252 Dupl
University of Rochester Report # UR 457

FÉRMILAB-PUB-73-150-E #252 B

University of Michigan Report # UMBC 73-20 Production of γ , Λ° , $K_{\rm S}^{\circ}$ and $\bar{\Lambda}^{\circ}$ in pp Collisions at 102 GeV/c.*

by

J. W. CHAPMAN, J. COOPER, N. GREEN, B. P. ROE, A. A. SEIDL and

J. C. VANDER VELDE

University of Michigan Ann Arbor, Michigan RECEIVED

NAL DIRECTOR'S OFFICE

and

C. M. BROMBERG, D. COHEN#, T. FERBEL+, P. SLATTERY (OCT. 2 4 1973

University of Rochester Rochester, New York

We have measured cross sections for γ , K_s° , Λ and $\bar{\Lambda}$ production at 102 GeV/c and find: $\sigma(\gamma) = 170 \pm 16$ mb., $\sigma(K_s^{\circ}) = 4.6 \pm 0.5$ mb., $\sigma(\Lambda) = 3.2 \pm 0.4$ mb., and $\sigma(\bar{\Lambda}) = 0.23 \pm 0.10$ mb.. Both $< n_{\pi^{\circ}} >$ and $< n_{K_s^{\circ}} >$ appear to rise linearly with n while the ratio $< n_{K_s^{\circ}} > / < n_{\pi^{\circ}} >$ is approximately independent of n. The integrated invariant cross section as a function of x as well as $d\sigma/dy$ and $d\sigma/dp_T^2$ are presented and compared with other data.

^{*}Research supported by the U. S. Atomic Energy Commission #Presently at Nevis Laboratories, Columbia University, Irvington, N. Y. +A. P. Sloan Fellow

Using a 30,000 picture exposure of the 30-inch liquid hydrogen bubble chamber at the National Accelerator Laboratory to 102 GeV/c protons we have measured the inclusive production of γ , K_s° , Λ and $\bar{\Lambda}$. In order to find all events with an associated V° $(K_{S}^{\circ}, \Lambda \text{ or } \bar{\Lambda})$ or γ , two independent scans of the film were made and all conflicts between the two scans were resolved. Within a restricted fiducial volume a total of 505 V°/y's were found to be associated with beam track interactions and 488 of these events were successfully measured. 1 These events were geometrically reconstructed and kinematically fitted using the TVGP-SQUAW program. A requirement that the mass of the $e^+e^$ pair be less than 20 MeV/c² was used to select γ candidates. The K°/Λ ($\bar{\Lambda}$) ambiguities were resolved through ionization information when possible or through a selection on the decay angle of the $\pi^{\bar{}}$ with respect to the line of flight of the $\text{K}_{\text{S}}^{\circ}$ in the $\text{K}_{\text{S}}^{\circ}$ rest frame. 2 In addition all neutral particles were restricted to be in the backward hemisphere in the pp c.m. system. After all acceptance criteria were imposed there remained 124 γ 's, 105 K_s° 's, 76 Λ 's, and 6 $\bar{\Lambda}$'s with average weights (inverse detection efficiencies) of 76.6, 2.39, 2.70 and 3.4 respectively.³

In Table I we list the inclusive cross sections and the average number of particles observed per inelastic pp interaction as a function of charged multiplicity for π° , $K_{\rm S}^{\circ}$ and Λ production. We have assumed that all γ 's come from π° decay and that $\sigma(\pi^{\circ}) = 1/2 \ \sigma(\gamma)$. These total inclusive cross sections are in general agreement with the trends reported in other high energy pp experiments 4 , and lend support to the observation that the Λ production cross section changes very slowly between 69 and

303 GeV/c.

In Figure 1 we plot the average number of neutrals observed per inelastic pp interaction as a function of charged The ratio $\sigma(K_s^{\circ})/\sigma(\pi^{\circ}) \sim 0.05$ is approximately independent of the associated charged multiplicity. The approximate linear rise of $\langle n_{\pi^{\circ}} \rangle$ is observed in all experiments at or above 69 GeV/c, in contrast to lower energy pp data 5 where $< n_{\pi^{\circ}} >$ is approximately constant as a function of $n_{\pi^{\circ}}$. The dashed curve in Figure 1b is given by $< n_{\pi^{\circ}} > = n_{\underline{}}$, a form to which high energy data has been compared. A better parameterization of the data at 102 GeV/c is $\langle n_{\pi} \rangle = (1.8 \pm 0.5)$ + (0.31 ± 0.17) n_ (solid curve). The rise of $< n_{\pi^{\circ}} >$ with n is not in agreement with the predictions of multiperipheral models in which single pions are independently emitted. 6 The total $\pi^{\rm o}$ production cross section at 102 GeV/c, $\sigma(\pi^{\rm o})$ = 85 ± 8 mb., is comparable to the total π^- production cross section, $\sigma(\pi^-)$ = 66.9 ± 1.3 mb..

In Figure 2 we plot the invariant cross section integrated over p_T^2 .

 $F(x) = \frac{2}{\pi\sqrt{s}} \int E \frac{d^2\sigma}{dxdp_T^2} dp_T^2$

for γ , K_s° and Λ production. The curve in Figure 2a is an integral over p_T^2 of an interpolation formula suggested by Neuhofer et al as a possible parameterization of γ production data at equivalent lab momenta of 500 GeV/c, 1100 GeV/c, and 1500 GeV/c. The small systematic difference observed in the applicable range of the formula (solid line) may indicate that the invariant cross section for γ production does not scale in this x region.

The invariant cross section for K_{S}^{o} production, displayed in

Figure 2b, shows an exponential fall off, typical of meson distributions, with a slope of 4.7 ± 2.0 (solid curve). This slope is compatible with that observed at 205 GeV/c and 303 GeV/c. The data on F(x) for Λ production is similar in all experiments above 69 GeV/c, however, when compared to the 24 GeV/c data of Muck et al⁸ (dashed curve) a rise is seen in the proton fragmentation region $(-x \ge 0.6)$.

In Figure 3 we plot do/dy as a function of y (c.m. rapidity) for the above three reactions. Both γ and K_s° production are characterized by a plateau whose half width is approximately one unit in y. Distributions in transverse momentum are shown in Figure 4 where we plot $d\sigma/dp_T^2$ as a function of p_T^2 . A typical rapid fall off is observed for all particle production with the steepness being a function of the mass of the produced particle.

In Table II we summarize the parameters of the p_T spectra for $\gamma,~K_S^{\circ},~\Lambda$ and π^- production at 102 GeV/c.

We thank the staff of the 30-inch bubble chamber and the physicists from the National Accelerator Neutrino Lab for their considerable aid in obtaining this exposure.

REFERENCES

- 1. All cross sections have been corrected for unmeasurable events.
- 2. All events ambiguous between K_S° and $\Lambda(\bar{\Lambda})$ interpretations were taken as $\Lambda(\bar{\Lambda})$ events if the cosine of the angle between the π^- and the direction of the K_S° , measured in the K_S° rest frame, was in the interval -0.94 \leq cos $\theta \leq$ -0.86 (0.88 \leq cos $\theta \leq$ 0.92). This selection introduces essentially no bias into the experimental spectra.
- 3. These weights do not include the additional factor of 2 required to correct for events produced in the forward hemisphere in the pp c.m. but they do include V° neutral branching values.
- 4. G. Charlton et al., Phys. Rev. Letters 29, 1759 (1972);
 G. Charlton et al., Phys. Rev. Letters 30 574 (1973);
 F. T. Dao et al., Phys. Rev. Letters 30 1151 (1973); France-Soviet Union Collaboration, "Photon Production in 69 GeV pp Interactions", paper submitted at Conference on New Results from Experiments on High Energy Particle Collisions, Nashville (1973); France-Soviet Union Collaboration, "Inclusive Neutral Kaon and Lambda Production in 69 GeV pp Interactions", paper submitted at Conference on New Results from Experiments in High Energy
- 5. H. Boggild et al., Nucl. Phys. <u>B27</u> 285 (1971).

Particle Collisions, Nashville (1973).

- 6. L. Caneschi and A. Schwimmer, Phys. Letters 33B 577 (1970).
- 7. G. Neuhoffer et al., Phys. Letters 38B 51 (1972).
- 8. H. J. Muck et al., "Inclusive Particle Production in pp Interactions at 12 and 24 GeV/c" (Parts I and II), Internal Report DESY-F1-72/1 (1972).
- 9. For the π^- data see C. M. Bromberg et al., "Study of π^+ and π^- Spectra and Correlations in pp Collisions at 102 GeV/c", to be published.

 $\label{eq:Table I}$ Cross Sections for pp \rightarrow Neutral +n Charged + Anything

n charged	$\sigma(\pi^{\circ})$ (mb.)	<n<sub>π° -</n<sub>	σ(K°) (mb ^S)	<n<sub>K°></n<sub>	σ(Λ) (mb.)_	<n<sub>\Lambda ></n<sub>
						, .
2	7.0 ± 2.6	1.5 ± 0.6	0.36 ± 0.13	0.07 ± 0.03	0.33 ± 0.13	0.07 ± 0.03
4	14.7 ± 3.8	1.9 ± 0.5	0.76 ± 0.18	0.10 ± 0.02	1.15 ± 0.22	0.15 ± 0.03
6	28.0 ± 5.3	3.7 ± 0.7	1.26 ± 0.23	0.17 ± 0.03	0.71 ± 0.17	0.09 ± 0.03
8	14.1 ± 3.8	2.4 ± 0.6	1.02 ± 0.21	0.17 ± 0.03	0.57 ± 0.17	0.09 ± 0.03
10	11.1 ± 3.3	2.9 ± 0.9	0.68 ± 0.18	0.18 ± 0.04	0.41 ± 0.14	0.11 ± 0.04
12	6.2 ± 2.5	3.7 ± 1.5	0.36 ± 0.13	0.21 ± 0.07	0.05 ± 0.05	0.03 ± 0.03
14	1.4 ± 1.2	2.1 ± 1.8	0.04 ± 0.04	0.06 ± 0.06	_	_
16	1.1 ± 1.1	5.0 ± 5.0	0.05 ± 0.05	0.24 ± 0.24	-	-
18	1.5 ± 1.5	27.3 ± 27.3	0.04 ± 0.04	0.77 ± 0.77	_	-
Total	85.0 ± 8.1	2.62 ± 0.25	4.58 ± 0.46	0.141 ± 0.014	3.22 ± 0.37	0.099 ± 0.012

-- 1

Table II

Transverse Momenta for Particles Produced in pp Collisions at 102 GeV/c. $\!\!\!^{\star}$

Particle	<p_t>(GeV/c)</p_t>	${p_{\mathrm{T}}^2} {(\text{GeV/c})^2}$	
i		i di	
γ .	0.175 ± 0.020	0.050 ± 0.009	
K° s	0.424 ± 0.043	0.246 ± 0.038	
Λ .	0.541 ± 0.060	0.364 ± 0.052	
π^{-}	0.339 ± 0.010	0.171 ± 0.010	
·	·		

^{*} Data are given for \mathbf{p}_{T} < 1.5 GeV/c.

- Figure 1 (a) Average number of K_S° (circles) and Λ (crosses) per inelastic pp interaction and (b) average number of π° per inelastic pp interaction as a function of charged multiplicity. The curves are described in the text.
- Figure 2 Invariant cross sections

$$F(x) = \frac{2}{\pi \sqrt{s}} \int E \frac{d^2 \sigma}{dx dp_T^2} dp_T^2$$

as a function of x for (a) pp $\rightarrow \gamma x$, (b) pp $\rightarrow K_S^\circ x$, and (c) pp $\rightarrow \Lambda x$. E, p_L, and p_T are the energy, the longitudinal momentum, and transverse momentum of the particle in the pp center of mass system and $x = 2p_L/\sqrt{s}$. The curves are described in the text.

- Figure 3 The cross section do/dy versus y = 1/2 In $[(E + p_L)/(E p_L)]$ for (a) pp $\rightarrow \gamma x$, (b) pp $\rightarrow K_S^o x$, and (c) pp $\rightarrow \Lambda x$.
- Figure 4 The cross section $d\sigma/dp_T^2$ versus p_T^2 for (a) pp $\to \gamma x$, (b) pp $\to K_s^\circ x$, and (c) pp $\to \Lambda x$. The p_T^2 distributions have been normalized to account for events from both the forward and the backward hemispheres in the pp c.m. system.

Figure 1

Figure 2

Figure 3

Figure 4