
Ayeool
the case in which Y contains derivatives. In this case Y

E,ki...km

consists only of the B-invariants, so that Eq. (C42) implies
A Aponn @ .
B[w cee W :JY =0 (C13)
a Q
1 n

where we have suppressed the extra free indices, Thus,

2,... n
+
£ e e vyt att o, (C14)
T70[nn+1 1 n+1

(2 SN
Thus the totally antisymmetric part of Y ! n-1 vanishes,

o
nnt+1i

terms, since the above is

+ +
It consists of a sum of (I—l—i) = M

2 2

already antisymmetric in (ai. . ) and in (« ). We write one

, &
n-1 n n+1

of these terms as
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.o o o S N
1 -1 + -
n - _f i v n+41 1 n-1 I
n n-1i n
A e o e [+
+
-f y3 wmavt o (C15)
)

Since Y does not

contain derivatives, each term contains a product of same & functions

which can be extracted.

have no space-time dependence,

gana,n+1
and use,
=8 C
fna'naln+1f€a’na/n+1 ng "2 ° (C16)
so that,
@ . g Ne,...«a n
CZYi n-1 ='fgm\ i GY 1 n-2 + .
n n-1
Qyewel oAn
3 -4
S . n ... (C17)
ne %
and thus
@ ... & Na,...e _7
Cow ... vy ! ni:-(fgxfa w wg)Y1 n-2
@y -1 © IAN%-1° %n-1 Cort Ya
1 n-2
A ool 0 \n
+... - © w f 3 ot +.... (C18)
nae,a a, a. & onN w, w ve W
172 1 2 £ o
3 n-1

Thus in Eq. (10) we shall assume that the terms

We multiply Eq. (C15) by f

In the first term on the r.h.s. of Eq, (C18), we use,
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Ae,o.. n
1 n-2
X{AifK )\nYwa e W

K o

. o G)\.n
1 n-3
+A2 fgo)\Y } (C20)

(.Qg wa{ R

where A1 and A2 are some numbers depending on n and CZ'
Even though the argument following Eq. (C44) does not go through
in the case when n equals the number of generators of the group, the
relation of the form of Eq. (C20) still holds (with AZ = 0). This can be
seen by explicitly working out the right hand side of Eq. (C20) for this

case. As we shall see later, we shall need the relation only for the

case of SU(2) (i.e., 3 ghosts) in which case we see that

Aan
yéKwywé €)\KnY wa'

1 Nan
= = %- + 5 %
> wywawa 6Y X 6617 6\’7’7 5\ Y

_ Yozﬁv

NI

€

@, wpr . | (C21)
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’ K o oo &
Using Eq. (C20) we define an X n-2 by,
a o4 Ka . (¢4
o 1 ° -
Yi nwa waEEfﬁxw'w(SX 1 nzwau w
1 n Y Y 1 arn_z
(C22)
K@yeooa
X is clearly antisymmetric in its last (n-2) indices. Therefore

it can be expressed as a sum of two terms each having either one of the

permutation symmetries of Young Tableaux in Fig. 2. We write

X=X +X""° (C23)

where X° is totally antisymmetric in (ke @ ). Substituting the

17 %2

decomposition of Eq. (C23)in Eq. (C22), we get a corresponding

decomposition for Y:

Y=Y"+Y"" . (C24)

It is clear that Y* may be expressed as,
Y”“ W eeeW =~ Blw X W oL..Ww ) (C25)
[#4 K

where = means equal within a numerical factor, and that
BY”” =0 . (C26)

Thus showing that BY =0 = Y = BX (X local), in our cases of interest
amounts to examining B-invariants of the form Y~* ~“ [related to X“ *

with the permutation symmetry of the Young Tableau of Fig. (2b) by
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by Eq. (C22)] and showing that such B-invariants do not occur in the
cases of our interest., We define such B-invariants as anomalous
invariants. The anomalous invariants cannot be expressed as BZ since
the X-fuanction of Eq. (C22) for BZ for any Z can always be chosen to be
antisymmetric (and in fact proportional to Z). Since the classification
of B-invariants depends entirely on the indices of Y contracted with
ghosts; it follows that,

(i) if Yi[w, ® 1 is an anomalous invariant, so is Yi[ &] Ti[ ®]
where Ti [@] is a local functional not containing derivatives,

) (2) (4

and Y ()

(ii) if Y(1 are anomalous invariants sois Y ) +Y
(iii) If Yi[ w, ®] is an anomalous invariant, and Yi[ w, d] =
Kij [ w, 3] Lj[ &] where L is local, Kij [ w,®] is also an anomalous
invariant, [i.e., the part of K which contributes to Kij Lj]
Let us therefore consider Eq. (C22) where Y is an anomalous

invariant. Using B(Y) = 0, we get,

Ka'1...o:n_2
ZKa o X = 0 , (C27)
1°°" "'n-2
with,
Z =Ala,...« ]{f w wf We D W eoeW }
Kao..a 1 n-2 kYo Y 6&1«‘;11 € n @, @ _,
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and thus Z as well as X has the permutation symmetry of the Young
Tableau of Fig. (2b). Further for n =3, Z satisfies

5% 7 =0 (C29)

K a

on account of the Jacobi Identity.

An examination of the lemmas BIIl and BV shows that, we have
applied the Dixon Taylor lemma for g in the cases when H of
Eq. (4.8) contains 2 or 3 or 4 ghosts. We shall therefore need to
examine only these possibilities.

(i) Two ghosts: Here, Eq. (C22) gives

wawﬁ Ya"‘3 =

N |

£ w w, X = Blw X%)
kKyod 'y o K

without exceptions, Thus there are no anomalous invariants containing
two ghosts.

(ii) Three ghosts: Eq. (C27) and (C29) imply that the traceless
symmetric part of X" (which is already given to be symmetric in (k, a))
vanishes. Thus X" % must be proportional to 6 “%* . This argument does
not apply to the case of the group SU(2) because there Z vanishes
identically. But in this case, it is clear that only the part of x <

proportional to 6 “ % contributes to fK wyw aXK awa . Thus such

¥y o

anomalous B-invariants have the disconnected form

fa'ﬁy wawﬁwYX [3]
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where X carries all other indices that Y does.

(iii) four ghosts: Here, we shall not need to kaow the form of the
anomalous invariants. We have used the Dixon Taylor lemma after
Eq. (B.32) where E“ contains 4 ghosts. We shall show that E“ can be
chosen not to contain anomalous invariants., We note that in Eq. (B, 23)
the terms containing no derivatives on the r.h.s. arise entirely from the
action of B on the terms in C not containing derivatives, since C is local.
Thus this term on the r.h.s. of Eq. (B.32)are expressible as BZ and
by definition do not contain anomalous invariants. Therefore it is clear
that terms in E ot containing derivatives may be chosen not to contain
anomalous invariants. Since E” are a linear combination of product of
E and D\i{ 's, it is clear that terms with no derivatives in E“ do not
contain anomalous invariants, if such terms in E do not.

Therefore, we need only to worry about the application of the
lemma to terms containing 3 ghosts. Applicationto Eq. (B. 66)is a
typical example which was repeated at each subsequent stage in
Appendix B,

We note that in Eq. (B.64), X is a local functional containing

Y
two ghosts., Thus, terms in Wyjozo,j not containing derivatives do
not contain the anomalous invariants as argued in the discussion in the
case of 4 ghosts. Therefore, terms in WYj not containing derivatives
may be assumed not to contain anomalous invariants. The question,

then, is whether one needs to add such terms to WYj so as to make
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Eq. (B66) valid. This will be so if
%(W [2])=- g(f V¥ wﬁwyx[qﬂ)

=ty gy T X [0]) (C30)

On the right hand side, X[ @] is a local functional with no derivatives

in it. Thus,

_ - n
Cxlel)= AX[a] -wnai in[CD]

Then Eq. (C.30) becomes

- n
?erj[ ®&])-= fo43Y ©a9g % 8. X, [e] . (C30a)

The terms in the 1. h.s. of Eq., (C30a) which contain one derivative
can come from either the action of A on terms containing no derivatives

W W w UQBY [@])or the action on B on terms containing one

a By

) . - apPy o6 .0
derivative (= uawﬁwv Vk ) K ).

(

I

Thus we have to see if the following

equation is possible:

-—0 W.W W SnUQPY[CI’] +Blw w, w )VaﬁY6[¢]36
a B yn i ,i a By k k
aPy 6 ) 7
+ wawﬁwyv K B(Bk) BY wawﬁw w 8 ; X’i . (C31)

6
From Eq. (C. 31), it is clear that 9

K must be contracted with a ghost.

Then letting,
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- w9%w Vsl
o i vy i

a By k k P

we get

“w W.W W ST? UapY[¢>]+wa8?B(w

2 .

w )V PY [g]
a By n i i Y i

p

n
= -f ww. o w w o.X, .
oy By “n © i

But this is impossible, since Uaﬁy does not contain a factor of the

form f
[#4

Y

Next, we consider the case when Y contains derivatives. Let
Y contain exactly r derivatives at least p (0 = p = r) of which are
contracted with w in the form @, 8? . BY, therefore, consists of a
sum of terms containing (n + 1) ghosts, r derivatives at least p of which

are contracted with w's. We write

Yli Po e, e e, (w8 L(wed) 9.8 P
’ %1 “n 1 n-p 71 Jp r-p
Qoo ,ﬁo-.ﬁ
1 -p* Py -
Y; | .nkp . TP (C32)
,Jiﬂ..‘]p 10.. r_p

The terms in BY containing precisely p derivatives contracted with ghosts
come from the action of B on (wa ceew ) only. These terms must

1 n-p
separately vanish. Thus '
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B B _ Q. ... ,B....B
0=Blo, oo, Ned) ...(w8) o', pf Pyt mmid rep
ai n-p J,i Jp 1 p 3J1=oon: 1..- r—p

(C33)

We note that the momenta carried by all free space~-time points except
£ are independent. Further Yz j j is totally antisymmetrized
SFLEER

in (j1. . .jp). Using these and comparing coefficients of independent

moment a, we find,

,ai"'an-p’ﬁi" .B

I""p _
Blw ...w )Y, . = D (C34)
2
a, an-p ’31"'3p’k1"'kr—p

which is precisely the equation we solved earlier; with the result that

(we suppress some indices here)

(@ ovw Y, PP B L x< b nRTy
o @ Z, (o3 a ,
N 1 n-p 1 n-p-1
We now construct
a...a _,B...B___ B B
YW ooy -B W e x4 el rep g1 TP
£ y4 a, & ol 4 Dk Kk k1 k-p
p ’Ji"'Jp’ 1 K
(w- 8)31...(w' 8)Jp (C35)
Now, Y(;) satisfies BY(;) = 0 and contains at least (p + 1) derivatives

contracted with ghosts. This process can be obviously continued until

15
the end.

Finally, we prove the locality of Si of Eq. (4.22) which together
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with proof given by Dixon and Taylor in Ref. (5) completes the proof of
the statement of Eq. (4.43). Here we use the Dixon-Taylor lemma for

functionals with one ghost. We thus have to show that
Blw Yi[a])=0 (C.36)
a 1

implies that for some local X‘: [&] and Z?[ ] |,

w YO (el =BXY[e])+AzY[a]) . (C37)
@ 1 1 1

From the discussion given earlier in this Appendix, we need to consider
Yi which is independent of &, carrying an arbitrary number of additional
indices in

a -
B[waYi] =0 (C38)

(23 . N . .
Now, Yi must contain at least one derivative for otherwise

Blw Y] =4 %9 (C39)
o 1

f w w Y.
2 Eapy By
implies Ycir = 0, Further one of the derivatives in Y(: must be contracted

with w in the form (w a“ ) for if we write
[+4 a m

B B a,B,...B
1 n .. 1
+
(8] “aaki"'ak ik ok
n 1 n

n
w Y, =

a ”,
o i ¢ m mi (C40)

where the last term does not contain a factor w, Bfn , then comparing

coefficients of terms in Eq. (C. 38) not containing such a factor, we get
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Lot wow [aﬁi aﬁn Y"a’pimﬁn:l =0
2 aPy By k1 kn 1,k1...kn

(C41)

showing that the last term in Eq. (C.40) vanishes. Let us first consider
the case in which Yn’li does not contain derivatives. Then, remembering

1
that Y].:ni is a local functional either >

Y - =tY y--- (C42)
mi,... mp pi,....
or
o _ @ . o P 4
= = (03] .
waYi[QDJ = @, amYmi[cbl @ am{@m(_j@j) Fl[<I>]6 (...)} (C43)

where in F[ 3] all ¢ are contracted with f’s or t 5. In the latter case

we may write

5F.[3)]
© Y [8] = -0 0% (@ P L= %
a 1 a m 3] ] b(I)m
1 p+1 4
+A{——-2(p+“ (<I>j<I>J.) P{[@] 6 (...)} (44)

where, the ist term on the r.h.s. is itself a B-invariant and has the
form of the term in Eq. (C.42). Thus we need consider YII;.i of the

form of the r.h.s. of Eq. (C. 42) only. Then,

© 87 Y’ o= o 87tY yoo
a m mi a m mp pi
1 Y o
= =B v . (C45)

g E pt
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Equations (C.44) and (C, 45) prove the result for this case, Finally,

in the case when Y~ ; contains derivatives, we write
m

g B B,...PB
w ¥ 0%t a2yt R (C46)
a i @ m j, in m1;|1...3n
By B «
where Y. . has the appropriate symmetry. Then B(maYi) =0
I dp
implies
B 8 8 B,...B
wdmwdftl gt pmy 1 o0 =0 (C47)
a m vy J‘l 32 Jn ’Ji'”‘]n".’”
i.e.,
g B,...B
e byt (ke—m) =0 . (C48)

. Y .
k;|1 mi, jyee ey

It is easy to verify that such a relation necessarily requires that the

group index in m is attached toa t Then Eq. (C46) can be written as

m{
B8 B B,...B m
TR ST SRV RS 1 (C49)
o i @ m mi j, ] L]y 'Jn
ﬁ1'°'ﬁnn
Then Eq. (C48) implies thatKiJ_ i1 is symmetric under the
» 1o.on

interchange of (ﬁr,jr) <> (n £). Thus we may write

B B B,...8B n
0, Y9 =B(a£” oL o gt Tn (C50)
i, I S JOS N

proving the result.
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4 . .

There may be gauge invariant operators which may be expressible
¥ 0
A,

1

Fi is a covariant local functional, i.e. ¥ F.1 =0. We thank Dr. Zuber

in this form (?/F). They are expressible as

Fi[A ] where

for pointing out this to us. In the case of twist two operators,
however, there are no such gauge invariant operators.

15Sinc:e we are interested in solving &€ W=01i.e. (A +gB) W=0,
only those B-invariants which can occur in a & invariant W are

of interest to us.
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FIGURE CAPTIONS

Fig. 1 Young tableaux 1“S, s =1, ..., m whose Young operators

do not annihilate W, D ..
Lyees r,Ji...Jp
Fig, 2 Young Tableaux for the permutation symmetries of

X7 and X“ 7 of Eq. (C. 23).
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