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I. Introduction 

Renormalization group techniques have recently been used to study the 

infrared behavior of Reggeon field theories of the Pomeron. For theories 

with triple Pomeron couplings, the infrared behavior of the theory is 

governed by the existence of a fixed point which occurs for a finite value 

of the triple Pomeron coupling. 
1 Hence we are led to a consistent picture 

of the Pomeron at asymptotic energies. The theory has the further advan- 

tage that the fixed point behavior may be studied perturbatively in the 

triple Pomeron coupling, provided that this fixed point value of the triple 

Pomeron coupling is small enough. 

While a Reggeon field theory based on only a triple Pomeron interaction 

leads to a consistent picture at asymptotic energies, we may not a priori 

rule out the existence of interactions other than the triple Regge which 

may modify the earlier picture. 2,3 The purpose of this paper is to study 

effects of these higher order interactions and determine if they will affect 

the asymptotic behavior. The basic result is that there will be no modifi- 

cation of the asymptotic behavior so long as the infrared stable fixed point 

of the renormalization group occurs at zero coupling for all higher Reggeon 

interactions. We show that this is the case when the fixed point behavior 

is studied perturbatively in lowest order at D=2, and to all orders in the 

triple Pomeron coupling in the E expansion. 

The essence of our discussion is a study of infrared behavior of 

various operators which might be combined to form a Lagrangian for a Reggeon 

field theory. The infrared behavior of this model or any model can only be 

affected by those operators that are not infrared soft; that is, by those 

operators that don't go to zero in the infrared limit. How an operator 

will behave in the infrared limit is determined by its effective infrared 

dimension. 4 
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In practice we can only determine the scale of various operators with 

respect to the free Lagrangian. 

II. Formalism 

In this section we will discuss the basic formalism of the Reggeon 

calculus and the relevance of various operator interactions to the infrared 

behavior of the theory. 

In the Reggeon field theory the "energy" variable E is associated with 

the angular momentum J as E = 1-J and the momentum k'with the momentum transfer 

as z2=-t. The statement that the bare Pomeron trajectory is linear, 

.J = l-Ao+@;t, 

translates into the following nonrelativistic free Lagrangian for our theory 

x0 = hJ, 
*- 

iao$-c2~Gu*+ - A**$. 

Now since the free action 

A, = s dDxdtSo 

must be dimensionless we see that the dimensionsofvarious quantities are 

[Jr] = kDf2 [a;] = Ek-2 IAol = E [t] = E-l [xl = k-' 

Using dimensional arguments, based on the dimensionality of operators in the 

free theory above, we can look at various operators as possible choices for 

interactions and discuss their infrared behavior. AII operator with m powers of ‘j: 

n powersofthe derivative operator 6. 
i 

1 * vj, and p powers of at integrated 

over x and t has the following dimension 
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rr D dn dt(ji.$j)n(bt)P$m! = [O(m,n,p)] =~ k 2n+Dm/2 - Dgp-1 

If we associate with k -2 and E -1 a given scale length L, we see that the 

dimension of 0 is 

[O(m,n,P)l = L 
l+D/2-Dm/4 -n-p 

and some typical operators that one might consider for interactions have the 

following behavior 

[0(3,0,0)1 = ,1.-D/4, [0(4,0,0)1 = L~-~'~, [o(6,0,0)1 = Ll-D. 

These dimensions are of course just the inverses of those of the associated 

coupling constants. If one increases the scale of the theory, the relative 

importance of various interaction operators changes. In particular, the 

small momentum behavior (infrared) of the system should be governed by co- 

herent long distance behavior, and only those operators that remain for large 

L can therefore be relevant. For example, 0(6,0,0) goes to zero for D>l. 

A list of relevant operators in two and four dimensions is given in Table 1. 

It is important to emphasize that these operator dimensions are relative 

to the free theory, and that in the interacting theory these operators may 

pick up anomalous dimensions in the infrared limit, particularly in two 

dimensionswhereO(3,0,0) is singular. The singularity of 0(2,0,0) the mass counter- 

term is a particular problem in these theories, 5 but it does not enter in 1st order. 

We see that at D=2, which is the physical dimension for this problem, only 

(p3 and (p" f interactions can affect the infrared behavior of the theory. That 

is to say, the study of So with only rq3 and (p" operators is complete with no 
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further room for choice. Now at D=4 the situation is different; here only 

3 (D appears to be important. Nevertheless, one might still be interested in 
4 including a [D interaction, since the physical dimension is two and there 

4 we know that co interactions are relevant. The CQ" theory is non- 

renormalizable at D=4 and an expansion in 6 would seem a priori problematic. 

This is not the case, and only the (p3 theory turns out to be relevant. 

III. Theory of the Pomeron 

In this section we give a brief review of the application of the re- 

nofinalization group to the Reggeon field theory with triple pomeron and four 

pomeron interactions. 1,2,3 Reggeon field theory is designed to give an 

equivalent description of Reggeon-Reggeon interactions and to reproduce the 

correct analyticity and discontinuity relations in the complex angular 

momentum variables. 

The (p3 and (p" theory of the pomeron is expressed in terms of a "non- 

relativistic" Lagrangian field theory with the following action 

A = sdxDdt{:i $r* zo@ _ cy’ &$” s ;I$ _ Aov”$ _ i $(&r”,# _ $“q’) 0 

I;g( _- &3+$3+) A01 &2} 

(2:)2 

The bare pomeron couplings are assumed constants (rO,hO,hol). The single particle 

irreducible (SPI) unrenormalized vertex functions for n incoming and m out- 

going pomerons are denoted by T" n,m(hP~) I and are to lowest order given by 

(E,P) = E - LY;?* - A0 , 

~-y,~({Ei,P~j) = ro/(2n)(D+1)'2, 
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({Ei,Pi]) = -i ho/(2rt)D+1 
> 

G,2 (biJi)) = -i h01/(2rr)D+1 

To this order all others are zero. 

The renormalization group is used to study the infrared behavior of this 

theory (&O, E+O). The bare couplings are replaced by effective renormalized 

parameters defined with respect to a given energy or momentum scale. By 

determining the dependence of the effective parameters on the normalization 

point, the infrared structure is also determined. 

For the purposes of this paper, we take a momentum normalization point. 

While in principle there are very many normalization points that one can choose, 

we feel that this one which keeps the P2 of all Reggeons equal, presences the 

basic symmetries of the problem and therefore may be preferable. The renor- 

malized SPI vertex functions are defined by 

?&B,P)) =Z:(n+m)'2 r;,m(CE,P]), 

where z is the wave function renormalization constant. 

The renormalized parameter LY' and dimensionless coupling constants g, 

y, and yl are determined by the following normalization conditions 

a,i ry,l(E,P2) = 1, 
E=O; p2=k2 

N 

a i r! 1(E,P2) 
P2 ' 

= -01') 

E=O; p'=,$ 
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2 %.-D/4 

r; 2 (Ei,$' 
0,' (S) 

, 
Ei=O; gi6. 

J 

= l$ (3*. _ q q )= cw (D+ 1)‘2 g’ 
lj ij 

2 1-D/2 

r;,,(Ei,li) '< 
u' oq 

p' 's.=~ (46ij -~i~ji 

= -i (2rr)D + 1 y, 

Ei=O; i J 

$ 2@i>$) = -i a1 (@-D'2 
3 v-m 

D+l '1' 

Ei=O; 6i*:j=< (hij -$$qj+$ 

where l&-l for incoming and -1 for outgoing Reggeons. 

The renormalized SPI vertex functions are functions of cy' 2 
9 g, Y> yl> =nd s. 

We have assumed that the renormalized intercept occurs at ~=l, i.e., 

r; 
> 
l(o,o) = 0. 

Iv. Renormalization Group Discussion 

The purpose of introducing renormalized quantities is twofold. By 

defining renormalized quantities relative to a given momentum scale, we are 

less sensitive to the high momentum behavior of the theory. A perturbation 

expansion in the renormalized coupling constant may exist while a perturba- 

tion expansion in the unrenormalized coupling may become undefined in the 

infrared region. 

While the renormalized quantities were defined relative to a given 

normalization point, the unrenormalized quantities are independent of the 

normalization point. The renormalization group equations tell us how the 

renormalized quantities change as we change the normalization point. In 

the cp3 and (p" theory we obtain the following renormalization group equations 
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for the renormalized SPI vertex function 

{I$ 2+ Pg~g+~y~y+~ylhyl+ 6&3,,> r,” m = (n;m) y rR 
k > n,m 

N 

where by dimensional analysis the renormalization group coefficients S 
g' 

By, B yl, 6 and Y are functions only of the renormalized coupling constants. 

We may study the infrared behavior of the theory by resealing the energies 

and momenta 2 
Ei+SVEi, PieSpi and letting the scale <+O. First let us con- 

sider the unrenormalized (p3 theory. Using dimensional analysis, the SPI 

vertex functions scale as 

r” 

n,m 
(5vEi,5’Pi,~~ ro‘o’ = Sdn7YI ,(Ei,Pi,~1-v~~,~D’4-vroj 

, 

where d 
n,m 

= v+D(Z-n-m)/4. The choice of v=l allows us to keep the relative 

energy and momentum scales fixed. In this case, the effect of examining the 

infrared behavior of the theory is to modify the bare coupling constant, 

ro*S 
D/4-1 

=o+ For the physical number of dimensions, D=2, the bare effective 

coupling constant increases to infinity as we let 5'0. Therefore, a direct 

analysis of the bare theory becomes useless in the infrared region. 

Although the theory considered as a function of the bare coupling is 

not useful, the theory may become tractable when re-expressed in terms of 

the renormalized quantities. The theory may remain well defined as a func- 

tion of the renormalized quantities , even as the effective bare coupling 

constant tends to infinity. 

With this brief introduction, we will proceed to study directly the 

infrared behavior of our (p3 and q~" theory using the renormalization group. 

With the help of the above scaling equation for v=O we find that 
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‘::a,-agag-pyay-By ay +cu’w61~a, 
11 

+[(Tj y _ dn ,Tj rR 
, n ,(Ei,S~Pi,g,Y,Yl'"',~) = 0. 

> 

Solving this equation, we can determine the value of the vertex function at 

in terms of the vertex function at moment 

l-c ,(Ei,i'Pi,g,y,yl,k;) = rz,,(Ei,P g(:t),y(-tLyl(-t),o(-t)&;) 
, 

x exp { ,;dt'[du,m - w vjg(t'),y(t'),yl(t')jl } 

-t 

where 5=et. The characteristic equations that will govern the behavior of 

coupling constants as functions of the scale 5 or t are 

g= -Pg(gw,Yw,Yl(t)) , 

g = -By(g(tLY(tLYl(t)) , 

and 

dyl -= 
dt Pyjg(tLY(tLYl(t)) 

$p = CI(t)~l-b(g(t),Y(t),Y1(t))l , 

where g(0) = g, y(O) = y and ~~(0) = yl. In the infrared limit the theory 

will be governed by a set of coupling constants that satisfy the above 

equation in the limit t +m, and which remain stable. These coupling con- 

stants are determined by the following conditions, 
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B,G,W,) = 0 , 

B,G,iG,) = 0 , 

Byl(E,%~l) = 0 , 

and a stability condition which will be discussed later. It remains now to 

determine p 
g' BY, PYl 

in some approximation and solve for the fixed point 

(g, F, yl) that governs the infrared behavior of the theory. 

V. Determination of g's 

We will determine the b's in perturbation theory in the one-loop approxi- 

mation, in D dimensions using the symetric momentum normalization. The cal- 

culations are relatively straightforward. 

From the graphs in Fig.la, i-y 1 is found to be 
9 

(E,P') = E - c$P2 - (a;$2 (@?" r :',;rr",b" 

and therefore 

and 

where E = 4-D, 

and 

a'(k') = o;(l + gz + K 2"") , 

r. (<) D/4-1 . 

go = a' 0 

From the one particle irreducible graphs, shown in Fig.lb, we calculate 

rR 
I,2 

and g, the renormalized coupling constant. We find 



11 

where 
A0 (k$D’2-1 ho1 (k$D’2-1 

yo = ci; > YOl = ";, 

and 1 

ID&b& = i 
dBldB26(1-Pl-B2) 

:, Ml + bB, + cPlB2)2-D'2 

is tabulated in Table II. 

2 4K zE12 / e/Z-l 
g = go j-1 - go e j41DU,lJ) - 1;) f $ ; _ D/2 (2yo+ Yol)J ' 

From the one particle irreducible graph in Fig.lc, we calculate 

rR 1 3 and the renormalized coupling constant y. 
, 

2 K 2=" 
Y = ~ko)+Yo+Yogo e 6-241D(1,1,4/3) -481D(1,4/3,1)] 

2 K 2=" 42 

- Yolgo E [241DW/W] -yoyol e(;"_;, (;) 7 

where y"(g,) denotes the contribution to y from the pure (p3 theory. 

Finally, the two-to-two graphs in Fig.ld give ri 2 
, 

and therefore yl 

Yl = YlkO) +Yol+g;Yol 
K 2"' 

e 6-321,(2,1,1)-32I,(l,l,l)i 

2 K 2"' 
- vo 6 641D(l,Ll) - $tD) ;Y& 

2 e/2 
+2yo 2 

where y",(g,) is the effective two-to-two coupling that one would obtain in a 

pure v3 theory. We note that both y"(g,) and y",(g,) are of order gz, and come 

from box graphs that we will not have to calculate. 



12 

. . 
We can now calculate the B's. First, however, let us make a change 

of variable, and define a matrix notation 

hl = y-y”ko) h2 = Y~-Y~(ss~) 

h; = y. h; = yol 

h3 = g 

h; = go 

with an operator matrix of coefficients M, 

h=Mho 

and ho = M-'h . 

Thus 

f3, = k;ak2h = M'ho + M C ho 

N 
where 

c = 

On substituting ho as a function of h, we find 

p, = (M'M-'+ MCM-1)h. 

Carrying this through in perturbation theory, we get 

8, = -6'4 g +g3K 2E'2+1(41D(l,l,l)-l) + 
K 26/2+1 

E gG'hl+h2), 

= (l-e/2)hl+g2hlK ZE" ~121D(1,1,4/3)+241D(1,4'3,1)-31 

+ g2h2K 2 6'2121(1,4/3,1) + hlh2 $ (;)E'2 

and 
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Ph2 = (l-e/2)h2 + g2hlK 2 E'2321D(l,l,l) 

+ g2h2K 2"' (161D(2,1,1)+161D(l,1,1)-3)+: (2h; 2"2+h;). 

With the p's in this form, the fixed point of the theory is easy to obtain. 

Clearly, for a # 0 

-T 
T;1=o,K2=o, g = E/4 

2K"2(41D(1,1,1)-1j 

is a fixed point of the theory, T and g hasthe same value that one would obtain 

in a Q 3 theory with a. symmetric momentum normalization. Therefore the fixed 

point occurs when we have all q~" couplings zero and the (p3 coupling is given 

by the fixed point in the pure (p3 theory. This is, of course, only true away 

from the singularities in the p's. Furthermore, we must investigate whether 

the fixed point is stable. It is entirely possible that while the (p" coupling 

has left the location of the fixed point alone it could have destabilized it. 

Note that we assume E # 0 here. The limit E+O will be treated in a later section. 

In the physical case D=2, the p's become 

B, = g [r- 4i2.443 $+=+ hl 

- = 2 c12.527 k+ 4.540 k]+ 1.5 22, 8rr 

13.772 k+ 10.372 z]+ 2 [kj' + .5 [kr . 

We can only hope that perturbation theory in the one loop approximation gives 

a reasonable approximation to the @'s. With this proviso, we can solve for 
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the effective infrared coupling n 1 
k = -2046. 

We note that this number is slightly different from that obtained with an 

energy normalization, which is as it should be since different normalization 

points represent different orderings of the perturbation theory, and there- 

fore the lowest order approximations understandably give different numbers. 

The fact that the numbers are nearly equal might be taken as an indication 

of a rapid convergence of the theory. We should note that higher order 

3 perturbation calculations in the cp theory in the s-expansion have been 

shown to be slowly convergent. 6 
It is not clear however that this will 

apply also to D=2. Thehigherordercalculations at D=2 are not straight- 

forward because of problems with the mass counter term.5j7 

Therefore the accuracy of lowest order perturbation expansion remains an 

open question. 7 

Let us now turn to the question of stability of the solution that we 

have just discussed. The standard technique for studying stability is to 

linearize the equation about a fixed point, i.e., 

- $ = P, = h&-g) + clhl + c2h2 

dhl 
- -=B, dt 1 

= dlhl + d2h2 

dh2 

-= Sb2 dt = elhl = e2h2 

Solving these equation, we find 
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g(t)-g = ale -At -a2(cld2-c2dl+c2A2)e 
-X2t -h3t 

-a3(cld2-c2dl+c2;13)e , 

hi(t) = a2d2(A-A2)e 
-+zt 

+ a3d2 (A-h3)e 
-h3t 

and 

h2(t) = -a2 Cdl-AZ) (h-h2)e 
-A2t 

- a3(dl-13)(X-h3)e 
-x3t 

, 

where the a's are determined from the initial conditions at t=O. The eigen- 

values h2' A3 are given by 

A 
' '3,2 = + (e2+dl) i [(e,-al)'+4 eld212. 

Stability requires all the eigenvalues to be positive 

A> AZ’ x3 > 0. 

For the physical dimension D=2 we find that 

A = .50, A2 = .71, A3 = 3.98 , 

all of which are positive and therefore our solution is stable. Actually, 

the theory we are considering is an expansion in g2, hl and h2, and the 

eigenvalue associated with the true expansion parameter g 'isA =l. 

It appears, therefore, that g2-g2, 
g2 

hl and h2 approach their critical values 

at the same rate, indicating that the presence of hl and h2 coupling will 

affect the approach of our theory to its scaling behavior, that is, the 

secondary terms in the cross section. These linearized equations can also 

be given a physical interpretation of some interest. Consider the linear 

terms in the original expression that we had for the S's 
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-is= 
dt -E/4 g+... 

dhl 
- - = (l-&)hl+... dt 

dh2 
- - = (1-42)~ + . . . dt 

The coefficients of the linear terms are essentially minus the dimensionality 

of the various operators with respect to the free theory. Thus the dimen- 

sionality of 0(3,0,0) is l/2 for D=2 (s=3), and zero for D=4 (c=O), while 

0(4,0,0) has the dimensionality zero at D=2 and -1 at D=4, in agreement 

with Table I. Now in the interacting theory, at the fixed point we find 

that various linear combinations of g-g', hl , and h2, which can easily be 

determined from the above equations, satisfy similar linear equations with 

coefficients A, X2 and k3. Thus in the interacting theory in the infrared 

limit, linear combinations of various operators have definite dimensions. 

In particular, there are two combinations of 0(4,0,0) operators.which have 

dimensions -.71 and -3.98, and there is a combination of 0(3,0,0) and the 

two 0(4,0,0) operators that has dimension -.5. Note that these dimensions 

have changed considerably from the free dimension indicating some danger in 

relying on the dimension of the operators with respect to the free theory 

to determine what operators are relevant in the infrared limit. It is also 

interesting to note that the approach to scaling is determined by the operator 

that is least soft in the infrared limit. 

In the s-expansion however things are considerably nicer since the 

dimensionality of operators only changes from the dimension with respect to 

the free theory by a perturbation of order s. Thus the argument of the 

relevancy of various operators with respect to the free Hamiltonian is 

assured for small E. 
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D = 4 Dimension and the s-Expansion 

There are several interesting points about our (p3 and (p" theory near or 

at 4 dimensions. Consider the renormalizability of the theory. The super- 

ficial degree of divergence 6s is 

6s = V3(D/W + V4(D-2) - D/2 5 + 0+2 

where V,, and V 
4 

are the number and three- and four-particle vertices, and 5 

is the number of external lines. At D=4 the superficial degree of divergence 

grows like twice the number of four-particle vertices; that is, the theory is 

nonrenormalizable at D=4. We learned earlier, however, that the fixed point 

coupling of the (p" occurs at zero coupling ; therefore to study the scaling 

behavior we need only study the theory to the lowest order in the (p" coupling, 

and we will be left with a finite number of subtraction constants. Calculating 

the g's from our previous expansion we find 

phl hl - = (l-E/2) - 
@d (SW2 

% 
- = (l-E/2) 
(W2 

h2+ 7.25 (y&,' --$+ 8 (&)'hl + i-&t $2 
W02 NW4 

Notice that to first order in 1 and h2, 8, hasp a pole at s=O while phlbave 

poles in higher order. This can be viewed from two points of view. First, 

all poles in e result from ultraviolet divergences in transverse momentum 

integrals with the quartic coupling present, which also lead to the renormal- 

isability problems of the v4 theory at E=O. 
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Physically, large transverse momentum components have no place in 

determining the behavior of a Reggeon field theory which purports to calcu- 

late the behavior of Green's functions only near j =l and p*=O. One my 

2 
L 

simply note that as p/m, staying on the bare trajectory defined by 

j = eo-oA p* leads to j i-m. 
I 

Indeed, as p2+-, 
I 

one eventually approaches a 

fixed angle limit which has no place in the Reggeon calculus. A resolution 

of this problem lies in the initial assumption of no p* damping in bare 
I 

couplings. One can assume that some underlying cutoff A is in fact present 

in the original theory. The cutoff (p" theory is then renormalizable, of course, 

and the poles in s and in the S's will be replaced by some function of A. 

One is still obliged, however, to demonstrate that the scaling results are 

independent of A'; we shall do this. 

Secondly, we recall that there are several operators in addition to a4 

which scale like L -1 which we have not included. If we were to include all 

these operators as interactions then, to first order in perturbation theory, 

the renormalization of these operators, which are complete to this order in 

L, would remove all l/s from all S's (which would be greatly expanded in 

number). This of course is another way of handling the renormalization 

difficulties of this theory in four dimensions. 

In either case, the infrared behavior of the theory is unaffected. The 

point is that the infrared and ultraviolet behavior of the theory are de- 

coupled and the fact that we have included a set of operator interactions 

that behave badly in the ultraviolet region simply doesn't matter. The 

asymptotic behavior of the theory is completely determined by the fkd 

point. This is to be determined by the theory to all orders in the (p3 inter- 

action, but only to first order in the (p" interactions. 

We can further illustrate this point by considering the e-expansion in 

somewhat more detail. In particular, the l/s factors in the S's cannot 
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affect the fixed point. For simplicity, we will only include one cq" 

coupling in the following argument. 

The most general form for the renonnalized cubic coupling g 

to first order in y. and all orders in g 0 is 

yoga 
g = Zk,) + 7 

2 
fo(go ,E) 

where, as before, g(g,) is the renormalised cubic coupling with yo=O. It 

is easily seen that the most singular behavior of f. is fo(goL/e). This 

follows from low order perturbation theory results and the fact that the 

most singular insertion in a graph is a bubble which produces a factor 

(go2/s)[l+O(s)] and does not change any convergence properties of integrals. 

We shall display only the most singular behavior of the arguments of all 

functions. 

Now we have (c.f. Eq.(68) of the second paper in Ref.6) 

80 = g f,&s) 

where f,(x) =1+0(x). This produces 

g=g+ 
Yap" 
y- f,&F) 

where f,(x) = fl(x)fO(x f12(x)). A similar expression is obtained for the 

renonnalised quartic coupling to lowest order in y. 

Y = Fk,) + Y. f$O)(go2/s) 

which becomes 

Y * y"E f,d/E)l + y. f,&s) 

where f3(X) = fi"(x fl*(w)): Here, 

y"G fl) = cp" + O&E) 

is the induced renormalised quartic coupling at yo=O. c is finite at 

E=O, as can easily be checked. 
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We now calculate the S functions. Calling B",(g) and B",(g) the unmodified 

e3 functions obtained by applying k$ 
6 

to 9" and y" and using the chain rule 

+ 27(go) = rap f,)l r+ 2ago)l we get 

57 % 

B"ym = B"g(g")t4c z3 + OG5/C)l. 

The S functions for the full theory defined by applying k$ 2 to g and 'y 

kN 
are 

Yap” 
B,(P,Y,) = B",(Z) + 7 f2(z2/6)~1+O(E)l, 

By(g,Yo) = iy(D f Yo(l -+) f,("/s) + Yo~f4&"), 

where f,(x) = -8 f,*(x)[df$') (y)/dyl evaluated at y = xfL2(x). In lowest 

order in 9" these results agree with those found in the one loop approximation. 

Consider for illustration the O(s2) terms in the critical exponents. 

In e3 theory, they result from a vanishing of F,(g) through O(E'); i.e., 

B",(g) = o(Es).6 This leads to z2 = EL 2 E-kg2 E . However this implies that 

F,(E) = O(E5). The second and third terms of b y ==e of O(yo) =*d O(Y~E), 

respectively. Cancellation of the two lowest order terms in s in S then 
Y 

implies 7 0 = O(s5). This is a full three powers in E above the result implied 

for the induced quartic coupling, and is necessary for our result. Having To 

only of O(E 2 ) would result in the second term of S being of O(E') or of 

0(&.2)j if h p 1 
g 

t a o e in E were replaced by some function * of a cutoff A. 

Since S, must vanish in O(E'), the fixed point coupling g would evidently 

depend on details of the quartic theory. In fact, there is no such problem. 
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. . The "singular" term in p 912 
g 

is actually of O(c ) and does not disturb the 

o3 results. Clearly, the same argument goes through in any finite order, 

proving universality in the e-expansion in the mixed theory. In lowest 

order, where f2,3,4 are constants, the solution is easily seen to be stable 

for small e. 

For the case of two CJ" interactions discussed earlier we find the 

fixed point is unchanged from the pure (03 theory in accordance with our 

remarks on the c-expansion to' lowest order. That is 

G1 = 0 ii2 = 0 (67 = C/12 

The eigenvalues calculated as before are 

x = El4 h2 = l- .03E L3 = 1+1.6s 

We see that these X are all positive, indicating the stability of the 

critical point. Furthermore, h is the smallest eigenvalue for small E 

and therefore the approach to scaling will be governed by the c+' coupling. 

Furthermore, in accordance with our discussion of the infrared dimension of 

operators, we see that they only differ from the free dimension by perturba- 

tion of order E, that is, the infrared dimension of 0(3,0,0) is -c/4 and 

the dimension of the two 0(4,0,0) operators are respectively -1+.036 and 

-1- 1.66. 

Conclusion 

We have argued that the infrared behavior of the Reggeon field theory is 

governed by the dimensionality of possible interactions, and that therefore 

the infrared behavior is totally insensitive to the details of the bare 
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theory with the exception of the complete omission of a (p3 interaction. 

We have explicitly shown this to be the case for a theory with cubic and 

quartic couplings calculated to one loop approximation in both two diman- 

sions and in the s-expansion. We have also shown that the fixed point 

depends only on the (p3 interaction, and remains unaffected to all orders 

in the s-expansion. At D=2 the situation is similar, the fixed point 

is totally determined by the [p3 interaction and can be calculated to all 

orders independent of the other interactions (assuming, of course, that 

there is a fixed point at all in higher orders). 

We have not discussed other possible fixed points of the (03 and (p" 
9 

interactions; they will be discussed elsewhere. 
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Figure and Table Captions 

. . 

Figure 1. The one particle irreducible, one loop approximation graphs 

that contribute to the Green's functions (a) rl 1, (b) rl 2, 
, , 

(C) rl 3> Cd) r2 2. > > 

Table I. Scaling behavior in 2 and 4 dimensions of operators O(m,n,p). 

Table II. Values ofthe integral &(a,b,c). 
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Operators D=2 D=4 

ov-,070) L1 L1 

0(2,1,0) Lo Lo 

0(2,0,1) LO Lo 

0(3,0,0) L+ Lo 

0(4,0,0) Lo L-l 

0(5,0,0) L-& L-2 

0(4,1,0) L-l L -2 

0(4,0,1) L-l L -2 

Table I 



a b c D ID' a,b,c) 

1 1 1 2 2/[5 QmfS+l//S - 1 = .8608 

1 1 413 2 4/3 tin3 = .8240 

1 413 1 2 413 1 2 3&n [hJE+lIJE-l+enJE+2/~-2 = 1 .7573 

2 1 1 2 
= 1 2 1 2 l/2/2 enJz+l/&-1 .6232 

a b ,cl 4 1 

Table II 



(al 

(b) 

(dl 


