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ABSTRACT 

The problem of quantum collisions involving several-particle 

systems is reviewed within the framework of multiple scattering theory. 

The basic apparatus of collision theory for nonrelativistic potential 

problems is first developed, and the Born and eikonal series are intro- 

duced. A general analysis is then given of multiple scattering expansions 

for several-particle problems. We discuss in particular the Born 

developments, the Faddeev-Watson expansions, the Glauber method 

and various multiple scattering approaches to the determination of the 

optical potential. Applications to atomic collision problems and to high- 

energy hadron-deuteron scattering are discussed at length. 
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I. INTRODUCTION 

Several particle dynamics is a problem of long-standing interest 

in physics. While the non-relativistic motion of two particles interact- 

ing through a given force is well understood and powerful methods have 

been developed to deal with situations where a very large number of 

particles are present, systems containing a few particles have remained 

difficult to analyze. This is not surprising since in general these 

systems exhibit all the complexity of the many-body problem. We shall 

examine in this review some quantum systems of this type from the 

point of view of collision theory. Thus bound state (“spectroscopic”) 

properties will only be discussed insofar as they influence scattering 

phenomena. 

The theoretical methods which we shall describe to analyze these 

problems all share a common feature: they may be considered as 

multiple scattering expansions. Such methods have been very useful in 

the analysis of atomic, nuclear and “elementary particle” collision 

processes. It is the purpose of this article to present this approach 

from a general point of view and to illustrate it on a few selected 

examples. 

In order to introduce some of the concepts involved in multiple 

scattering expansions within a simple framework, we begin in Section II 

by a study of the Born and eikonal series in nonrelativistic potential 

scattering. 
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Section III is devoted to a general analysis of multiple scattering 

series for several particle problems. We first discuss the Born and 

distorted wave Born developments, then the Faddeev-Watson expansions 

and finally the Glauber “many-body” extensions of the eikonal method. 

We also give a brief survey of multiple scattering approaches to the 

determination of the optical potential. 

Applications of multiple scattering expansions to atomic collision 

problems are the subject of Section IV. We first analyze electron- 

hydrogen collisions, a classic three-body problem. We then discuss 

several electron-helium scattering processes at intermediate and high 

(atomic) energies, for which absolute measurements of differential 

cross sections recently have become available. 

Finally, in Section V we consider high-energy hadron-deuteron 

collisions. These processes lie at the borderline between elementary 

particle physics and nuclear physics, and have been a locus of fruitful 

interaction between the two fields. After recalling a few general prop- 

erties of hadron-nucleus scattering at high energies, we review the 

applications of Glauber’s high-energy diffraction theory to haclron- 

deuteron collisions. Particular emphasis is given to elastic scattering, 

for which a comprehensive comparison of theoretical and experimental 

work is made. We also discuss hadron-deuteron scattering from the 

point of view of Regge theory. We study the connection between 

diffraction scattering and Regge poles and then investigate the Regge 
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cut contained in the Glauber eclipse term. \re conclude with a brief 

survey of phenomenological applications. 

II. POTENTIAL SCATTERING 

1. Basic Formulae 

Let us consider the non-relativistic scattering of a spinless particle 

of mass m by a local potential V(r) of a range a. We denote by ki and kf 

the initial and final wave vectors of the particle while Q is the scattering 

angle between ki and k 
f 

. It is also convenient to introduce the “reduced 

potential” U(E) ~= 2m V(r)/h2. The energy of the particle E = h2k2/ Zm, 

where k = / ki ) = / kf 1 is its wave number. The Hamiltonian describing 

the system is therefore 

(2.1) 

(+) We shall call Gbi the stationary scattering eigenstate of H which 

corresponds to an incident plane wave of momentum hki and exhibits 

the behavior of an outgoing spherical wave. This wave function satisfies 

the Lippmann-Schwinger equation 

,(+) k. Ir_) = Qk,(d + J- 
GS+)(r, r_’ )UQ ,~J(;!(F ’ ) dr_’ 

-1 -1 -1 
(2.2) 

where the incident plane wave is given by 

Qk ,(r) = ‘E I $> = (2ir) 
-3/Z 

exp(ik i’ r 1. 
-1 

(2.3) 

The “normalization” convention which we adopt is such that for plane 

wave states g> and ) p’> the orthogonality relation reads - 
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<g’i g> = “‘g_ - g’). (2.4) 

The Green’s function G:)(c) x ‘) \ vhich ap~pears in the Lippmann- 

Schwinger equation (2. 2) is given by 

G(+) o (I-,r_ ‘) = -(21,)-3 
iK. (r. -1: ’ ) 

e - 
K2 -k2 -i E 

dK (2.5) 

where the limiting process E - o 
+ 1s always implied. Explicitly, we 

have 

e 

ik ! E -IJ’ 1 

/E-r_‘l 
(2.6) 

so that the wave function $ F.) behaves asymptotically as 
-1 

(+’ (I. ) 
“ki - r-m 

(ZV) 
-312 

iki*r ikr 
- - e +fe 

r I 
(2.7) 

and the elastic scattering amplitude f is given by 

f = - 2112 <m ‘if I ” I *[.‘>. (2.8) 

Here 

rnk (1:) = <r_ 1 kf> = (Zir) 
-312 

exp (ikf’ ~1 (2.9) 
-f 

is a plane wave corresponding to the final wave vector k 
-f’ 

and 

“normalized” according to the convention (2.4). If the potential is 

central, we recall that the scattering amplitude (2.8) may also be 

decomposed in partial waves as 

f(k,0) = $ 5 (ZB+~) [S,k, - i] Pe(cos 0) 
PO 

(2. IO) 

where the coefficients Se(k) are the S-matrix elements in the angular 

momentum representation; they are given in terms of the phase shifts 



-5- NAL-THY-99 

S1(k) = exp ki61(k)]. (2.11) 

2. The Born Series 

If we elect to solve the Lippmann-Schwinger equation (2. 1) by 

perturbation theory, starting from the “unperturbed” incident plane 

wave (Pk,(r_), we generate the sequence of functions 
-1 

‘IJo = Qkik’. 

$,k,) = ak,(r’ + s ‘$+)(Lc* ’ WI’)+~(~‘) dx’ 
-1 

(2.12) 

iiink) = @kiW + J Go (f)(T,r,)U(r_,‘~n_l(T?dy’ 

Let us assume for the moment that this sequence converges 

towards $K’. We may then write the Born series for the scattering 
-1 

wave function, namely 

where q. = + 
= @$ 

and 
0 

Vnn(T) = 
J” 

K,k.r_‘!4~~kl dg’, n 2 1 

with 

Kl(r_, r_ ’ ) = Gb” (r_, r_ ’ ) “(c ’ ) 

(2.13) 

(2.14) 

(2.15) 

and 
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Kn(r_,c’) = 
s 

Kl(r_,r”!Kn-l(r”,r_‘)dy”,n 2 2. (2.16) 

It is apparent from Eqs. (2. 13) - (2. 16), that the Born series is a 

perturbation series in powers of the interaction potential. Substituting 

the series (2. 13) into the integral representation (2. 8), we obtain the 

corresponding Born series for the scattering amplitude, namely 

(2. 17 1 

where 

fgn = -2ir2 ‘5 I UG(+)u... 
-f o 

G(+)U i a o ‘-k_ .> (2. 18 1 
1 

is an expression in which the interaction appears n times and the free 

Green’s function (n-l) times. It is worth pointing out that the relation 

(2. 18) gives the term of order n of the Born series in general circum- 

stances, for example when the interaction is complex and even non-local. 

It is also convenient to define the jth order Born approximation to the 

scattering amplitude as 

(2.19) 

In order to gain further insight into the physical content of I,,, let 

us analyze Eq. (2.18) in momentum space. Defining (for a local 

potential) 

<g’iUlg> = <G’ g, 1 U! mg> = (2~)~~ 
/ 

ei(?!-g’) “U(r_)dr_ (2. 20) 
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and using the integral representation (2. 5) of G (+) 
0’ 

we secure the relations 

FBI =f Bl 
= -2*2 <kfIUlki> 

and 

FBn = -2rr2 
J- dkl dk2 . . dknml ‘kf i u 1 knml> 

1 

k2-kfei+ie 

.<k,Jqk,-2> ..’ <k21Ulk,> 2 ; 
k -k;+ie 

‘b, 1 u I ki’. 

(2.21) 

(2.22) 

The Green’s function therefore appears as a propagator, while the 

quantities k-if k2, -. knml are “intermediate momenta”. We can thus 

visualize the Born series by picturing the scattering amplitude as 

f= r/y+ kL q+ .!4-$yy.,c2.23, 

v V 
= f 

81 + L + i,, c . . . 

namely as a multiple scattering series in which the projectile interacts 

repeatedly with the potential V and propagates freely between two such 

interactions. On the basis of this multiple scattering interpretation 

we expect that the Born series will converge if the incident particle is 

sufficiently fast so that it cannot interact many times with the potential 

and (or) if the potential is weak enough. Detailed studies of the Born 

series (Jest and Pais, 1951; Kohn, 1954; Zemach and Klein, 1958; 
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Aaron and Klein, 1960; Davies, 1960; Manning, 1965) indeed confirm 

these intuitive considerations. In particular 

i) For a central potential V(r) less singular than r 
-2 

at the origin 

and decreasing faster than r 
-3 

asr - m, the Born series always 

converges at sufficiently high energies. 

ii) For a central potential V(r) the Born series converges for all 

energies if the potential - I V(r) / cannot support any bound state. 

Two remarks should be made at this point. Firstly, these 

convergence conditions for the Born series are sufficient 

conditions which may be unnecessarily stringent. Secondly, the results 

quoted above only apply to non-relativistic potential scattering; they 

may not necessarily be valid for many-body problems and (or) relativis- 

tic collisions. 

3. The Eikonal Approsimat ion and Eikonal Multiple Scattering Series, 

Let us return to the Lippmann-Schwinger equation (2. 3). We assume 

that 

and that 

ka >> 1 (2. 24) 

v. _ u. 

E k2 
<I (2. 25) 

where V 
0 

is a typical strength of the interaction V(c) and Uo = 2m Vo/F2. 

Since the first, “high wave number” condition (2. 241 states that the 
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reduced de Broglie wave length k = k 
-1 

of the particle is small with 

respect to the range of the potential, we expect semi-classical methods 

to be useful in this case. The second condition (2.25) will be referred 

to as the “high-energy” condition. If these two conditions are satisfied, 

the eikonal approximation (Moliere, 1947; Glauber, 1953, 1955, 1959; 

Watson, 1953; Schwinger, 1954; Malenka, 1954; Schiff, 1956; Saxon and 

Schiff, 1957) may be used to obtain for the scattering wave function 

,(+I 
ki 

the approximate expression 

ILE(E) = (211) -‘I2 enp[Ik;‘1 - &-I, U(t&)du,] (2.26 

where we have adopted a cylindrical coordinate system such that r_ = 

b_ + zki, so that the integral is evaluated along a straight line parallel 

to the incident momentum Fiji. In terms of the potential V(c), we have 

C 
i$, 

z 

J 
V(b, z ‘)dz ’ 1 (2. 27 

1 -cc 

where pi = hlq/m is the incident velocity. We shall not discuss in detail 

the numerous derivations of the result (2. 26). We simply mention that 

it may be obtained from stationary-phase arguments (Schiff, 1956) 

or from the fact that the incoming plane wave is modulated by a function 

which varies slowly over the de Broglie wavelength of the incident 

particle (Glauber, 1959). Another interesting way of deriving the 

eikonal wave function (2. 26) is to examine the free propagator G (f) 
0 
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appearing in the Lippmann-Schwinger equation (2. 2) (Malenka, 1954; 

Schiff, 1956; Byron, Joachain and Mund, 1973). Using its momentum 

space representation (2. 5) and introducing the new variable -Q = K-$, one 

has 
G(+)(r r ,) = -(2n)-3eiki. (Ci C ‘1 

eKa’ (c-r_ ‘) 

0 -> - 
/ 2ki. Q + Q2-i E 

dQ . (2.28) 

Returning to the Lippmann-Schwinger equation (2. 2) and provided the two 

conditions (2. 24) and (2. 25) are satisfied, it is legitimate to “linearize” 

the denominator of the integrand (i.e. , neglect the Q2 term) and write 

G(+) -3 eiki *(x-E’) 

/ 

ei&. (c-c’ ) 
o (E.r_ ‘) 2 -(2lr) 

Z$.Q-ic dQ (2.29) 

The integral on the right of Eq. (2. 29 1 is then readily performed, with 

the result 

(2.30) 

where E = b_ + zlii, r_ ’ = b’ + z’ Tci and @is the step function such that 

O(x) ={ 
1 x>o 
0 xc0 (2. 31) 

The linearized propagator (2. 29) - (2. 30), which clearly exhibits 

forward propagation between successive interactions with the potential, 

leads directly to the eikonal wave function (2. 26). Incidentally, let us 

remark that the importance of the four-dimensional, relativistic version 

of the linearized propagator in treating field theoretical problems was 

recognized by Schwinger (1954) and used recently by several authors 
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(Chang and Ma, 1969; Abarbanel and Itzykson, 1969; Levy and Sucher, 

1970, Englert et al., 1969) to sum the series of Feynman amplitudes 

corresponding to large classes of ladder diagrams. 

Vith the eikonal wave function given by Eq. (2. 26), we may now 

return to the integral representation (2.8) and write the eikonal scatter- 

ing amplitude as 

1 
f,(b) = -4, 

s 
e 

ia. 1: 
c’(c) exp [- k-1 UCb_, z’Idz’] (2.32) 

where 

n = k-i - k-f 

is the wave vector transfer of length fi = 2k sin( e/ 2). 

(2. 33) 

In obtaining the eikonal wave function (2. 26), we pointed out that the 

integration in its phase should be carried out along a straight line 

parallel to ki. In fact, since the actual phase of the corresponding 

semi-classical scattering wave function is evaluated along a curved 

trajectory, it is reasonable to expect that an improvement on Eq. (2. 32) 

may be achieved by performing the z-integration in the phase along a 

direction parallel to the bisector of the scattering angle (i.e. perpendic- 

ular to 4 ). This suggestion, first made by Glauber (1959) leads 

directly to the eikonal scattering amplitude 

fE +{ei”b-]eix@-’ -+‘b (2. 34) 

where we work in a cylindrical coordinate system such that 

(2.35) 
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and ;i is perpendicular to &. The eikonal phase shift function x (b) 

appearing in Eq. (2. 34) is given in terms of the interaction by the 

simple, linear relationship 

s 

f-3 
Y.(b) = - & U(b_, z)dz. (2. 36) 

-m 

Defining the quantity 

T(b) = 1 - exp [ix(b)1 

we may also rewrite Eq. (2. 34) as 

ik 
fE = % s 

e1 ‘* ’ F(b_)d2b_ . 

(2.37) 

(2. 38) 

For potentials which possess azimuthal symmetry, Eq. (2. 34) 

simplifies to m 

fE =: / Jo(ab) {eix(b’-l~bdb 

0 

(2.39) 

where x(b) is still given by Eq. (2. 36). We may also look at this 

relation from a somewhatdifferent point of view. Indeed, the right- 

hand side of Eq. (2. 39) provides the Fourier-Bessel representation of 

the exact scattering amplitude, provided that the phase x(b) is redefined 

accordingly. This representation is exact for all energies and angles 

(Adachi and Kotani, 1965.1966; Predazzi, 1966; Chadan, 1968). For 

high-energy, small angle scattering, the phase x(b) may be related 

to the phase shifts bp appearing in the partial wave series (2.10). 

The result is 

x(b) = 26 
e 

(2.40) 
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where b and e are related by P = kb. 

Two important remarks should be made about the eikonal 

approximation. Firstly, it is equally valid for real and complex 

potentials. In the latter case the phase shift function x (b_) becomes 

complex [see Eq. (2. 36)l . Secondly, within its range of validity, 

the eikonal amplitude satisfies the optical theorem (Glauber, 1959), 

in contradistinction with the first Born approximation. 

By analogy with the Born series, we may define an eikonal multiple 

scattering series by expanding the quantity T(b_ ) [ see Eq. (2.37)1 in 

powers of the interaction potential, Thus we write 

where 

In particular, for potentials which possess azimuthal symmetry, Eq. 

(2.42) reduces to 

(2.42) 

s 

m 

fEn = - ik $ 
0 

JoCAb) [X (b)] n bdb 

We note that in the case of a real potential the objects fEn given by 

Eq. (2.43) are alternatively real and imaginary. As in the case of the 

Born series [ see Eq.(?.!.19)l we also introduce the quantities 

j 

We now investigate the relationship between the Born and eikonal 
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series when ka >> 1. First of all, it is a simple matter to show that 

f 
El = fBl (2.45) 

for all momentum transfers (Glauber, 1959). We emphasize that this 

result only obtains for all angles when the z-axis used in connection 

with Eq. (2. 32) is chosen along a direction perpendicular to Q. If, for 

example, the z-axis is chosen along &CC, then Eq. (2.41) only holds for 

small scattering angles. In what follows we shall consistently choose 

Z perpendicular to A. 

Remarkable relationships between the higher terms of the eikonal 

and Born series have also been noticed recently (Moore, 1970; Byron and 

Joachain, 1973a). We shall concentrate on real, central potentials and follow the 

treatment of Byron, Joachain and Mund (1973) who have made a detailed 

analysis of this problem for a variety of interaction potentials. First of 

all;’ we note that Re f 
E2 

= 0 while m generalRe fB2 + 0; hence there is 

no analogue of Eq. (2.45) for Re f 
E2 

and Re f 
B2’ 

However, the relation- 

ship 

lim Im FB2(k, A) 

ka - m Im FE2(k, A) = ’ (2.46) 

holds for all momentum transfers when the interaction has the form of 

a superposition of Yukawa potentials, namely 
cc 

s 

-ai- 
U(r) = U. cy >. p(a) %- dru. r 

0 

(2.47) 

For other interactions such as a gaussian potential or a “polarization” 
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2 -2 
potential of the form U(r) = Uo (r2 i d ) the relation (2.46) only 

holds for small scattering angles. 

The analytical evaluation of the third and higher order terms of 

the Born and eikonal series is extremely difficult, but detailrd studies 

of such terms suggest that the relations 

lim 
ka +m 

Re &n 

Re i,n = 
1 (n odd) (2.48a) 

and 

lim Im fBn 
ka + m 

I?n fEn 
= 1 (neven) (2.48b) 

hold for all n and all momentum transfers for potentials of the form 

(2.47). 

The relationships (2.48) have some important consequences. Let 

us first consider the weak coupling situation such that the condition 

1 V. j a I U. 1 a 

hvi = 2k 
<SC 1 (2.49) 

is added to the inequalities (2. 24) and (2. 25). In this case the Born 

series converges rapidly and the relations (2.48), together with the 

optical theorem imply that the eikonal amplitude fE gives a consistantly 

poorer approximation to the exact amplitude than does the second Born 

approximation fB2 (although the eikonal results are nevertheless 

fairly accurate at all angles). This is due to the fact that for ka >> 1 
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the exact amplitude may be written for Yukawa-like potentials as 

f(k, A) = fBl(A) + 

‘B2 ‘B3 

while the eikonal amplitude has the structure 

fE(k, A) = fB1(A) + iy + y + . . . 

-- 
(2.51) 

Therefore neither f -2 
B2 

nor f 
E2 

are correct to order k . However, 

2 since the coefficient A is proportional to U while C is proportional 
0 

3 to u. , It 1s clear that for small values of ! U. 1 the second Born 

amplitude should be more precise than the eikonal amplitude. 

As the coupling increases we expect from the foregoing discussion 

that the eikonal method should improve steadily. That this is indeed 

the case may be seen from Fig. 1, which displays the real part of the 

exact, eikonal and second Born amplitudes for a superposition of two 

Yukawa potentials of the form 

U(r) =U e 
( 

-r/a -2r/a 
0 - pe ) lr (2. 52) 

with U 
0 

= -20, a = 1, p = 1.125 and ka = 5. The excellent 

agreement between the eikonal and exact results, even at large angles, 

is particularly striking. Similar conclusions may be drawn from Fig. 2, 
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where the corresponding imaginary parts are shown. 

Let us now comment briefly on the strong coupling situation, for 

which ! Vo’ /E>l. In th‘ 1s case the Born series is useless. On the 

other hand, and despite the fact that the condition (2. 25) is violated, 

the eikonal approximation is still quite accurate at small angles for 

a variety of interaction potentials. This is illustrated in Fig. 3 and 4 

where the real and imaginary parts of the exact and eikonal amplitudes 

are displayed for an interaction of the type (2. 52) with U. = -20, a = 1, 

p = 1.125 and ka=2. These results, together with the large angle agree- 

ment found above in the intermediate coupling situation, strongly suggest 

that the traditional criteria for the validity of the eikonal approximation 

(Glauber 1959) are sufficient conditions which may be too restrictive. 

We shall not attempt to discuss here various other forms of the 

eikonal approximation (Saxon and Schiff, 1957; Blankenbecler and 

Goldberger, 1962; Feshbach, 1967; Schiff, 1968; Wilets and Wallace, 

1968; L&y and Sucher, 1969; Abarbanel and Itzykson, 1969; Moore, 

1970; Wallace, 1971, 1973; Baker, 1972). We note, however, that the 

Glauber form which we have discussed above is probably the simplest 

eikonal approximation, a feature which is very important when one wants 

to generalize the method to many-body collisions. 

Finally, we note that the derivation of the eikonal scattering 

amplitude (2. 34) may be generalized to relativistic collisions and does 

not require the existence of a potential to describe the collision process, 
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although an optical potential can always be found to describe the 

scattering in the eikonal approximation (Glauber, 1959, Omn$s, 1965, 

see also Section 111.4). Moreover, for high-energy, small angle scattering, 

the basic formula (2. 34) is valid in the laboratory system as well as in the 

center of mass system (Franc0 and Glauber, 1966). The only modifi- 

cations are that the center of mass wave vectors ki and kf must now be 

replaced by the corresponding laboratory quantities k_ and k’, while 

& = $-k-f is replaced by ‘_1 = k-k_‘. Of course the magnitude of k’ is 

now smaller than that of k because of recoil effects, but these effects 

are small for scattering near the forward direction and can be minimized 

by interpreting thz quantity (-q2) as the Mandelstam variable t, namely 

the square of the four-momentum transfer of the collision. 

III. SEVERAL PARTICLE PROBLEMS 

1. The Born Series and the Distorted-Wave Born Series 

Let us consider a general quantum collision process a+b for 

which we denote the S-matrix element by <b 1 S 1 a>. The theoretical 

analysis is conveniently carried out in terms of the Fmatrix elements 

Such that (see for example Goldberger and Watson, 1964) 

<b/S1 a> = b ba - 2ri 6(Eb-E,) <blfla> . (3. I) 

It will sometimes prove convenient to use a somewhat more explicit 

notation and write a E (i, U) and b 2 (f, p) where i and f are “arrangement 
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channel” indices and (Y and p denote respectively the state of the system 

in the initial and final channel. Thus in the initial channel the total 

Hamiltonian of the system may be decomposed as 

H = Hi + V. 
1 (3.2) 

where Vi is the interaction between the two colliding particles and the 

channel Hamiltonian Hi d6scribes these particles when they are far 

apart and do not interact. We then have 

Hi @a = Ea @a (3.3) 

where Qa is the corresponding free state vector. Similarly, in the 

final channel, 

with 

H=Hf+V 
f (3.4) 

Hf ‘b 
= Eb ab. (3.5) 

We also introduce the Green’s operators 

G(*)(E) = (E - H + ic)-‘, (3.6~~) 

G!*)(E) = (E - H. k iE)-‘, 1 1 
(3.6b) 

and 

C!*)(E) = (E - 
f 

H 
f 

It ic)-‘. (3.6~) 

More generally, if c is any arrangement channel index such that 

H=Hc+V 
C’ 

we have 

G(f) 
c 

= (E - Hc + iE)-’ (3.6d) 

Direct collisions are characterized by the fact that the channel 

Hamiltonians are the same in the initial and final states. Writing 
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Hi = Hf = Hd and Vi = Vf = Vd in this case, we also define 

.(*I 
d 

= (E - Hd *ie)-‘. (3. be) 

Finally, we shall denote by Ho the kinetic energy operator of the entire 

system (i. e., the Hamiltonian H from which the total interaction V has 

been removed 1. The corresponding free Green’s operator is then 

G(f) 
0 = (E - HO * ie)-I. (3.6f) 

Let us now examine the “on the energy shell” transition matrix 

elements <bm a> appearing in Eq. (3. 1). It is convenient to factor 

out a momentum-conserving delta function and to introduce the reduced 

T-matrix elements Tba suchthat <bm$> = 6(E)b-Pa) Tbs. Then 

(Goldberger and Watson, 1964) 

T ba = <cJb / Vf / f)> (3.7a) 

Tba 
= <wp 1 Vi / Qa> (3.7b) 

where the state vectors Q? (+) 
a 

and Q:-’ are such that 

,(+I 
a 

= aa + G(+)Vi Qa, (3.8a 

C-J 
*b 

= Qb + G(-)Vf ab 

and satisfy the Lippmann-Schwinger equations 

*(+) 
a 

= Qj + G!+)V. .(+I (3.9a) 

,(-) 
b 

= @; + Gj-)*: *i-J: (3.9b) 

We note that for any arrangement channel c the Green’s operators 

.(*:) satisfy the relations 
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(3. IOa) 

or 

G(*) _ G;) + .(*I vc G;) (3. 10b) 

which are the Lippmann-Schwinger equations for the full Green’s operator. 

We also define the transition operators 

‘fi 
= Vf + Vi .(+) Vi’ (3. Iia) 

L 
‘fi 

= Vi + Vf G(+) Vi, (3. Ilb) 

and 

T = V + V G(+) V. (3. Ilc) 

These operators satisfy the Lippmann-Schwinger equations 

‘fi 
= V 

f 
+ U c”’ V 

fl i 1’ (3.12.a) 

‘f i 
= Vi + Vf G;+) qi , (3. 12b) 

and 

T =V+VGbf)T (3.12c) 

=V+TGb+)V. (3.12d) 

On the energy shell Ea = Eb we have <Qb 1 Vi 1 Ga> = <icb 1 Vf 1 aa> and 

therefore, from Eq. (3. 7) 

T 
ba 

= <rnbiUfi j Qa> = <a ‘E 
b’ 

ha>. fi (3.131 

A variety of Born series expansions for the transition matrix element 

Tba 
may be obtained by solving the various Lippmann-Schwinger equations 

written above by successive iterations. For example, we may first solve 

for the full Green’s operator G (*! from Eqs. (3. IO) and write 



-22- X;BL-THY-99 

G(*t) __ ,(*) + G(*) (+) 
c c vc Gc + Gr) Vc 0;) Vc G;‘+. . . 13.14) 

Then, upon substitution in Eqs. (3. 8) and then in Eqs. (3. 7 1 we find 

the Born development 

T 
ba = 

< LP~ [ Vi (or V,) + Vf G;’ Vi+VfG;)VcG;)Vi+... IQa>. (3.15) 

The first Born approximation consists in retaining only the first term of 

this expansion, namely 

T;; =<QbjVij@a> =<@bjVfI@a>. (3. 16) 

For direct collisions it is natural to choose the propagator G (+) 
so 

c 
(+) that it coincides with the Green’s operators Gd defined by Eq. (3. be). 

The corresponding Born series then reads 

T (+I 
ba = 

<Q~~V~+V~G:+‘V~+V~G~ 
‘d Gd 

(+)v, +... laa>. (3.17) 

Little is known about the mathematical properties of the Born series 

(3.15). For direct collisions the conditions of convergence of the series 

(3. 17) are probably similar to those discussed in SectionII. 2 for potential 

scattering. For example, the Born series (3. 17) may well be convergent for 

non-relativistic direct processes at sufficiently high colliding energies;~ 

this will be illustrated in Section IV. 1. On the other hand, when rearrange- 
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ment collisions occur some particles are transferred between the colliding 

systems during the reaction, so that Vi f Vf. The question of the conver- 

gence of the Born series (3.15) in this case has been investigated by 

several authors (see for example Aaron, Amado and Lee, 1961; Weinberg, 

1963a, b; 1964a, b, c; Bransden, 1965, 1969; Rubin, Sugar and Tiktopoulos, 

1966, 1967a, b; Dettman and Leibfried, 1968, 1969). At low energies the 

series diverges, and even at high energies its convergence is doubtful. 

Recently, however, Dettman. and Laibfried (1969) have pointed out that 

for rearrangement processes occuring in three-body systems, and for a 

wide class of potentials, the energy variation of the T-matrix element is 

given correctly at high energies by the first two terms of the Born series. 

It is interesting to note in this context that variational methods of the 

Schwinger type (Lippmann and Schwinger, 1950; Lippmann, 1956; 

Joachain, 1965) also involve in lowest order the first and second order 

terms of the Born series. Whether the Born series itself converges or 

is perhaps semi-convergent (asymptotic) is still an open question. 

Distorted wave Born series are obtained by ao simple application 

of the two-potential scattering formalism (Gell-Mann and Goldberger, 

1953 ). Let us assume that the interaction potentials Vi and Vf may be 

split as 

Vi = Ui + w. 
1 (3.18a) 
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Vf = Uf + vJf (3. 18b) 

and more generally, in any arrangement channel c, 

v =uc =wc. (3. 18~) 
C 

We define the new Hamiltonians EC = Hc + UC, together with the Green’s 

operators c:’ = (E - EC + ie I-‘, and assume that the distorted waves 

x(+’ = Qa + i;;i(f’Ui ma (3. i9a) a 

(3. 19b) 
(-1 = 

‘b 
rnb + q-1 Uf rnb 

are known. The T-matrix elements (3. 7 1 are then given by (Gell-Mann 

and Goldberger, 1953; Gerjuoy, 1958) 

Tba = <x:;‘i (Vi - Wf’ 1 aa> + <x ;-‘I Wf / q> (3. 20a) 

or 

Tba (3. 20b’ 

with 
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*(i) 
a 

= xy’ + G(+) Wi XY’ (3. Zia) 

and 

C-1 
Qb (3. 21b) 

The two-potential formulae (3. 20) simplify when the distorting 

potentials Ui and Uf cannot induce the transition a + b considered. 

This may happen for example if the interactions Ui and Uf only generate 

elastic scattering and the transition a -b is an inelastic process or a 

rearrangement collision. In this case the first term on the right of 

Eqs (3. 20) vanishes, so that 

T 
ba: 

(3.22a) 

T 
ba 

= <*p j wi j x y (3. 22b) 

If we wish to treat exactly the interactions Ui and Uf but elect to use 

perturbation theory ro handle the interactions Wi and Wf we generate the 

distorted wave Born series. For example, using the fact that 

.(*I = 2”” + $*) w $!” + p:) w E (-I) w c ‘*i. (3. 23) 
C c c c c c c cc . . 

we see that Eqs. (3. 22) yield, with the help of (3. 211, 

T 
ba 

= ix k-’ j Wi(OI- W,) + Wf E;) Wi + Wf z;’ WC EY’ Wi + . . 1 x :I>. 

(3. 24) 

The first term of this expansion gives the distorted wave Born approxi- 

mation (DWBA), namely 
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TDW3A 
ba 

= <$‘I > (+I> 
b !“f’Vfxa (3. 25) 

With a suitable choice of distorting potentials Ui and Uf this formula 

may improve significantly over the first Born approximation (3. 16), at 

least for direct collisions. For rearrangement processes the situation 

is considerably more involved. As for the Born series (3.15), the 

convergence of the distorted wave Born series (3. 24) is again doubtful 

in this case (Greider and Dodd, 1966; Dodd and Greider, 1966). 

A simple but physically reasonable interpretation may be given of 

Eq. (3. 25). Let us imagine for example that the transition a -b is a 

process of the type A + B - q + D (see Fig. 5). We see that the two 

particles A and B first feel the initial state interaction Vi (embodied in 

x (+)), then interact once through Wi (or Wf) and finally experience the 
a 

final state interaction Uf while emerging from the collision. Since Vi 

and Uf are treated exactly we note that the particles are allowed to 

interact repeatedly through the distorting potentials. 

The DWBA formula (3. 25) has been used extensively in atomic and 

nuclear physics (see for example Mott and Massey, 1965; Tobocman, 

1961). It also provided an intuitive starting point for the various high- 

e.nergy absorption models (Sopkovich, 1962; Gottfried and Jackson, 1964; 

Durand and Chiu, 1964, 1965; Jackson, 1965). We shall discuss in 

Sections IV and V a few applications of the eikonal DWBA approximations, 

(+) in which the distorted waves x, and XL-’ appearing in Eq. (3. 25) are 
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obtained with the help of the eikonal approximation. 

2. The Faddeev-Lovelace-Watson Expansion 

In this paragraph we shall study a non-relativistic three-hod?; system 

such that the particles 1, 2, 3 interact by means of two-body interactions. 

We shall denote by VIEV 23 the potential acting between the particles 2 

and 3, while V2SV13 acts between 1 and 3 and V3EV 12 between 1 and 2. 

The total Hamiltonian of the system is then 

H=HO+V (3.26) 

where HO is the kinetic energy operator and 

5 v = i=* vi (3.27) 

We shall also need the Hamiltonian describing two particles interacting 

while the third one is free, namely 

Hi = HO + Vi (3.28) 

and we define the operators 

Vi = v - vi (3.29) 

corresponding to the interactions in which particle i participates. (For 

example: VI = V-V’ = V 
12 

+ Vi3. ) The Green’s operators corresponding 

to H, Hi and HO are defined respectively by Eqs. (3. 6a), (3. 6b) and (3. bf). 

The two-body- T-matrices are given by 

T, = Vi + Vi G(.+) vi 
1 

= Vi + Ti ";o" Vi 

(3.30a) 

(3.30b) 
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We also note that 

= Vi + vi Gb” Ti. (3.3OC) 

(3.31a) 

(3. 31b) 

(3.31c) 

and 
G!+’ Vi = Gb” Ti. (3. 31d) 

1 

We shall describe the various ~possible modes of fragmentation of the 

three-body system by indices i, f which take on the values 0, 1, 2, 3. 

Thus i = 0 corresponds to three free particles in the initial state, i = 1 

means that initially the partiSle 1 is-free and the pair (2, 3) is bound, etc. 

A collision process a -b is then described by the reduced transition 

matrix T ba, given by Eqs. (3.7 ‘I 

write (on the energy shell) 

T ba ’ Tfp, iLy = “fp 

and (3. 13). More explicitly, we shall 

Ufi / ai,’ = <Q, 
fP i ‘fi / ‘icu’ (3. 32) 

where the indices cy atid (3 contain additional information on the momenta, 

spin, bound states, etc. of the initial and final states considered. More- 

over, the operators Ufi and U are given respectively by Eqs. (3. Ila) -ff, 

and (3. lib) with Vi = V - V1 and Vf = V - Vf. 

Before we turn to the problem of obtaining multiple scattering 

(4 
expansions for the operators Ufi , we briefly recall the work of Faddeev 

(1960, 1961, 1962) who writes the operator T = V + V G(+) V as 

T = T(I) + T(‘) + Tc3) (3.33) 
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where T (1) represents the sum of all contributions to T in which the 

particles 2 and 3 interact last. The objects Tci) then satisfy the Faddeev 

equations 

~~~~~)=~~~) +[;; ; g GZ+) (t:i (3.34) 

which exhibit much better mathematical properties than the Lippmann- 

Schwinger equations (3. 12). The Faddeev approach to the three-body 

problem has immediately attracted a great deal of attention (see for 

example Lovelace, 1964 a, b; Weinberg, 1964~~~; Omnt?s, 1964; Rosenberg, 

1964) and possible applications to a number of nuclear and atomic 

problems have been investigated (a list of references may be found in 

Watson and Nultall, 1967 and Chen and Joachain, 1971). Extensions 

of the Faddeev equations to relativistic three-body problems have also 

been proposed (Alessandrini and Omnes, 1965; Freedman, Lovelace and 

NamysZowski,l966, Blankenbecler and Sugar, 1966). 

A slightly different version of the Faddeev equations, derived by 
c-j. 

Lovelace (1964 a) involves the operators Ufi which lead directly to the 

transition matrix elements (3. 32) for a process ia + fp. The result i.s 
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and 

‘fi 
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(3.35a) 

(3.35b) 

where i, f, k = 1, 2, 3. The case i = f = 0 may also be included by 

defining To = 0. For example, if i = 1, i.e. the particle 1 is incident 

on the bound pair (2,3), we find that Eq.- (3. 35b) becomes 

u 
Ii 

(+)y 
= v1 + T2 Go 21 

+ T3 G(0+) =3i 

u21 
= v1 + T1 Gb+) El1 + T3 G:” =31 (3. 36) 

v3i 
= v1 + T1 Gb” Eli + T2 Gr) Ezl 

We note that the matrix kernel of the Lovelace equations (3. 36) is 

just the transpose of the Faddeev kernel appearing in (3. 34) so that all 

the mathematical properties of the Faddeev kernel apply equally well to 

the Lovelace kernel. In contrast with the Faddeev equations, however, 

the Lovelace equations involve interaction potentials. Nevertheless, a 

simple modification of the Lovelace formalism yields also equations 

which do not include any direct reference to potentials (Alt, Grassberger 

and Sandhas, 1967). A comparison between the Faddeev and the Lovelace- 

Alt approaches to the three-body problem has been made recently by Osborn 

and Kowalski (1971). It is also worth pointing out that the Faddeev or 

Lovelace equations are closely related to Watson’s multiple scattering 

equations (Watson, 1953, 1956, 1957; see also Goldberger and Watson, 



-31- NAL-THY-99 

1964; Watson and Nuttall, 1967). IVe shall return to this point below. 

Let us now investigate how to obtain multiple scattering e.xpansicns 

for various three-body processes (Ekstein, 1956; Rosenberg, 1964; Queen, 

1964, 1966; Bransden, 1965; Sloan, 1967, 1968; Chen and Joachain, 1971). 

In what follows we shall concentrate on the intermediate and high energ 

regions such that the relative kinetic energy of the incident particle 1 

by respect to the target (2,.3) is large compared to the binding energy 

of that target (“weak binding” condition). 

We start with the case f = 1 (elastic and inelastic direct processes) 

and return tothe Lovelace equations (3. 36). A simple iteration of these 

equations gi ves 

u 
11 

= vi + T2 Gb” v1 + T3 G;) V1 + T2 Gb+) Ti Gb+) V1 + T2 Gr) T3 Gb’ V 
1 

+ T3 G’6” T1 Gr’ Vi + T3 Gr) T3 G;) Vt + . . . (3.37) 

Then, using the fact that V - V1 = V2 + V3 and eliminating the potentials 

in favor of the two-body T-matrices by repeated use of Eq. (3. 3Ob), we 

find that 

u 
11 

z T2 + T3 + T2 Gr’ T3 + T3 Gb’) T2 + T G(+) T G(+) T 
10 2 

+ T2 Gb+) T3 G6” T2 + T2 G6’) Ti Gr) :3 +‘T3 Gb+) Ti G6” T 
2 

+ T3 Gx’;’ T1 Gb” T3 + T3 Gb’) T2 G;) T3 + . . . (3.38) 

Similar expansions may be found for the case of rearrangement colli- 

sions. For example, when f = 3, i.e. for a process 1 + (2, 3) - (1, 2) + 3 
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we obtain from Eqs. (3. 36) 

u = \13 +T2 +T G (+) 
31 1 0 

T2 + Ti Gr) T3 + T7 Gb+) T3 + . . (3.39) 

For three-body break-up collisions 1 + (2, 3) - 1 + 2 + 3, we must 

first include thechannels i= f = 0 in the Lovelace equations (with To = 0). 

Then 

u 
01 

= T2 c T3 + T1 Gx+) T2 + Ti Gr) T + T 
3 

2 d;’ T3 + T G(+) 3 o T2+... 

(3.. 40) 

The rules for obtaining higher-order multiple scattering terms in 

the expansions (3. 38) - (3.40) are easily derived 

(i) Start from the right with a two-body T-matrix for any of the 

pairs which participates in the initial interaction Vi = V - Vi 

(ii) Krite Gr) and Ti alternatively, avoiding the repetition of 

adjacent indices 

(iii) Terminate to the desired order with a two-body T-matrix for 

any of the pairs whichparticipatein the final interaction 31 f=v-$. 

The multiple scattering expansions (3. 38) - (3.40) have been obtained 

by using the operators Efi . Similar expansions may of course be written 

down by making use of the operators Ufi For direct collisions one finds 

again (.3.38 ), while the new rearrangement and break-up series are 

respectively 

U 
31 

= V1 + T2 + T 1 Got-~) T2 + Ti Gb+) T3 + T2 Gr) T3 + . . . (3.41) 

and 
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U 
01 

= v1 
iT~+T3+T G 

1 f’ T2 +T G(+) 
1 0 

T3 + T2 Gr) T3 

+ T3 Gbf) T2 + . . . (3.42) 

By comparing Eqs. (3.40) and (3.42) we expect that the interaction V* 

should not contribute to the break-up transition matrix element. This 

is easily verified, since <@ 1 VI ! Q 
OP’ I@ 

> = <GOP j Hi-HO / ala> = 0. 

Let us comment briefly on the multiple scattering expansions which 

we have generated. First of all, it is a simple matter to verify that 

these expansions may also be obtained from the Watson multiple scatter- 

ing equations which (in the weak binding limit) read in this case 

*(+lzrn 3 
la 1Ly + c G;) ‘j ~j. (3.43a) 

j=2 

Here the effective waves pj are given by 

Qj = dllrv + gj Gr’ Tk Vk (k=2, 3) 

and may be readily expressed in terms of the free Green’s operator 

G(+) o by using Eqs. (3. 31). We also note that the Faddeev-Lovelace-Watson 

expansions (3. 38) - (3.42) are rearrangements of the Born series (3.15). 

However, in contrast with the Born development, and except for bare- 

potential first terms, there are no disconnected terms (i. e. contributions 

such that two particles interact while the third one remains undisturbed) 

in the Faddeev-Lovelace-Watson expansions. Hence these expansions 

should exhibit a better convergence behavior than the Born series, 

especially for rearrangement collisions. 
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If we write approximately (for weak coupling situations) Ti = V1 

and limit our expansions (3.38) - (3.42) to the first order in the 

interaction potentials, we recover the first Born approximation (3. 16) 

for the transition matrix element. However, this “derivation” of first 

Born results only holds in the weak coupling limit, an approximation 

which is not on firm grounds for rearrangement processes, even at 

high energies. Indeed, the interaction potentials involved in such 

collisions must act long enough to bind new particles, so that the approxi- 

mation Ti 1 VI is unlikely to be correct. 

Let us return to the multiple scattering expansion (3. 38) for direct 

(elastic or inelastic) scat;ering. At sufficiently high energies a useful 

approximation consists in keeping only the first order terms of this series, 

so that the corresponding transition matrix element reads 

T 
ba = Tip,ia = -1p I T2+T3 I @plm’ (3.44) 

and we recover the impulse approximation (Fermi, 1936; Chew 1950; 

Chew and Kick, 1952; Ashkin and Wick, 1952; Chew and Goldberger, 

1952) for the process considered. We note that the two-body T-matrices 

T2 and T3 describe the scattering of the incident particle 1 by the two 

tar~get particles 2 and 3 as if those particles were free. The effect of 

the interaction V1 
= ‘23 

between the two target particles appears only 

in higher order terms of the series (3.38). 

As a final remark, we note that the Faddeev-Lovelace-Watson expansions 
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presented in this section may be generalized to systems with more than 

three particles. The three-body system considered here was only 

selected as the obvious prototype of many-body scattering. 

3. The Eikonal Approximation for Many-Body Collisions 

The extension of the eikonal approximation to many-body scattering 

problems was first proposed by Glauber (1953, 1955, 1959, 1960, 1967, 

1969) in connection with high-energy, small angle hadron-nucleus 

collisions. The resulting high-energy diffraction theory is in fact a 

generalization of the classical Fraunhofer diffraction theory (see for 

example Born and Wolf, 1964). 

Consider a fast point particle A incident on a target B which contains 

N scatterers. We assume that the motion of the target particles is slow 

compared to that of the projectile and that the incident particle interacts 

with the target scatterers via two-body spin-independent interactions. 

The Glauber scattering amplitude for a small angle direct collision 

leading from an initial target state 1 O> to a final state 1 m> is given 

in the center of mass system by 

FG ki 
m0 

= 2rri 
J 

d2b_eiP” <ml [e (3.45) 

the corresponding differential cross section being dom,/d;l = 

(kf/ki) l”,“o 1 2. Here & = ki - kf is the center of mass wave vector 
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transfer, while 

is the initial relative coordinate and 

E. = h. + z. i 
J .l J 

(3.47) 

are the coordinates of the target particles ( relative to the target center 

of mass). The z-axis may be chosen along ki for small angle collisions, 

but we shall also consider other choices below [ see the discussion pre- 

ceeding Eq. (2.34)1 . The total Glauber phase shift function 

N 

xt~t(b_,bi’...bN) = r: XjwJj) 
j=1 

(3.48) 

is just the sum of the phase shifts xj contributed by each of the target 

scatterers as the wave representing the incident particle progresses 

through the target system. We note that if the elementary interactions 

between the incident particle and the target particles are genuine two- 

body problems (such as in mn-relativistic electron-atom collisions) 

the phase shift functions xj are purely real. On the contrary, if these 

elementary interactions may lead to several final channels (such as 

a+N - Ai + N, where N is a nucleon of a target nucleus) the phase 

shift functions x are complex. 
J 

The crucial property of phase shift additivity, expressed by Eq. (3.48) 

is clearly a direct consequence of the one-dimensional nature of the relative 

motion, together with the neglect of three-body forces, target scatterer 
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motions, and longitudinal momentum transfer. 

Another important remark concerning Eq. (3.45) is that it applies 

only to collisions for which the energy transfer aE is small compared 

with the incident particle energy Ei, This is true for elastic collisions 

and for “mildly” inelastic ones in which the target is excited or perhaps 

breaks up. It is not true for “deeply” inelastic collisions in which the 

nature of the incident or target particles is modified or the number of 

particles is altered during the collision. We shall leave aside such 

processesin wnat follows and comment briefly on them in Section V. It 

is also worth noting that if we neglect recoil effects, which are small 

near the forward direction, we may write the Glauber scattering amplitude 

in the laboratory system as 

FG 
Ill0 

z & 
J 

,j2b ei~Tb <ml[e 1’*-52N)-~] 1 o> (3.49) 

where q = h-k_’ is now the laboratory wave vector transfer, and we have 

denoted the initial and final laboratory wave numbers by k, and k’ respect- 

ively. This last expression is more convenient to analyze high-energy 

hadron-nucleus collisions, since we want the nuclei to remain non-relativistic 

and we also wish to compare directly hadron-nucleus cross sections with 

those on free nucleons [ see Section V 1 . Defining the quantity (Glauber, 1959) 

rtotR?. b-*> . . . bN) = i L. exp [ix &Lb_ *>. . . bN)l (3.50) 

we‘see that Eq. (3.49) becomes 
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(3.51) 

Introducing the quantities 

rj (I?-%) = 4 - exp 1 ixjF2-bj)l 

Glauber now writes 
N 

rj(t2-bj) = I - 77 [i-rj(b-bj)l 
j=i 

(3. 52) 

(3.53) 

or 

rtot=pj-Cr.rl+... +i-)“-‘3rrj. 
jfl ’ j =1 

(3.54) 

This last equation, when substituted in Eq. (3. 51), leads directly 

to an interpretation of the collision in terms of a multiple scattering 

expansion involving the incident particle and the various target scatterers. 

The term linear in rj on the right-hand side of Eq. (3. 54) accounts for the 

“single scattering” (impulse) contribution to the scattering amplitude, 

whereas the next terms provides double, triple, . . scattering corrections. 

We note that the order of the multiple scattering can at most be N, reflect- 

ing the fact that the scattering is focused in the forward direction. 

It is important to realize that the above generalization of the eikonal 

method makes no reference to interaction potentials: only the two-body 

phase shift functions x j (or the functions rj) must be known in order to 

calculate r 
tot’ 

This fact makes the Glauber formula (3.49) particularly 

useful to analyze high-energy hadron-nucleus scattering, as we shall 
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illustrate in Section V. 

If the basic two-body interactions are known, as in atomic physics, 

we can actually gain further insight by~obtaining the eikonal scattering 

amplitude in terms of these interaction potentials. For example, if we 

consider the non-relativistic scattering of a charged, “elementary” 

particle (i. e. a particle which does not exhibit any internal structure 

in the collision considered) by an atom, and if we work in the center of 

mass system, we may write the full eikonal wave function as a direct 

generalization of the expression (2.27 1 namely 

z 

QE(E,X) = (2rr) 
-312 i 

.exp [ $*I - - 
J 

-hv. -m 
Vi(t@,Xldz’~ boW 

1 
(3.55) 

Here r_ is the initial relative coordinate, vi = hki/Mi is the initial 

relative velocity (with Mi the reduced mass in the initial channel), X 

denotes collectively the target coordinates, and $o(X) is the initial 

bound-state wave function of the target. The potential Vi is the full 

initial channel interaction between the incident particle and all the 

particles in the target. The corresponding transition matrix element 

is t~hen given by Eq. (3. 7a) in which the exact state vector ID (+I is replaced 
a 

by qE. A similar expression may also be obtained from Eq. (3. 7b). 

For a direct collision process (V 
i 

= Vf = V) leading to a final target 

state jm>, we may write more explicitly the many-body eikonal 

scattering amplitude as 
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M. 
F =_.-.L- 

mo 21rh2 J” 
d2bdz ei*‘r Cm 1 V(h, z, X) esp [ - -&- 

z 

‘J 

V(b_, z’ , X)dz’ 1 1 O> 
1 -a 

(3. 56! 

For elastic scattering processes such that \ $1 = I k-f 1 = k, and if we 

choose the z-axis to be perpendicular to the momentum transfer, we may 

perform the z-integral in Eq. (3. 56) to obtain the Glauber result [see 

Eq. (3.45) with m = 01 

FG=k 
el 2rri / 

d’b_e - ‘*“<O [[e 
ix t~tt!b,b,’ . 1. bN) 

-iI j o> (3.57) 

with +o, 

s 

V(b_, z, X)dz. (3.58) 
1 -m 

However, for inelastic (direct) processes the Glauber scattering amplitude 

(3.45) can only be obtained from Eq. (3. 56) by neglecting the longitudinal 

momentum transfer, since 6 now lies along ki in the case of forward 

scattering (choosing the z-axis perpendicular to &. would therefore be 

rather unnatural in this case). This neglect of the longitudinal momentum 

transfer is not too serious for mildly inelastic hadron-nucleus collisions 

at high energies, but it leads to undesirable features in atomic collisions. 

We shall return to this point in Section IV.~ In this case it is more 

appropriate to return to the more general eikonal expression (3. 56). 

Instead of generating a multiple scattering expansion in terms of 
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the quantities rj (which in turn, as we shall see in Section V, may be 

obtained from the two-body scattering amplitudes describing the scatter- 

ing of the incident particle by the j 
th 

scatterer), we may also write from 

Eq. (3. 45) another multiple scattering series which is more closely 

related to the one we have analyzed in connection with potential scattering 

(see Section 11.3). Limiting ourselves to elastic scattering, we write 

the Glauber scattering amplitude (3.57) as 

F;l = n‘1 F Gn (3.59) 

where 

k in y? =-- 
Gn 2ni n! 

/ 
d2b_ e”“<O / 1x,zt(4,t+,. . ._bG)l nl O> (3.60) 

We shall also denote by FGn the sum of the first n terms of the series 

(3. 59 ). Thus 

F Gn = 5 FGi. (3.61) 
j-1 ~ 

With the choice of z-axis which we have adopted (2 perpendicular to a), 

it is a simple matter to see that for all scattering angles 

F 
Gl = FE1 (3.62) 

where F B1 is the corresponding first Born scattering amplitude. Higher 

terms of the Glauber series (3. 59) and of the Born series will be 

examined in Section IV for electron-atom collisions. 

We have so far studied the many-body generalization of the eikonal 

method proposed by Glauber. Various attempts at deriving or improving 
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Glauber’s method by starting from the multiple scattering formalism 

(Goldberger and Watson, 1964; Kerman, McManus and Thaler, 1959) 

have been made by several authors (Czyz and Maximon, 1968, 1969; 

Remler, 1968, 1971; Feshbach and Hiifner, 1970: Tarasov and Tseren, 

1970; Kelly, 1971, Eisenberg, 1972; Karlsson and Namy&owski. 1972; 

NamysYowski.1972a). The Glauber result (3.45) may also be viewed 

as an eikonal approximation to a model proposed by Chase (1956), in 

which the target particles are frozen in a given configuration (Mittleman, 

1970). Osborn (1970) has used the Faddeev equation to suggest a way 

of unitarizing the inpulse approximation and obtaining Glauber-type 

results without the eikonai approximation. A comparison of the Born 

and Faddeev-Lovelace-Watson expansions with the Glauber theory has 

also been made for various atomic and nuclear processes. We shall 

return to these questions in Sections IV and V. In particular, we shall 

see in Section IV. 1 that the combined use of the eikonal approximation 

and the Born series (such that higher order Born terms are calculated 

by means of the eikonal approximation) yields very encouraging results 

for elastic electron-atom scattering at intermediate energies (Byron 

and Joachain, 1973b). 

Many-body collisions may also be studied by using the eikonal approxi- 

mation together with the optical model formalism. For elastic collisions 

one first tries to obtain an optical potential which is subsequently 

“eikonalized. ” The optical model concept may also be used within the 



-43- NAL-THY-99 

framework of the eikonal DWBA approximation to study inelastic 

collisions. The basic problem in this approach is the determination of 

optical potentials, a question which we now briefly review from the point 

of view of multiple scattering theory. 

4. Multiple Scattering Approach to the Optical Potential. 

The earlier applications of the optical model method were made to the 

analysis of the propagation of light through a refractive medium. In 

this case the use of a complex refractive index is in fact equivalent to 

the introduction of an optical potential (see for example Lax, 1951). A 

generalization of the optical model idea was made by Ostrofsky, Breit 

and Johnson (1936) to the study of a-decay of nuclei, while Bethe (1940) 

introduced the concept of an optical potential model for low-energy 

nuclear collisions. The description of high-energy nuclear collisions 

within the optical model formalism was initiated by Serber et al. (Serber, 

1947; Fernbach, Serber and Taylor, 1949) who first described nucleon- 

nucleus collisions in terms of nucleon-nucleon scattering. Their 

multiple scattering analysis led to the conclusion that particles should 

move more or less freely through nuclear matter at high energies. This 

fact was verified qualitatively by experiment, and led to a reassessment 

of the optical model for low-energy nuclear scattering (see for example 

Le Levier and Saxon, 1952, Feshbach, Porter and Weisskopf, 1954). 
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Following the work of Serber et al., several attempts were made 

to derive the optical model from first principles (Francis and Watson, 

1953; Riesenfeld and Watson, 1956; Feshbach, 1958, 1962, Kerman, 

McManus and Thaler, 1959; Glauber, 1959). We shall summarize here 

the multiple scattering derivations of Watson et al. (Goldberger and 

Watson. 1964; Fetter and Watson, 1965) and of Glauber (1959). 

Let us assume first that the incident particle is distinct from each 

of the N scatterers in the target. We write the total Hamiltonian of 

the system as H = Hd + V, where the direct arrangement channel 

Hamiltonian Hd includes the kinetic energy of the colliding particles 

and the internal target Hamiltonian, while V is the full interaction between 
n 

the incident particle and the target system. Thus V = 1 vj, where vj 
j =I 

is the interaction between the beam particle and the j th target scatterer. 

Assuming that the target is initially in the state 1 CD, we call q (+I c a that 

(+I part of the complete state vector Qa corresponding to coherent (elastic i 

scattering. That is 

q, (+’ 
c, a 

1 ~,Q~’ (3. 63) 

where iO ?T LS a projection operator onto the state CD. We may therefore 

introduce formally an optical potential operator 1. 
oat 

such that 

Q (+) = aa + Gg’ \7 i&c (-) (3. 641 
c, a opt c,a 
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with Gy’ = (E - Hd + ie)-t. Thus the optical potential is defined as an 

operator which, through the Lippmann-Schwinger equation (3.64) [ or 

the corresponding one for the elastic T-matrix] leads to the exact 

transition amplitude for elastic scattering of the incident particle by the 

target. 

Following the method of Watson et al. (Goldberger and Watson, 1964, 

Fetter and Watson, 1965) one may introduce an operator F defined by 

*(+) = F *(+’ 
a c,a 

(3.651 

in terms of which the optical potential, which does not depend on the 

internal coordinates of the target, is given by 

V opt =<O[VFIO> (3.661 

The operator F satisfies the Lippmann-Schwinger equation 

F = 1 + Gr) (1 - I-(,, ) VF (3.67) 

which can be solved by successive iterations. In this way one generates 

for F a Born series in powers of the interaction V, namely 

F=l+Gj:’ (1 -n,, v + . . . (3.68) 

which, substituted into Eq. (3.66) yields 

V 
opt 

=<OIV/O> +<O/VGjl+)(‘-l-l,,V/O> f... (3.69) 

As an illustration of the use of Eq. (3. 69), let us consider the non- 

relativistic elastic scattering of an ” elementary” particle A of charge Q 

by a neutral atom B having Z electrons (Mittleman and Watson, 1959, 
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1960; Mittleman, 1961, 1965). We treat the collision in the center of 

mass system, using the relative coordinate E which joins the position of 

the atomic nucleus (which we assume to coincide with the center of mass 

of the atom) to that of the particle A. We also denote by cj (j = 1. 2, . . Z) 

the vectors which determine the positions of the atomic electrons. The 

relative kinetic energy operator is K =-h ‘V21 2M where M is the 
r ’ 

reduced mass of the two colliding particles A and B. We assume that 

the internal target Hamiltonian h of the atom is such that h / n> = wn 1 10, 

the atom being in the state I O> before and after the collision. The 

interaction V is the sum of the individual interactions of the incident 

particle A with the (Z + 1) particles of the target. Neglecting all but 

Coulomb interactions, we have 

Z 

V=Zeq+C -e Q 
I- ~ r-r ---I 

j-l ‘- ‘-j 
(3.70) 

We also ignore the possible effects of the Pauli principle between the 

incident and target particles,~ for the moment. 

The first term on the right of Eq. (3.69) is simply the static potential 

<O 1 VI O>. With the help of Eq. (3.70), we see that in the case considered 

here the first approximation to the optical potential is given by 

Z 
v(1) (E) =<OiV~O> =F -Qe c CO! ,-&- IO>. (3.71) 

j =I -.I 
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This expression may be readily evaluated for simple atoms or when 

an independent particle model (such as the Hartree-Fock method) is 

used to describe the state I O> of the target. The static potential (3.71) 

has been used frequently to describe the elastic scattering of charged, 
. 

particles by atoms. It is worth noting, however, that this potential can 

at most give a qualitative account of the scattering. At low incident energies 

it does not take into account the distortion of the atom (in addition to 

neglecting the effects of the Pauli principle if the incident particle is an 

electron or an ion identical to the nucleus of the target atom). At energies 

above the excitation and ionization thresholds, the static potential is also 

unreliable because it is real and therefore does not account for the 

removal of incident particles from the initial channel. 

The second term on the right of Eq. (3. 69) may be written as 

42) = <OlV n> <n V O> 
E -K-(wn-wO) +ie (3.72) 

where the summation runs over all the intermediate states of the target 

and E = h 2k2 / 2M is the incident relative kinetic energy. A detailed study 

of the expression (3.72) has been made by Mittleman and Watson (1959, 

see also Goldberger and Watson, 1964). In particular, Mittleman and 

Watson analyzed the adiabatic approximation, which consists in neglec- 

ting the kinetic energy variation in the expression (3. 72). Then VC2) z Vfd’, 

(2) where the (local and real) adiabatic potential Vad may be shown to behave 
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at large distances as 

(3.73) 

with G being the atomic polarizability. A convenient phenomenological 

(2) parameterization of Vad 1s then given by the Buckingham polarization 

potential (Buckingham, 19 37) 

2 
VP(r) = - CQ 

2(r2+d2) 
(3.74) 

where d is a cut-off parameter. The adiabatic approximation has been 

shown by Mtttleman and Watson (1959) to improve with decreasing 

incident energies and increasing values of Z. 

Another approximate expression for the second order term V (2) 
, 

which has proved to be useful for intermediate and high incident energies, 

may,be obtained~ by replacing in Eq. (3.72) the energy differences (wO-wn) 

by an average excitation energy W. The summation on n may then be 

performed by closure, so that 

<r I v 
(2)( 2M 

J’> =- 
h2 

I$+) (k’,r,x’ ) A(_r,_r’ ). 

Here Gr’ (k’,x,r+) is the free Green’s function (2.6) corresponding to 

2 a wave number k ’ = (ki -2w) 112 and 

A(E,E’) = <OIV(_r,X)V(r_-,X)10> -<O/V(_r,X)!=’ <OlV(E’,X)/O’ (3.76) 

where the symbol X denotes collectively the target coordinates. We note 

that the expression (3. 75) contains explicitly an imaginary part, so that 
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“absorption” corrections due to the non-elastic processes are now taken 

into account. A study of the optical potential 

<E ! v 
opt 

ix’> = V(‘)(g) +<_rlV(2)IEC>, (3.77) 

where V(t) is given by Eq. (3. 71) and <r i V(2)/r ‘> by Eq. (3. 75) has 

been made recently in the eikonal approximation for elastic electron-atom 

scattering at intermediate energies (Joachain and Mittleman, 197ia, b). 

We shall return to this question in Section IV. 

Let us now return to the Lippmann-Schwinger equation (3. 67) for 

the operator F. An alternative way of solving this equation is to express 

F in terms of two-body scattering matrices. To this end we define the 

objects 

tj =vj ‘y G:+)(l -I-l,,tj (3.78) 

where we recall that vj is the two-body interaction between the incident 

particle and the j th target scatterer. The operator F is then given by 

the Watson equations (Goldberger and Watson, 1964) 

F=i+; G11+)(l-n,,tjFj 
j =I 

N 

Fj = 1 + G:‘) c 

k(fj 1 

and the optical potential is given by 
N 

1 
(l-II,)tk Fk 

. . 

(3.79a) 

(3.79b) 

V opt = <olc t. F. 1 O> 
j=l J J 

(3.80) 
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This expression is still exact, but the coupled Watson 

equatibns (3.79) are in general very difficult to solve since the operators 

tj 
include the effect of the internal target Hamiltonian. However, 

in the weak binding limit (i. e., when the incident particle has high energy 

compared to the binding energy of a target particle) one can use the impulse 

approximation to write t. = T., 
J J 

where Tj is a genuine two-body scattering 

matrix for the collision of the incident particle with a free target 

scatterer j. In this case the Watson equations (3.79) read 

with 

N 
F = 1 + Gli” (1 -n, ) 1 T. F. 

j=* J J 

Fj = 1 +Gr)(i -no) ; 

j(+k)=i 
Tk Fk 

(3.81a) 

(3.81b) 

and the optical potential is given by 
N 

V 
opt 

= CO / c T. F. 1 O>. 
j-1 J ’ 

(3.82) 

Solving the Watson equations (3.81) by iteration, we then obtain for V 
opt 

the multiple scattering series 

N 

V opt =<OI f T.!O> +<Ol c 
(+I 

T. G 
j=i ” jl#ti=i J d 

(1 -II,,TkIO> f... (3.83) 

A ~detailed analysis of these single scattering and double scattering contri- 

butions to V 
opt 

may be found in Goldberger and Watson, (i964) for hadron-. 

nucleus scattering in the weak binding limit. For a “large” nucleus of 

mass number A such that the concept of nuclear density is meaningful, 
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the first term on the right of Eq. (3.83) yields the optical potential 

2 
V optk) = -+- A f. p(x) (3.84) 

where E is the (laboratory) energy of the incident particle, f0 is the 

(laboratory) forward hadron-nucleon scattering amplitude averaged over 

the spins and isospins of the target nucleons, and p(g) is the nuclear 

density normalized to one. The double scattering term in Eq. (3.83) 

involves correlations between the target nucleons and has been studied 

by several authors (Lax, 1951; Francis and Watson, 1953, Glauber, 

1959; Beg, 1960; Johnston and Watson, 1961; Goldhaber and Joachain, 

1968 1. 

Until now we have assumed that the incident particle is distinct from 

each of the target particles. The scattering of a particle identical with 

t~arget scatterers has been considered by Takeda and Watson (1955), Bell 

and Squires (1959), Lippmann, Mittleman and Watson (1959) and Feshbach 

(1962). The Feshbach method is particularly useful for low-energy 

scattering, a case which we shall not consider here. 

The multiple scattering approach to the determination of the optical 

potential may also be formulated within the framework of the Glauber 

a~pproximation (Glauber, 1959). In this case we write the eikonal 

elastic scattering amplitude as 

k 
I- 

ix 
F =- 

el 2rri 
d2b eii?‘b [ e 

(3.85) 
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where x (b) is the o~ptical phase shift function. 
opt - 

If we identify this ampli- 

tude with the Glauber (many-body) elastic amplitude (3. 57), we define the 

Glauber optical phase shift function x 
G 

opt 
such that 

ix 
e 

o;ti!)z <o,~~~~(h.b_i~“‘bN)/O>, 
(3.86) 

From this relation one readily deduces that x 
opt 

is in general complex 

and has a positive imaginary part as soon as non-elastic scattering can 

occur. We also note that within the eikonal approximation, we may 

define an optical potential which corresponds to the phase shift function 

x opt * 
It is a local operator V opt(~) such that 

+m 
Xopt - (b) = -%& s V 

1 -al 
opt(b> z)dz. (3.87) 

Glauber (1959) has given a detailed discussion of Eq. (3.86) for high- 

e,nergy hadron-nucleus scattering. For a large nucleus with uncorrelated 

nucleons, he finds that 
+CJ 

X o;t (b) = Xfo 
s 

p(b, zldz 
-al 

(3.88) 

where A = 2rk -1 1s the de Brogl.ie wavelength of the incident particle. We 

note that this result agrees with that obtained by computing first V in the 
opt 

“single scattering” approximation of Watson’s multiple scattering theory 

[ Eq. (3.84)] and then “eikonalizing” the resulting potential by means of 

Eq. (3.87). 

If the interaction V between the incident particle and the target 
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system is known, as in atomic collision problems, we may use Eqs. 

(3. 58) and (3.86) to expand the Glauber optical phase shift x o:t in powers 

of V (and inverse powers of vi). Finally, we note that x 
G 

opt 
may also be 

expressed in terms of the quantity Ftot defined by Eq. (3. 50). That is, 

ix 
e -I = - <~jr~~~(-b,-b~,...b_~)jo> (3.89 I 

and r tot may in turn be expanded as the multiple scattering series (3. 541, 

The first term of this series is easily shown to yield the familiar impulse 

approximation for F 
el’ 

as we shall illustrate in Section V. 

IV. ATOMIC COLLISIONS 

1. The Scattering of Fast Charged Particles by Atoms. 

Because the basic Coulomb interaction is well known, it should be 

possible to investigate systematically the validity of some of the theoreti- 

cal methods discussed above, for “simple” atomic collisions. We shall 

give here a brief survey of recent work concerning the non-relativistic 

scattering of a fast, charged, “elementary” particle by an atom. 

The simplest high-energy approximation used in atomic collisions 

is certainly the first Born approximation (3. 16) together with some 

modifications of it such as the unitarized Born approximation (Seaton, 19611 
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and the Ochkur approximation (Ochkur, 1963). The unitarized Born 

approximation is just the first Born approximation for the corresponding 

K-matrix element, while the Ochkur approximation is a simplified 

version of the Born approximation in which only 

-1 
the leading term of the T-matrix element in ‘powers of ki (the inverse 

of the incident wave number) is retained. The computation of these 

first order approximations is generally rather straightforward, at 

least for collisions involving two fragments in the final state and when 

simple, uncorrelated wave functions (for example of the Hartree-Fock 

type) are used to describe the bound atomic systems involved in the 

collision. 

Second Born calculations imply a summation over the intermediate 

states of the system and are therefore much harder to perform, even 

approximately (see for example Holt and Moiseiwitsch, 1968; Holt, 

Hunt and Moiseiwitsch, 1971a, 1971b; Woollings andMcDowel1, 1973; 

Byron and Joachain, 1973b). As an illustration of these difficulties, 

let us consider the elastic scattering of an electron by an atom of atomic 

number Z, and at first 

neglect exchange effects between the incident and target 

electrons. The initial and final momenta of the electron are denoted 

respectively by ki and kf, with / ki 1 = I.&, I = k. Neglecting recoil 

effects, we choose the nucleus of the target atom as the origin of our 

coordinate system and denote the coordinate of the projectile electron 
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by r, while the positions of the atomic electrons are given by xj(j =i, 2,. . .Z). 

We use atomic units [a.u. ) such that the unit of length is the “first Bohr 

radius ” a0 while the unit of energy is e2/a0 (A.“. ,t+the Rydberg). 

The free motion of the two colliding particles is then described by the 

Hamiltonian 

HO = -+ V 
2 

~+ h (4.1) 
E 

where h is the internal target Hamiltonian, with eigenstates ! n> and 

internal energies wn. We assume that the target is in the state ! O> 

before and after the collision. 

The full Hamiltonian of the system is such that 

ti=HO+V (4. 2) 

where V, the interaction potential between the incident electron and the 

target atom, is given by 

(4.3) 

The second Born scattering amplitude for elastic scattering 

(neglecting exchange) is then given by 

FB2 
- 

el = FBi + FB2 (4.4) 

where FBI is the corresponding first Born amplitude and 

<~f,olVj~,n;- <$,nlV1lSijO> 

2 2 K -k + 2[wn-w )- ie 
0 

(4.5) 

Here we have written the asymptotic initial and final free states (which 
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are eigenstates of Ho) respectively as /bi, O> and / kf, O> while a general 

eigenstate of Ho is denoted by /:,n>. The normalization adopted is 

such that 

<x’,n’/s,n> = d nn, 6(K -5 ‘). (4.6) 

The summation over the index n appearing in Eq. (4. 5) evidently 

implies an integration when states belonging to the continuum are 

concerned. As in the case of the evaluation of the second order contri- 

bution to the optical potential [see Eq. (3. 72)1 , we may obtain a useful 

approximation for the quantity FB2 by replacing the energy differences 

(wO-wn) by an average excitation energy W. The sum on intermediate 

states can then be done by closure, and after performing the integration 

on the plane wave part of the matrix elements one obtains 

FB2 =% TT J ds 1 1 +‘f ‘j 
K Z-k,/ 7- -ic K;K; 

-1) 1 
1 

(4.7) 

where ci = _ki-K_, K, = &f-j; and k.’ = (k2-2% )1’2. If the state 1 I 
I O> is 

lwitten asan antisymmetrized product of orbitals [whose radial part 

is assumed to be the sum of terms of the form r P 
ex~p (-ar)] the matrix 

elements in Eq. (4. 7) may be readily evaluated and the remaining inte- 

gration on K can be reduced to a single integral by using the Feynman 
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parametization technique (Feynman, 1949). Detailed results of such 

calculations will be discussed below for electron-hydrogen and electron- 

helium scattering. 

Let us now consider the application of the Faddeev-Watson multiple 

scattering (FWMS) expansions to intermediate and high-energy atomic 

collisions. Since a recent discussion of this method for three-body atomic 

problems has been given by Chen (1972), we shall only emphasize a few 

important points. First of all, we recall that the FWMS expansions 

are expressed in terms of off-shell two-body T-matrices. For the Coulomb 

interaction, several representations of the two-body T-matrix are available 

(see for example 3. Chen and A. Chen, 1972). However, at incident 

energies larger than the three-body break-up threshold, particular care 

must be exercised in handling the cuts of the Coulomb T-matrix (Nuttall 

and Stagat, 1971; Chen, Chen and Kramer, 1971; Chen and Kramer, 

1971, 1972). 

The application of the FWMS expansion (3. 38), limited to first order 

terms, has been studied for several elastic scattering processes by Chen, 

Chen, Sinfailam and Hambro (1971). and Sinfailam and Chen (1972). 

Significant differences between the first order FWMS expansion and the 

first Born approximation were found at rather high energies, as shown in 

Fig.6 for the case of electron and positron elastic scattering by hydrogen 

atoms. This effect does not appear in calculations using the Born series and 
may be entirely spurious. It illustrates some of the difficulties involved in 
trying to apply the Faddeev-Watson multiple scattering expansion to atomic 
collision problems. 
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Three-body rearrangement collisions have also been analyzed by means 

of first order FWMS expansions, obtained by using the multiple scattering 

series (3. 39) or (3.41) and keeping only the two first terms on the right. 

(Shastry, Kumar and Callaway, 1970; Chen and Hambro, 1971; Chen 

and Kramer, 1972). Of particular interest is the electron-transfer or 

pick-up reaction p + H + H + p, in which p is a proton and H an hydrogen 

atom. The role of the proton-proton interaction in this reaction (at 

high energies) had already been the subject of numerous investigations 

(Oppenheimer, 1928; Brinkman and Kramers, 1930; Bates and Dalgarno, 

1952; Jackson and Schiff, 1953; Drisko, 1955; Bassel and Gerjuoy, 1960; 

Bates, 1962; Mapleton, 1967, McCarroll and Salin, 1967, Coleman, 

1968 ). The first order FWMS results of Chen and Kramer (1971, 1972) 

indicate that at very high laboratory energies (E > 2 MeV) the cross 

sections tend towards the first Born results [ Eq. (3. 16)) of Jackson 

and Schiff (1953), thus exhibiting a high-energy dependence of the form 

E-6. However, since thq second order Born terms yield an E 
-5.5 

energy dependence in the high-energy limit (Drisko, 1955; Mapleton, 1967), 

it is desirable to examine higher-order terms of the FWMS expansions. 

Preliminary results on the second order FWMS terms have already 

been obtained (Carpenter and Tuan, 1970; Chen, Chen and Kramer, 1971) 

but further calculations (and experiments) seem desirable before definite 

conclusions can be drawn. 
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we now turn to the application of eikonal approximations to intermed- 

iate and high energy collisions of a charged particle by an atom. We only 

outline here the various methods which have been proposed. A more 

detailed analysis of electron-hydrogen and electron-helium collisions is 

given respectively in Sections IV. 2 and IV. 3. 

The many-body Glauber amplitude, given by Eq. (3.45), has been 

evaluated for elastic electron-hydrogen collisions (France. 1968; Birman 

and Rosendorff, 1969; Tai, Teubner and Bassel, 1969) and for the excitation 

of the lowest levels of hydrogen by electron impact (Ghosh and Sil, 1969, 

Ghosh, Sinha and Sil, 1970; Tai, Bassel, Gerjuoy and France, 1970; 

Bhadra and Ghosh, 1971; Sheorey, Gerjuoy and Thomas, 1971; Gerjuoy, 

Thomas and Sheorey, 1972). Since exchange scattering is ignored in 

these calculations, proton-hydrogen collisions may be treated in a formally 

identical manner, except for a change in the scale of the momentum trans- 

fer. Such computations have been performed by France and Thomas 

(1971), Bhadra and Ghosh (?971) and Ghosh and Sil (1974). All these 

calculations on atomic hydrogen, using the Glauber formula (3.45) may 

be reduced to the evaluation of a single dimensional integral or even, as 

shown by Thomas and Gerjuoy (1971) to a finite sum of hypergeometric 

functions (see also Gerjuoy, 1972). IVIore recently, the Glauber ampli- 

tude has also been evaluated for the ionization of atomic hydrogen 

(Hidalgo, McGuire and Doolen, 1972, McGuire, et al., 1973). 
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For target atoms more complex than atomic hydrogen, the reduction 

of the Glauber amplitude (3.45) to a tractable form is more difficult to 

achieve. For electron-helium elastic scattering, France (1970) has 

reduced the Glauber scattering amplitude to a three-dimensional integral 

by using a 

Hartree-Fock ground state wave 

function. Glauber calculations for elastic electron and proton scattering 

by helium have also been performed by Johnson and Brolley (1970), while 

the excitation of the ZIS state has been studied by Yates and Tenney, 

(1973 ). A general reduction procedure of the Glauber amplitude (3.45) 

for many-electron atoms has been proposed by France (1971). Finally, 

we mention that Glauber-type calculations for elastic scattering and 

excitation of the 2s -2p transition in lithium have been performed by 

Mathur, Tripathi and Joshi (1971, 1972). These authors, however, 

disregard the effect of the IS core electrons, an approximation which is 

too crude to permit a detailed comparison of their results with the 

experimental data. More realistic Glauber-type calculations on electron 

scattering by Li, Na and K have been performed recently by Walters 

(1973). 

We have already pointed out in Section III. 3 that for inelastic 

collisions the Glauber scattering amplitude (3.45) can only be derived 

from the more general expression (3. 56) by neglecting the longitudinal 
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momentum transfer. The importance of treating correctly the kinematics 

for inelastic atomic collisions has been stressed by Byron (1971) and b:, 

Chen, Joachain and Watson (1972). Byron (1971) has also given a 

derivation of the general Glauber expression (3. 56) by treating in the 

eikonal approximation the complete set of close-coupling equations 

(with exchange neglected). He then used the Monte-Carlo technique to 

perform the multidimensional integrals appearing in Eq. (3. 56) for the 

excitation of various states of atomic hydrogen and helium by electron 

impact. Similar calculations using the Monte-Carlo method have also 

been made by Byron and Joachain (1972) for the excitation of the Z3S 

state of helium by electron impact, which is a pure rearrangement 

(knock-out) process when spin-dependent interactions are neglected. 

We now come to eikonal calculations involving the optical 

formalism (Joachain and Mittleman, 1971a, b; Chen, Joachain and 

Watson, 1972, Joachain and Vanderpoorten, 1973a, b). Starting from 

the optical potential (3. 77) and using the eikonat approximation, Joachain 

and Mittleman have shown that the direct elastic scattering amplitude for 

the collision of a charged particle by an atom is given by 

F 
k z- 

el 27ri J 
iA. b 

d’_be-- e C (4.8) 

where the (second order) optical phase shift function x (2) opt @) is obtained 

from 
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;rp;(b) = --J J Tm IT(l) (b_, z)dz + 
I -co 

-&-- 11 dz/“” dz’ exp[ -i(ki-k; )(z-z’)l 

A@, z: b, z ‘1. (4.9) 

Here V”) 1s the static (first order) optical potential, as given by Eq. 

(3. 71). the quantity .4(r_;_r’) is defined by Eq. (3. 76) and v. = ki/M is 
1 

the initial relative velocity of the two colliding particles (M being their 

reduced mass 1. \Tloreover, an average excitation energy W of the target 

states has been introduced, such that Mv;‘/ 2 = kI’/(ZM) = kF/ (ZM)-w. 

We note that within the framework of the eikonal approximation we may 

use Eq. (3. 87) to extract from Eq. (4.9) the equivalent local (second 

order) optical potential 

J 

z 
dz ’ =P [ -i(ki-kipi (z-z’)1 A@, Z; TV, 2’). (4. IO) 

1 -co 

Direct integration of the second term on the right of Eq. (4. 9) is still 

very laborious, even for the simplest targets. However, we note that 

the quantity 
+CO 

Im x (2) = _ 1 
opt 1 J v. --co 

Im Viii (b_, z)dz = - 

(4.11) 

exp [ -i(ki-ki’)(z-z ‘)I A&, z;b_, z ‘) 

may be evaluated with a reasonable amount of computational effort. 

Therefore the leading absorption corrections, induced by unitarity from 

the o’pen channels, can be calculated explicitly in this formalism. 
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It is interesting to compare the second order optical phase shift 

x rit given by Eq. (4.9) with Glauber optical phase shift xoFt obtained 

from Eq. (3.86). Thus, we first write 

G 
lx tot 

X o~t((P)=-ilog<O~e IO> 
(4.12) 

-<olx,,“,l O> - i log <O 1 exp i [xtzt-<O Ixtoy ) O>l ) O> 

Then, using Eq. (3. 58) and expanding the right-hand side of Eq. (4. 12) 

in powers of v. 
-1 

1 
, we find that 

J +,a v(1) 
(b_, ?idz + 

-m 
-$ lIrn dz/; dz’ A@ z:b_, z’ ) 

L (4.13) 
f. . , 

Hence, by comparing this result with Eq. (4.91, we see that the Glauber 

optical phase shift, or the corresponding optical potential V 
G 

opt 
such 

that 

X o;t (!2) = - + 
J- 

VG 
opt 

b, z )dz 
1 -m 

(4.14) 

contains no real second order terms and corresponds tothe choice W : 0 

for the average excitation energy of the target. The fact that K = 0 in the 

Glauber approximation has important consequences. Indeed, using Eqs. 

(3. 57) and (3.86), one can readily deduce that the Glauber many-body 

G elastic scattering amplitude Fe1 diverges logarithmically at zero momen- 

tum transfer (France, 1968al This undesirable feature is removed in the 
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eikonal optical model of Joachain and Mittleman (1971a, b). 

The optical model formalism may also be used together with the 

eikonal DWBA method to analyze inelastic or rearrangement atomic 

processes (Chen, Joachain and Watson, 1972, Joachain and Vanderpoorten, 

1973a, b). For example, in the case of a direct transition such that the 

target, initially in the state / O>, is left in the state 1 n>, the eikonal 

DWBA transition matrix element obtained from Eq. (3. 25), is simply 

T e1k = (zn)-3 
ba 

where 
n,cb_,z, =-$ 

z 

1 J- 
Ui(b_, z ‘)dz’, 

-co 
m 

n,cb_, 2) = - Uf(b. z ’ )dz ‘a 

(4.16) 

and 
Vno(~,z) = <njV/O> 

Here Ui and Uf are respectively the initial and final distorting potentials, 

while vi and vf are the relative velocities in the initial and final channel. 

At the expense of treating to first order that part of the interaction which 

is responsible for the inelastic transition, this method leads to reasonably 

simple expressions. These take into account explicitly the longitudinal 

momentum transfer, allow the evaluation of exchange effects, and may be 
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applied to complex target atoms. Applications of this method to electron- 

hydrogen and electron-helium collisions will be discussed below. 

To conclude this section, we would like to mention the very interest- 

ing approach recently developed by Bransden et al. (Bransden and Cole- 

man, 1972; Bransden, Coleman and Sullivan, 1972; Sullivan, Coleman 

and Bransden, 1972; Berrington, Bransden and Coleman, 1973) to analyze 

the scattering of charged particles by atoms. Starting from the set of 

close coupling equations, these authors retain explicitly a group of 

states in a truncated expansion of the full wave function. The remaining 

states are accounted for by the introduction of suitable second order 

potentials, similar to those discussed above. This method has already 

been applied successfully to the scattering of electrons and protons 

by atomic hydrogen and helium, as we shall illustrate in Sections IV. 2 

and IV. 3. 

2. Electron Scattering By Atomic Hydrogen 

We shall now analyze in more detail the scattering of electrons by 

atomic hydrogen at intermediate and high energies. We begin by consider- 

ing elastic collisions, and follow the treatment of Byron and Joachain 

(1973b) who have carried out a detailed comparison of the Born and the 

Glauber eikonal series. We write the Born series for the direct elastic 

scattering amplitude as 
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However, one can still alter the phases of the fields and this, we will now 

show, is sufficient to reduce U to dependence on a single parameter. 

To see this, consider that the most general 2 x 2 unitary matrix can 

be written as 

u ;elA 
cy P 

‘( 1 
+* (y:: ’ 

where A is some real phase and the complex numbers (Y and p satisfy 

/a12+ 1q2 = 1. Suppose we define new (primed) fields, differing from the 

original ones by a phase 

c 

0 

iT 
=e 

u 
(‘r e:im)( 11 ( J=eiA( ‘-,‘” :ei+)(I)‘. 

In terms of these new fields, the current assumes the form 

J =e’ 
1(*+ n-0 q;;* J)( 1) 

where (yl = Lyei(b -‘+ ’ and p’ = pei(‘+ ‘). Clearly, we now have the freedom to 

remove all relative phases and reduce J to a function of a single parameter. 

To bring this expression above into conventional form, choose 6 and $ to 

make e 1 and PI purely imaginary and then choose A - r to make the overall 

matrix real. = 1, we may define cos BC = /PI, sin BC= Icu\. 

Then the hadronic current becomes 

--, -sin 0 c cos 8 

JH 
i 

c d 
t 

=u 
cos e 

C 
sin f3 Ii 1, c s 

The sole remaining parameter ec is called the Cabibbo angle. Hereafter, 
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G 

~~~ = “; 
J 

Ddbb JO (Ab) <O j [e 
lx tot -11 IO> 

0 
and similarly we findfrom Eq. (3. 60) that 

m 

F 
k in 

Gn=tl 
J 

dbb JO(ab) <O[ [xtG,i? O>. 

0 

(4. 21) 

(4.22) 

It is apparent from Eq. (4. 22) that, as in the case of potential scattering 

[ cf. the discussion following Eq. (2.43)1 the terms of the Glauber multiple 

scattering series (3. 59) are alternatively purely real and purely imaginary. 

This, again, is in contrast with the Born series (4. 17), where already 

- 
the term FB2 contains a real as well as an imaginary part. 

We have already pointed out in SectionIV. 1 that by using an average 

excitation energy CC it is possible to reduce the quantity FBT to the 

expression (4.7) which then can be evaluated in a straightforward 

manner. In fact, for simple target atoms like hydrogen and helium one 

may even include exactly a few states in the summation on n appearing 

in Eq. (4. S), and then evaluate the sum on the remaining states by 

closure methods (see for example Holt, Hunt and Moiseiwitsch, 197lb, 

Woollings and McDowell, 1972, Byron and Joachain. 1973b). Of particu- 

lar interest is the limit of large values of k for which, at small scattering 

angles (6 < w/k%), Byron and Joachainfind that Re FB2 varies like 

k-1 , while Im ?? B2 behaves like k 
-1 

log k. We note that this behavior 

- 
of FB2 is different from that found in Eq. (2. 50) for the case of 

potential scattering. In particular, we emphasize that Re FB2 now gives 

the dominant correction to the first Born differential cross section at 
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small angles. At larger angles 0 > W/k2 one retrieves the “potential 

scattering” behavior such that Re FB2 varies like k 
-2 

and Im F B2 like 

k-l 
t 

for larger values of k. 

Let us now examine 

the Glauber multiple scattering series (3. 59 ). The second order term 

F G2, which is purely imaginary, may easily be shown to diverge logarith- 

mically at A = 0. Indeed, the corresponding quantity Im FB2 also diverges 

logarithmically as W, the average excitation energy, is set equal to zero. 

As shown explicitly by Byron (19711, the many-body Glauber result 

(3. 57) precisely assumes that w = 0. Although the quantities Im FB2 

and Im F 
G2 

differ substantially at very small momentum transfers 

because of the divergence df Im FG2, a detailed study of these two quanti- 

ties shows that otherwise they agree very well, even in the backward 

direction and for rather low values of k. This is reminiscent of the 

relationship (2.46) proved in potential scattering for Yukawa-type 

potentials. 

For n 2 3, the terms FGN of the Glauber multiple scattering series 

(3. 59) are finite, even at A = 0. It is therefore very likely that these 

terms will agree with the corresponding terms of the Born series 

ii. e. , FG3 with Re FB3, FG4 with i Im FB4, etc. ) at least for small 

scattering angles. Since the direct evaluation of the quantity Re FB3 

(which yields contributions of order k 
-2 

to the differential cross section) 

is an extremely difficult task, it seems therefore reasonable to use 
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F 
- 

G3 
in place of Re FB3. Thus we write the direct elastic scattering 

amplitude (through terms of order k -2) as 

F 
el 

=FB1 +Re FB2 +F 
G3 

+iImF B2 + . . . (4. 23) 

and shall refer to this treatment as the eikonal-Born series method 

(Byron and Joachain, 1973b). 

Before we compute the elastic differential cross section we recall 

that the leading (Ochkur) term of the first order exchange amplitude is of order 

kd2. A consistent calculation of the elastic differential cross section 

through order k 
-2 

therefore requires the inclusion of this term, which 

we call G 
1’ The elastic differential cross section (for unpolarized beam 

and target, and if no attempt is made to distinguish the various final 

spin states) is then given by 

do 
el 

- = ; 1 Fe1 + G1 1 2 + +I Fe1 - Gt / 2 dQ (4. 241 

As an example, we display in Fig. 7 the result of such a calculation 

for the elastic scattering of electrons by atomic hydrogen at an energy of 

100 eV. Also shown on Fig. 7 are the first Born approximation results and 

the Glauber approximation cross section do zl/dC2 = 1 Fz 1 ‘. We note 

that dozl/dfi is quite different from doel/dS2 as given by Eq. (4. 23). 

Indeed the Glauber differential cross section diverges at B = 0’ (because 

of the term Im F 
GZ 

) and lacks the exchange term Gt together with the 

- 
important term Re FB2. The remaining curve on Fig. 7 corresponds to 
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positron-hydrogen scattering, calculated from the eikonal-Born series 

amplitude (4. 23). Whereas the eikonal-Born series method predicts signifi- 
cant differences between electron and positron scattering, the .Born and 
Glauber approximations ,do snot distinguish the two cases. The (relative) 

measurements of Teubner, Williams and Carver (quoted in Tai, Teubner 

and Bassel, 1969) have been normalized to the eikonal-Born series curve 

at 0 = 30’. They could, however, be equallywell normalized to the Glauber 

or the first Born curve and therefore do not provide a good test of the 

various theories. As we shall see below, the situation is quite different 

in elastic electron-helium scattering. 

We now consider briefly some inelastic transitions induced in atomic 

hydrogen by the impact of fast electrons. Calculations using the Glauber 

approximation (3.45) have been performed by several authors (Ghosh 

and Sil, 1969; Ghosh, Sinha and Sil, 1970, Tai, Bassel, Gerjuoy and 

France, 1970; Bhadra and Ghosh, 1971; Sheorey, Gerjuoy and Thomas, 

1971; Gerjuoy, Thomas, and Sheorey, 1972) and reviewed by Gerjuoy 

(1972). As an example, we show in Fig. 8 the results of the calculations 

of Tai, Bassel, Gerjuoy and France (1970) for the differential cross 

section corresponding to the excitation of the 2s states of hydrogen by 

incident electrons of 100 eV. We see from this figure that at small angles 

the predictions of Tai et al. differ substantially from the first Born 

approximation and from the eikonal DW BA calculations of Chen, Joachain 

and U-atson (1972) (using static distorting potentials) and of Joachain and 
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Vanderpoorten (1973a) [using Glauber (complex) distorting potentials 1 . 

As another example, we show in Fig. 9 the total cross section for 

excitation of the 2p state of hydrogen by electron impact. Here, in 

addition to the first Born approximation and the Glauber results of Tai 

et al. ( ‘970), we have also displayed the eikonal calculations of Byron 

(197i), the four-channel approximation results of Sullivan, Coleman and 

Bransden (1972) and the eikonal DWBA calculations of Joachain and 

Vanderpoorten (1973a). Also shown for comparison are the close- 

coupling results of Burke, Schey and Smith (1963). The experimental 

data are those of Long, Cox and Smith (1968). They are normalized at 

high energies to the first Born values. 

Another interesting quantity is the polarization P of the radiation 

emitted from the final state of the excitation process e- + H(ls) - 

e - G H(2p). This polarization results from the relative population of the 

magnetic sublevels of the 2p states. The corresponding 2p + Is line occurs 

at 12168 and has been studied experimentally by Ott, Kauppila and Fite 

(1967). Using the Glauber expression (3.45) which neglects the longitudi- 

nal momentum transfer, Tai et al. (1970) found a selection rule Am = +I 

fyzlpr s - p transitions which leads to a constant polarization P = -3111. 

This result is in strong disagreement with the experimental data of Ott, 

Kauppila and Fite, who find that the polarization P is positive from 

threshold to about 250 eV. By using the more general and kinematically 

correct expression (3. 56), Byron (1971) obtained theoretical values of P in 
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much better agreement with the experimental data. Gerjuoy, Thomas 

and Sheorey (1972) have also obtained good agreement with experiment by 

using the Glauber expression (3.45). with the axis of quantization chosen 

perpendicular to the momentum transfer, and then transforming the 

calculated cross sections to refer them to a quantization axis in the 

direction of ki. The results of the four-channel approximation of Sullivan, 

Coleman and Bransden (1972) reproduce the experimental shape of P as 

a function of the energy but lie somewhat below the experimental values. 

It is worth noting that in this case the first Born approximation agrees sur- 

prisingly well with measurements. 

Returning to the evaluation of excitation cross sections, we note that, 

as in the case of elastic scattering, the Glauber expression (3.45) predicts 

identical results for the excitation by electron or positron impact. Using 

the more general Eq. (3. 561, which properly accounts for the longitudinal 

momentum transfer, Byron (1971) has found significant differences 

between electron and positron excitation of the 2s states of hydrogen. 

Since positron scattering is presently not feasible, experimetital data on 

proton scatterirgby hydrogen (in the energy range 50 - 150 keV, i.e., at 

velocities corresponding to the electron case) would be very useful to 

settle this question. It is worth noting that the eikonal DWBA method 
of Chen. Joachain and Waston (1972) and 
the approach of Bransden and Coleman (1972) also predict differences 

between electron and positron (proton) scattering. 
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3. Electron-Helium Collisions 

We now turn to the scattering of electrons by helium at intermediate 

and high(atomic) energies. In this case the theoretical calculations are 

obviously harder to perform than for atomic hydrogen, but on the other 

hand accurate , absolute experimental data for various processes have 

recently become available. It is therefore with helium targets that the 

various theories examined above can presently be tested in the most 

reliable way. 

We begin by analyzing elastic electron-helium scattering, following 

the eikonal-Born series method of Byron and Joachain (197313). By 

using an analytical fit (see for example Byron and Joachain, 1966) to 

the Hartree-Fock ground state helium wave function (Roothaan, Sachs 

and \%:eiss, 1960), the reduction of the second Born expression (4.7) 

proceeds as in the case of hydrogen. Similarly, the Glauber expressions 

(4. 21) and (4. 22) can also be evaluated in this case. The eikonal-Born 

series direct elastic scattering amplitude is still given by Eq. (4. 23), 

and the elastic differential cross section now reads 

(4.25) 

where Gi again refers to the leading Ochkur) term-,of ~the-exchange amplitude. 

As an illustration of these calculations, we display in Figs. 10 and 

11 the eikonal-Born series results, the Glauber approximation (France, 1970) 
and the 
first Born approximations for the elastic scattering of 500 eV.electrons 
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by the helium ground state. The experimental points refer to the 

absolute measurements of Bromberg (1969). Fig. 10, which shows 

the differential cross section, clearly ~exhibits the small angle behavior 

of the various theoretical predictions, while Fig. 11, which displays the 

quantity (do/do) x sin 0 is more appropriate to analyze the larger angle 

behavior.. It is apparent from the examination of Figs. 10 and 11 that 

the eikonal-Born series results [using Eq. (4. 23)1 are consistently better 

than the first Born or the Glauber approximation predictions. 

As in the case of elastic electron-hydrogen scattering, the Glauber 

differential cross section diverges in the forward direction and misses the 

important contribution arising from the term Re FB2. It is 

worth stressing that the difficulties 

encountered here with the many-body Glauber approximation clearly 

result from the long range nature of the atomic interactions; they do not 

appear in problems involving short-range interactions, as we shall see in 

Section V. 

It is also interesting to include in the comparison with experiment the 

methods involving second order optical potentials. Thus in Fig. 12 we 

compare (for elastic electron-helium scattering at 300 eV) the experimental 

results of Vriens, Kuyatt and Mielczarek (1968) [as renormalized recently 
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by Chamberlain, Mielczarek and Kuyatt, 19701 with the optical model 

calculations of Joachain and Mittleman (1971a, b) and the recent calcu- 

lations of Berrington, Bransden and Coleman (1973). Also shown on 

Fig. 12 are the first Born values, the eikonal-Born series results of Byron 

Joachain (1973b) and the Glauber values (Franco,i9701 Since the calcula- 

tions of Joachain and Mittleman (1971a, b) use a phenomenological, one 

parameter polarization potential to fit the data at 8 = 5’, it appears from 

Fig. 12 that the most satisfactory results obtained at present are those 

of Berrington, Bransden and Coleman (1973) and of Byron and Joachain 

(1973b). It is also worth noting that these two approaches yield forward 

scattering am~plitudes which are in good agreement with the analysis of 

Bransden and McDowell (19701, based on forward dispersion relations. 

We now describe briefly a few inelastic electron-helium processes. 

We show in Fig. 13 the differential cross section for the process e- + 

1 
He (1 S) - e- + He (2’S) at an incident electron energy of 200 eV. The 

experimental data are those of Vriens, Simpson and Mielczarek (1968 ), as 

renormalized by Chamberlain, Mielczarek and Kuyatt (1970). The various 

theoretical predictions shown are those of the first Born approximation, 

of the second Born calculation performed by Woollings and McDowell 

(1972), of the eikonal DWBA method (Joachain and Vanderpoorten, 1973b) 

and of the four-channel calculations of Berrington, Bransden, and Cole- 

man (1973). In particular, Berrington et al. show that the 21S - 2’P 
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coupling, which they take into account explicitly, strongly influences the 

angular distribution in the forward direction and brings it into agreement 

with the experimental data. The first Born and eikonal DWBA results, 

on the contrary, are too low at small scattering angles. 

I 
Let us now consider the excitation process e- i- He(l S) + e- + 

He(Z’P). In this case the strong i1S - 2fP coupling completely dominates 

and there is no appreciable effect arising from the neglect of the 2fS - 

2’P coupling. We should therefore expect in this case good results from 

the eikonal DWBA method (Joachain and Vanderpoorten, i973bl. This is 

confirmed by the examination of the total cross sections shown in Fig. 14. 

We also note that the eikonal calculations of Byron (1971 I are in good agree- 

ment with the experi;-r!ental results of de Jongh and van Eck (1971) and of 

Donaldson, Hender and McConkey (19721. 

To conclude this section, let us examine the excitation of triplet 

states of helium by electron impact, taking as a particular example the 

reaction 

e- + He(l’S) - e-+He(23S) 14. 26 1 

As we already mentioned in Section IV. 1, this process is a pure 

rearrangement (“knock-out” or exchange I collision provided that very 

small spin-dependent interactions are neglected. Although the reaction 

(4:26) received a large amount of attention (Joachain and Mittleman, 

1965; Ochkur and Brattsev, 1965; Bell, Eissa and Moiseiwitsch, 1966, 
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Miller and Krauss, 1968, Kang and Choi, 1968, Joachain and Van den 

Eynde, 19701, no satisfactory explanation was found for the forward 

peaking observed (Vriens, Simpson and Mielczarek, 1968; Chamberlain, 

Mielczarek and Kuyatt, 1970) in the differential cross section at small 

angles and for incident electron energies ranging from 100 eV to 225 eV. 

In particular, the first Born and the Ochkur approximations badly fail 

in this case, as can be seen from the examination of Fig. 15. The 

reasons for this failure have been given by Byron and Joachain (1972) 

who have also performed many-body eikonal calculations (using the Monte- 

Carlo integration method) for the reaction (4. 26). Their results, shown 

in Fig. 15 are seen to be in good agreement with experiment. Given 

the interest concerning the theoretical treatment of rearrangement 

collisions, more experiments on the reaction (4. 26) would be very 

desirable. 

V. HIGH-ENERGY HADRON-DEUTERON COLLISIONS 

The topic at hand is a vast one which we shall discuss not in general 

terms but with the intent of illustrating the applicability of multiple 

scattering expansions to a practical problem. We must needs be 

selective in our coverage, so while we will describe some of the 

complexities of high-energy scattering in detail, we shall have to 

ignore others. For the reader whose primary concern is hadron- 
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deuteron scattering we therefore list a few of the issues we have not 

treated, together with one or two modern references which provide 

access to the literature. 

(i) scattering in the resonance region (Landau, 1971). 

(ii) neutron cross sections (Musgrave, 1971; Julius, 1972). 

(iii) high-momentum spectators (Musgrave, 1971). 

(iv) Fermi motion (Atwood and West, 1972; II,-est, 1972). 

(VI Presence of isobars in the deuteron wave function (Kerman and 

Kislinger, 1969; Nath, Weber, and Kabir, 1971). 

1. High-Energy Hadron-Nucleus Scattering. 

We consider a hadron X of initial laboratory energy I? and momentum 

_k incident on a nucleus of mass number A. We use units such that 

T?=c=l. We assume that the incident particle travels much faster 

than the characteristic nuclear velocities, and that it interacts with the 

target nucleons via two-body spin-independent interactions. (The 

generalization to spin-dependent interactions will be discussed briefly 

below. ) Furthermore, we shall only consider for the moment small 

angle elastic or “mildly” inelastic collisions. The transition amplitude 

from an initial nuclear state / O> to a final nuclear state 1110 is then 

given (in the laboratory system) by the Glauber expression (3. 51), namely 

(Glauber, 1959) 
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F G_ik 
n-c 

-G 
J- 

d2!Jei!?” <ml r totib> tL1’. . kN) 1 0’ (5.1) 

where q is the laboratory momentum transfer and r 
tot 

may be written 

as [see Eq. (3. 5411 

_4 
r tot = c rj - j$rrj rp + . ..(I.)~~-' c$ rj (5.2) 

j =I j-l 

The multiple scattering series 15. 2) which contains A terms, has been 

particularly useful to analyze the scattering of high-energy hadrons by 

light nuclei. We shall return shortly to this point in connection with 

hadron-deuteron scattering. We note here that according to Eq. (2. 38), 

generalized to a high-energy two-body collision, the quantity 

fj’¶’ = & J d2b ei:-b 
- rjw (5.3) 

is just the eikonal (laboratory) two-body scattering amplitude of the 

incident particle X by the j th nucleon. Hence, using Eqs. (5. 1) and (5. 21, 

we immediately deduce that the “single scattering” or “impulse”approxi- 

mation, obtained by retaining only the terms linear in rj on the right of 

Eq. (5. 21, leads to the hadron-nucleus scattering amplitude 

iq* b. 
F mO= $ f.(q)<mle- 

j:l J - 
‘IO>. (5.4) 

In particular, for elastic scattering, and assuming that all the f .‘s are 
J 

identical (fl = f2 = . . f) we recover the familiar result of the “impulse” 

approximation, namely 

S(q) 1 2 (5.5) 
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where 

(5.6) 

is the elastic differential cross section for the scattering of the incident 

particle by a free nucleon, and 
iq* x. 

S(q) = 5 <Ole - J ( o> 
j =I 

(5.7) 

is the elastic form factor of the target bound state. Since S(0) = A, 

Eq. (5. 6) predicts that in the impulse approximation the coherent 

(elastic) differential cross section for hadron-nucleus scattering is 

enhanced by a factor A2 in the forward direction by respect to the cor- 

responding hadron-nucleon cross section. In fact, because hadrons inter - 

act strongly with nucleons, multiple collision effects are important 

in hadron-nucleus collisions. They lead to an A-dependence of the forward 

differential cross section which increases less rapidly than A‘, although 

the angular distribution still remains heavily concentrated in the forward 

direction. This strong forward peaking is the major characteristic of 

high-energy coherent hadron-nucleus scattering. 

The elastic scattering of hadrons by “large” nuclei is conveniently 

studied by means of the eikonal optical model summarized at the end of 

Section III. For example, using Eqs. (3.85) and (3. SS), together with 

additional corrections for Coulomb and target correlation effects, 

Goldhaber and Joachain (1968) have analyzed the experimental data of 

Belletini et al. (1966) on high-energy proton scattering by a variety of 
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nuclei. Their analysis includes a study of inelastic collisions which 

dominate at larger angles. Goldhaber and Joachain base also proposed 

a simple eikonal DWBA method to deal with coherent production reactions 

such as 

TT + nucleus -A 
1 

+ nucleus (5.8) 

01‘ 

:I: 
p + nucleus - N + nucleus, etc. (5.9) 

This formalism has been applied to extract the Al-nucleon cross 

section from the analysis of coherent A1 production in freon (Goldhaber, 

Joachain, Lubatti and Veillet, 1969). 

We shall not pursue further hadron scattering by nuclei other than 

deuterium. The interested reader will find additional information and 

references in recent work (Stodolsky, 1966; Drell and Trefil, 1966; 

Formanek and Trefil, i967, Bassel and Wilkin, 1967, 1968; Czyz and 

Lesniak, 1967; Goldhaber and Joachain, 1968; Ross, 1968; Margolis, 

1968, Kolbig and Margolis, 1968, Trefil, 1969, Kofoed-Hansen, 1969, 

Feshbach and Hifner, 1970, Feshbach, Gal and Hiifner, 1971; Moniz 

and Nixon, 1971; Bassichis, Feshbach and Reading, 1972.) as well as 

in,the review articles of Glauber (1967, 1968), Wilkin (1968) and 

czyz (1971). 

2. Hadron-Deuteron Scattering in the Glauber Formalism 

Let us now concentrate on hadron-deuteron collisions, which have 



been studied extensively by using the Glauber generalization of the eikonal 

approximation. We follow here the analysis of France and Glauber (i966). 

The basic formula for elastic and mildly inelastic collisions is still 

Eq. (5. i), where 

I- 
tot 

= i - exp{i[Xn(b-+z) + ~,i~+~)l~. (5. IO) 

The quantities x, and xp are phase shift functions contributed respectively 

by the neutron and the proton, while the vector s is the projection of the 

internal relative vector r -d of the deuteron in the plane of impact 

parameters. If we define the quantities 

r,(b) = 1 - exp [ ix,(4 .)I (5.11) 

and 

Tp(h) = 1 - exp [ ixp(b !! 1 (5.12) 

we may write Eq. 15. 10) as 

r 
tot = 

r,(b_ - f s_) + rp(b- + + s_) - rnu2 - + s) rpu2 + $2) 15.13) 

leading to the physical interpretation in terms of single and double 

scattering, as we expect from the discussion following Eq. (3. 54). TO 

analyze this situation in more detail, we note that the functions rnand 

rp,can be expressed in terms of the hadron-neutron and hadron-proton 

scattering amplitudes fn and f 
P 

by an approximate two-dimensional Fourier 

inversion. 1 See Eq. (5. 3). 1 Thus 
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rnw = 1 
s 

d2q e 
- iq. b 

2rrik - fnQ) . (5.14) 
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A similar formula holds for r 
P’ 

Returning to Eq. (5. I), we now have 

FG = 
m0 

.I 
fn($ 

-‘s-s 
+ e fph) 

(5.15) 

+ T& d2ql e’! 
‘J- 

and for elastic scattering 

FG el = fn($ s+g + f&q) SC-& 1 

‘J 
(5. 16) 

+-L 21rk d2q’ sks’)f,(~’ ++q>fp(-q’ +iq) - _ 

where S(q) is the form factor of the deuteron ground state, namely 

S(q) = -/ 
is_. r_ 

e d 1 ICI,kdd 2 dqd (5.17) 

Here $o(rd) is the ground state deuteron wave function. The formulae 

(5. 15) and (5. 16) clearly justify the interpretation of the collision in 

terms of single and double scattering processes. The two types of 

diagrams which contribute to the scattering are shown in Fig. 16. 

Evidently, these diagrams do not, at this point, have any more content 

than the formulae (5,151 or (5.16). We shall return to the analysis of 

diagrams in Section V. 3 when dealing with analytic properties of 

scattering amplitudes. 

We may immediately obtain the total hadron-deuteron cross section 

from Eq. (5.16) by using the optical theorem. Thus, writing 

d 
Otot = 4ir Im Fey / k, one finds that (Franc0 and Glauber, 1966) 
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d n 
utot 

P 
= utot + atot - 6u (5. 18) 

where c 
n 

and o P 
tot tot are respectively the total hadron-neutron and hadron- 

proton total cross sections and 60, the “cross section defect”, is given by 

60 ,-L 
k2 / 

s(9) Re [fJq_) fp(-q)] d2q - _ (5.19) 

If the average neutron-proton interaction has much larger range than 

the hadron-nucleon interaction, one can readily derive from Eq. (5. 19) 

the approximate formula 

ba= - 5 Re[fn(0) fp(0)l <rd2> 
k2 

where <I‘ 
-2 
d 

> is the inverse square of the neutron-proton distance 

averaged over the deuteron ground state. Further, if the amplitudes 

fn(0) and fp(0) are purely imaginary (“black nucleons”), one obtains 

the very simple result (Glauber, 1959) 

60 z & u n tot Otot p <r-t> (5.21) 

A variety of angular distributions can be derived from Eqs. (5. 15) 

and (5.16). The elastic differential cross section is given by 

= ,F,“1i2. 

The total scattered intensity is obtained from 

=c, IFzo!2 
SC 

(5.22) 

(5. 23) 

and can be evaluated by using the closure relation on the deuteron final 

states I m> . Inelastic processes in which the deuteron is dissociated 

into two free nucleons are calculated from 
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(sgin =($,, -(gel ’ (5.24) 

The corresponding total cross sections Mel, ~sc, and oin = 0 - u 
SC el 

are directly obtained by integrating Eqs. (5. 22).- (5. 24),over the 

angles, while the “absorption” cross section 

d 
0 
abs = Otot - Osc 

(5. 25) 

corresponds to all processes where the incident hadron disappears 

during the collision or reappears with one or several produced 

particles. 

The generalization 6f these considerations to include the spin and 

isospin degrees of freedom of the incident particle and the target 

nucleons has been carried out by several authors (Franc0 and Glauber, 

1966; Wilkin, 1966; Glauber and France, 1967; Alberi and Bertocchi, 

1968, 1969b). For example, collision processes contributing to charge- 

exchange scattering by the deuteron in the case of an incident hadron 

of isotopic spin l/Z are represented in Fig. 17, whereas in Fig. 18 the 

double charge-exchange process leading to no net transfer of charge is 

shown. This last effect, first pointed out by Wilkin (19661, is small 

relative to the other cross-section corrections. Indeed, if fc(q_) 

is the charge-exchazge amplitude, one obtains now for the cross-section 

defect, instead of Eq. (5. 19) (Glauber and France, 1967). 
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60--L Re 
k2 I/ 

S(q_) $ [ fp(q) fn(-q) + fn(!) fp(-q_) - - 
(5. 26) 

- f&)f,(-q)l d2q , I - 
t 

60 =-_Re 
k2 iJ s(q_)[ 2fn(q_) fp($ - tf,, ‘(3) - $fn 2(~)l d’q . 

-I 
(5. 27) 

If the hadron-nucleon force range is small compared with the average 

neutron-proton interaction, one may again approximate 

6~= -% Re 
k2 

f, (0)fp (0) - $[f, (0) - fp ,(o)] 2 1 <ri% (5. 28) 

which under the assumptipn of purely imaginary amplitudes f (0) and 
n 

fp (0) reduces to [ compare with Eq. (5. 21)1 

1,n P i(n 
of3 = zi atot utot - z utot - Otot p )21 <rd’>. (5.29) 

Franc0 and Glauber (1966) have applied the theory outlined above to 

a detailed investigation of antiproton-deuteron collisions in the (lab) 

energy range 0. 13 to 17. 1 GeV, using various ground-state deuteron 

wave functions. They assume that at high energies the antiproton- 

nucleon amplitudes are such that 

fPn (q) = frsp (q_) z fijN (q), 

and can be parameterized as 
122 

f- 
PN 

= i(k.cr- /4*) e 
-2Q 9 

1 PN 
- . 

(5.30) 

(5.31) 
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Using as input the measured experimental data (Elioff et al., 1962; 

Galbraith et al., 1965; Czyzewski et al., 1965; Coombes et al., 1958; 

Armenteros et al., 1960; Foley et al. ; 1963b; Ferbel et al., 1965) on 

antiproton-proton collisions, they obtained total and absorption anti- 

proton-deuteron cross sections in good agreement with experiment 

(Elioff et al. , 1962; Galbraith et al., 1965; Chamberlain et al., 1957) 

and showing an appreciable double scattering effect (see Fig. 19). 

They also investigated spin-dependent effects and concluded that their 

influence on the cross-section defect should be small. Franc0 (1966) 

has also analysed the antiproton-deuteron elastic angular distribution 

for small momentum transfers in the region of incident momenta 

between 2.78 and 10.9 GeVic. In a subsequent work, Glauber and 

France (1967) studied the reaction 

K++d-K 
0 

+P+P. (5. 32) 

which, together with K+p collisions, is used to extract information 

about the K’n charge-exchange reaction (Butterworth et al., 1965) 

0 
K++n+K fp. (5.33) 

They show that the effect of the charge-exchange correction on the 

values of the (pn), (pn), and (K+n) total cross sections which are 

obtained indirectly through deuteron measurements is very small for 

incident hadron momenta above 2 GeV/c. 

We now turn to a more detailed analysis of the angular distribution 
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of elastic hadron-deuteron scattering. We start with proton-deuteron 

elastic scattering, which has been studied in the GeV range by various 

authors (Harrington, 1964; 1968 a, b; France, 1966, 1968b; Franc0 

and Coleman, 1966; Kujawski, Sachs, and Trefil, 1968; Franc0 and 

Glauber , 1969 ). To understand qualitatively the main features of the 

angular distribution, let us return to Eq. (5.16). We first note from 

the alternation of sign in Eq. (5. 13) that the double scattering term has 

opposite sign to the single scattering term. In fact, if the amplitudes 

f, and fp were purely imaginary, the double scattering term would 

completely cancel the contribution of the single scattering amplitude 

at -t I 0. 5 (GeV/ cj2. The contribution of the single and double scatter- 

ing terms for such a parametrization of the amplitudes is displayed in 

Fig. 20, which also shows that the single scattering term dominates 

near the forward direction. At larger momentum transfers the double 

scattering term, which decreases much more slowly with increasing 

q, becomes the dominant contribution to the scattering amplitude. 

Let us now analyze more closely the intermediate region of 

momentum transfers where the single and double scattering terms 

interfere destructively. Since the proton-neutron and proton-proton 

scattering amplitudes both have small real parts we do not expect the 

differential cross section to exhibit a zero, but instead to show a sharp 

dip in the interference region. This region is therefore of special 

interest, since it depends delicately upon the phases of the hadron-nucleon 

amplitudes. 
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The first experimental data on p-d elastic scattering (Kirillova 

et al., 1964; Belletini et al., 1965; Zolin et al., 1966; Coleman et al., 

1966, 1967) gave encouraging agreement with Glauber’s theory. For 

example, the large-angle measurements at 2. 0 GeV (Coleman et al., 

1966) confirmed the importance of the double scattering term in the 

region of four-momentum transfers 

0.5 (GeV/cj2 5 -t 5 1.5 (GeV/cJ2 (5.34) 

and were in good agreement with the theoretical calculations of 

Franc0 and Coleman (1966). However, these larger-angle data did not 

fully cover the important intermediate region. It remained for Bennett 

et al. , (1967) to perform’s crucial p d experiment at 1 GeV, which 

showed agreement with the theory in the small and larger momentum 

transfer ranges, but displayed only a shoulder (no dip) in the interfer- 

ence region (see Fig. 21). This result was confirmed by measurements 

at 582 MeV (Boschitz, quoted in Glauber 1969). A similar feature was 

observed in rr-d elastic scattering experiments (Bradamante et al., 1968). 

Several suggestions were proposed to understand this apparent 

paradox: momentum-transfer dependence of the phases of the proton- 

neutron and proton-proton amplitudes (Bennett et al., 1967), spin 

effects (Kujawski, Sachs, and Trefil, 1968; France, 1968), influence of 

three-body forces (Harrington, 1968a) or of inelastic intermediate 

states (Pumplin and Ross, 1968; Alberi and Bertocchi, 1969a; Harrington, 

1970 ). There is one crucial fact though, which leads to the resolution 
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of the puzzle. namely that interference minima are observed in the elastic - 

scattering of protons by the spin-zero nuclei He 4, c12, and 0 
16 

(Palevsky, 

et al. , 1967; Boschitz, et al., 1968). It is therefore tempting to associate 

the absence of the dip with the quadrupole deformation of the spin-one 

deuteron (Harrington, 1968a). 

The wavefunction for a deuteron of spin projection M cau be written 

as 

2 

+ - w(r 1 Y2 r M-m -m (6) <2 1 M-ml-m2 ml+m2 / 1 M> 
1 2 

11 
x<~~mlm2 1 

where x P n 

ml 
and x 

m2 
are proton and neutron Pauli spinors of projection 

ml and m 
2’ 

and a summation over ml and m2 is implicit. The S-wave 

and D-wave radial wave functions are chosen real and normalized by 

m 

/ 
dr (u2+w2) = 1 (5. 36) 

0 

In the case of Td scattering, four scattering amplitudes must be consid- 

ered, when spin is not ignored. In them, one may recognize (Michael and 

Wilkin, 1968; Sidhu and Quigg, 19711, the contributions from spherical 

quadrupole, and magnetic form factors 

1 
fm 

bs(Tq) = J 0 
drjo($qr) [!u(r)12+ /w(r)121, 
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m 

a,(h) = dr j2 (kqr) [ 2u(r) w(r) - !w(r)/ 2/&l, 
0 

I 

m 

d,(h) = dr {jo C$qr) [/u(r)! 

0 

2 - Slwh-)I”1 +j, (gqr) 
(5.37) 

the squares of which are plotted in Fig. 25 for the hard-core model of 

Reid (1968). In a simple model (Michael and Wilkin, 1968) in which the 

irN spin-flip amplitude is neglected and the non-flip amplitude is positive 

imaginary, the contribution of the quadrupole form factor to the differen- 

tial cross section for rrd scattering remains finite at the position of the 

diffraction zero in the contribution of the spherical form factor, and 

fills in the dip. This cooperation is displayed in Fig. 23. 

Because the pion-nucleon scattering amplitudes are so well known, 

more detailed calculations have been possible. Alberi and Bertocchi 

(196910) reanalyzed the data of Bradamante, et al., (1968) by taking into 

account the deuteron D-state and using rrN amplitudes given by phase 

shift analyses. Some of their results are shown in Fig. 24. which 

exhibits impressive agreement between theory and experiment. [ For 

a detailed account of this work, see Bertocchi (1969). 1 At higher 

energies the Regge pole fits of Barger and Phillips (1968, 1969) have 

been exploited by Alberi and Bertocchi (1969133, Michael and Wilkin 

(1969 ), and Sidhu and Quigg (1973 ). These calculations agree very well 

with the rr-d elastic differential cross sections of Fellinger, et al., (1969) 
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and Bradamante et al. (1968, 1969 ,, 1970a) for incident pion momenta 

between 2 and 15. 2 GeV/c, in the single-scattering regime and in the 

region of the break. Typical calculations are shown in Fig. 25 - 27. 

At larger angles (in the double-scattering regime), the theoretical 

curves lie systematically above the data. The number of detailed 

computations which exhibit these features supports the inference of 

the CERN-Trieste group (Bradamante, et al., 1971) that the disagree- 

ment in the double-scattering regime (which is also observed in pd 

scattering) cannot be ascribed to the uncertainty in our present knowledge 

of the hadron-nucleon scattering amplitudes. 

Similar considerations apply to proton-deuteron elastic scattering. 

The calculations of Franc0 and Glauber (1969) are compared with the 

experimental data at 1 and 2 GeV in Fig. 28. Recent measurements of 

pd elastic scattering at 9. 7, 12. 8 and 15. 8 GeV/c (Bradamante, et al. 

1970b) and at higher energies (Allaby, et al., 1969a, b; Amaldi, et al., 

1972) are also in excellent agreement with the theory, except in the 

double-scattering regime. 

A number of authors (Faldt, 1971; Gunion and Blankenbecler, 1971; 

Cheng and Wu, 1972;.Namyslowski. 1972b)have suggested that the Glauber 

theory without consideration of deuteron recoil overestimates the over- 

lap integral and hence the cross section in the double-scattering regime. 

While it is appealing to think that the relative motion of initial- and final- 

state deuterons should diminish the wavefunction overlap, the magnitude 
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of the correction (as estimated, for example, in a covariant formalism 

by NamyslowskiJ972b) is approximately 20%, whereas the data appear 

to demand a factor of two suppression. Additional precision experi- 

ments seem required before it is worthwhile to take the leap of formula- 

ting the entire problem covariantly, with the complications of spin 

fully included. 

Since the scattering amplitude for elastic hadron-deuteron 

scattering in the intermediate momentum transfer region is dominated 

by quadrupole transitions between the deuteron S and D states, it is 

strongly dependent on the relative orientations of the momentum transfer 

and the deuteron spin. Thus, as Franc0 and Glauber (1969) remarked 

and Alberi and Bertocchi (1969b) demonstrated by explicit calculations, 

interesting effects could appear in experiments involving polarized 

deuteron targets. Indeed, with such a target, the interference dip can 

appear or not depending on the particular experimental arrangement, 

namely on the orientation of the polarization axis. Another interesting 

experiment using the spin-dependence arising from the D-wave component 

of the deuteron to produce high-energy aligned deuterons has been 

proposed by Harrington (i969a). He pointed out that this spin dependence 

could be studied in a double-scattering experiment in which a high energy 

deuteron beam is scattered from two hydrogen targets in succession. 

The experiment was carried out by Bunce, et al. (1972) using the 
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external deuteron beam of the Princeton-Pennsylvania Accelerator at 

3. 6 GeV/c, a momentum corresponding to p-d scattering at 1.0 GeV/c 

where the differential cross section has been measured by Bennett, et 

al. (1967). In a double-scattering experiment in which a deuteron beam 

is polarized by the first scattering and analyzed by the second scatter- 

ing, the differential cross section of the second scattering has the 

azimuthal dependence 

N($) = No (1 +AcosZ$ + Bcosh). (5. 38) 

The momentum transfer of the second scattering was fixed at -tb = 

(0. 2310. 016) (GeV/cj2, and the azimuthal asymmetry N(b) was 

measured over a range of momentum transfers of the first scattering. 

The measured values of the parameters A and B are shown in Fig. 29, 

together with fits based on Glauber theory, in which the D-state 

probability and real part of the NN scattering amplitude enter as 

parameters ~ Thus the experiment allows a Glauber model-dependent 

method for measuring the real parts of NN amplitudes at high energies. 

We also mention the experiments of Carter et al. (1968). who 

measured ri-d cross sections, and of Chase et al. (1969) on inelastic 

pion-deuteron scattering at 5. 53 GeV/c, leading to an outgoing pion 

plus anything in the final state (missing-mass experiment). The inelastic 

intensity, calculated from Eq. (5. 2.41, was found to be in good agreement 

with the data. [See also Hsiung et al. (1968j.l 



-95- NAL-THY-99 

We now turn to a comparison of the Glauber method with the 

Faddeev-Watson multiple scattering equation. Bhasin (1967) has 

studied the first four terms of the expansion (3. 38) for elastic hadron- 

deuteron scattering, 

T(-) z T 
11 2 

iT3+T G (+) T3 + T3 GO 
2 0 

(+I T2 + . . (5.39) 

As expected, the two first terms on the right reduce to Glauber’s 

single scattering terms if one ignores the dependence of T2 or T3 on 

the energy of the third particle and also assumes the two-body off-the- 

energy-shell amplitudes to be functions only of the momentum transfer. 

With these assumptions and additional requirement that ki = kf, the 

double scattering terms T2GOT3 and T3G0 T2 also reduce to the Glauber 

“eclipse” correction. F’umplin (1968) and Bhasin and Varma (1969) 

have investigated the importance of the off-shell corrections on the 

double scattering terms. They find that the corresponding effect for 

proton-deuteron scattering is largest in the interference region between 

single and double scattering. However, Harrington c.196913) has recently 

shown that in a potential model the off-energy-shell effects in the double 

scattering term must cancel the contribution of the remaining part of 

the multiple scattering series in the high-energy limit. (See also 

Section V. 3. ) It should be noted here that only in high-energy diffrac- 

tion theory does the multiple scattering series terminate after A terms. 

In the deuteron case considered here the triple, quadruple, . terms 

are small, since they contain at least one (unlikely) backward 
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scattering. Their sum could well annihilate the off-energy-shell 

contribution to the double scattering term, if the mechanism described 

by Harrington also works for interactions which cannot be described 

by potentials. 

While we are still discussing the multiple scattering series, it is 

worth mentioning a recent paper by Kofoed-Hansen (19691, who has 

pointed out that truncated versions of the Glauber series (5. 2) could 

produce misleading results, since the series is slowly converging in 

terms of multiplicity. This remark evidently does not apply to the 

deuteron case--where the multiplicity is two--but it is relevant in 

cases such as nucleus-nucleus collisions (France, 1967, 1970) as well 

as in quark model or multiple scattering theory of hadron-hadron 

scattering (Harrington and Pagnamenta, 1967, 1968, 1969; Deloff, 1967; 

Barnhill, 1967; Schrauner, Benofy and Cho, 1967; Chou and Yang, 1968; 

Frautschi and Margolis, 1968, Durand and Lipes, 1968). 

We now consider briefly the effect of three-body forces in hadron- 

deuteron collisions. Harrington (1968b) has studied corrections to the 

Glauber expression due to the scattering of the incident hadron from 

a pion being exchanged by the two target nucleons. Numerical 

estimates indicate that such an effect on the total cross section is quite 

small(< 1% at very high energies), but could possibly influence 
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the differential cross section at large momentum transfers. 

As we have emphasized above, the Glauber method is at its best 

for collisions in which the inelasticity is small, in particular for 

elastic scattering, for which the results in the high-energy small- 

angle limits are in excellent agreement with the data. Even in that 

case, however, one should keep in mind that several correction terms, 

typified by the contribution of inelastic intermediate states (see Fig. 30) 

should be included in the scattering amplitude. There is no simple way 

to take into account the contribution of such inelastic intermediate states 

within the framework of Glauber’s method. Fortunately, because of the 

mass difference, the reaction 

::; 
P+P+P+N (5.40) 

has a minimum momentum transfer greater than zero, so that two 

relatively violent scatterings of this type, leaving the deuteron in its 

bound state, are not likely to occur with high probability compared with 

the single and double scattering terms discussed before. Such “truly 

inelastic” corrections have been considered for proton-nucleus~ 

scattering by Pumplin and Ross (1968) and for pion-deuteron scattering 

by Alberi and Bertocchi (1969a) and Harrington (1970). We discuss them 

further in connection with Gribov’s Reggeon calculus approach in Section 

v. 3. The excellent agreement between conventional Glauber theory and 

the 19. 1 GeV/ c pd data of Allaby, et al. (1969) indicates that inelastic 



-98- NAL-THY-99 

corrections are negligible at that momentum. 

More serious problems arise when one wants to study coherent 

production reactions such as 

TI + Nucleus + A 1 + Nucleus 

n+d+A +d 
1 

(5.41a) 

(5.41b) 

p + He 
4 :‘- 4 

-N +He, etc. (5.41c) 

We shall return to this question in Section V. 3. We note, however, that 

existing discussions of unstable hadron-nucleon cross sections ignore 

the issue, of whether an unstable hadron has time to materialize as 

such before rescattering. Suppose the A1 to be a normal resonance, 

and consider reaction (5. 41a). Of particular interest is the term which 

describes the pion interacting with one nucleon and being excited into 

an Ai which subsequently scatters from a second nucleon. Does enough 

time elapse between the excitation and rescattering for the excited pion 

to pull itself together as an Ai? The simplest estimates (Goldhaber, 1972), 

stimulated by the recent experiment of Bemporad, et al. (1971) on 

pion + nucleus - (three or five pions) + nucleus which indicates (after 

a Goldhaber-Joachain analysis) rather small cross sections for non- 

resonant three pion and five pion systems on nucleons, suggest that the 

answer is no. 

Coherent production of vector mesons would seem to be a special, 

and favorable, case since according to the ideas of vector dominance 
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the incoming photon actually exists part of the time as an off-mass- 

shell vector meson. Some experimental results on the reaction yd - 

pod are discussed in Section V. 3. 

3. Hadron-Deuteron Scattering and Regge Theory 

How to calculated Regge cuts (branch cuts in the angular momentum 

plane) is one of the challenging theoretical problems of the present 

day, for which no solution seems close at hand. We therefore choose 

an historical approach to the relation between the Glauber formalism 

and Regge theory. In this way we shall encounter some of the false 

steps which have been taken in the past, and try to convey the theoretical 

atmosphere of the present. Some insight is gained into the connection 

between diffraction and Regge poles if, following Udgaonkar and Gell-Mann 

(1962), we understand the shrinkage of the diffraction peak by an optical 

analogu e . 

At high energies hadron-hadron scattering is apparently dominated 

by Pomeranchuk exchange. The X-Y elastic scattering invariant 

amplitude, which we represent in Fig. 31, has the form for small angles 

A XY(s,t) = Ii - cot[?raF(t)/21 > yX(t) yY(t) so 
cup(t) 

J (5.42) 

where s = -(pX + pY) 2 
is the square of the total c.m. energy, 

t= -(P, - p&)2 is the square of the four-momentum transfer, so is 
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the Regge scale energy-squared, and o?,(t) is the Pomeranchuk trajec- 

tory function: up(O) = 1. The total cross section is given in terms of 

this amplitude by the optical theorem; 

~~~~~~~~~ = $ImiAXyb.O)l = ~~(0) ~~(0). (5.43) 

Here we have explicitly exposed the factorization property of the pole 

residues. Let us rewrite (5.42) as 

A(s,t) = {i - cot[rrotp(t)/21 > so (3 
“p’t’ 

0 
atotal(s’ 

(5.44) 
. L YXNl yyWIYxW YyuN. 

Now assume that the Pomeranchuk trajectory is linear, QP(t) = 1 + et, 

and that the residue functions are slowly varying, so we may set the 

factor in square brackets equal to 1. Then for small t, we have 

A(s,t) = i s ototal(s) e 
l t1og (5) 

0 ’ (5.45) 

which exhibits, for E > 0, the shrinkage of the diffraction peak. 

We write the ,partial-wave series for A(s, t) 

A(s, t) = 8rri c 

2ibe 
(2f + I) P1 (cos es) (1 - e ). (5.46) 

Q 

We turn the sum over 1 into an integral, introduce the impact parameter 

b=2P s-- : , and use P 
P ( 

cos OS) = Pp (1 + 2t/2) = Jo[ b(-t)‘] . 

We then calculate f(s, t), an amplitude such that g = [ f(s, t) 1 2, which 

for NN scattering at high energies is f(s, t) = [ 4s (rr)* I -4A(s, t). 
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so that m 

f(s,t) = i 
/ 2(r)’ o 

2irbdb [ 1 - S(b,s)l J,[b(-t)‘i 

(5.47) 

z+ 

/ 
d2b_[ 1 - S(b_,s)l e 

ib_* q 
- 

2(lT)” 

where the transmission coefficient S(b, s) = e 
2ihp 

and q 
2 

=-t. Inthe 

exponential approximation(5.45) Fourier inversion gives the absorption 

coefficient [now o ! c 
total(s ” 

1 - S(b_,s) = 2 [E log(~)1 -* exp{ -b2/ [4e log(s)1 }. (5.48) 
0 sO 

Evidently the effective radius-squared (the value of b2 for which the 

absorption coefficient is I/e times its value at b = 0) is 46 log(?), 
sO 

which increases logarithmically with s. Likewise the transparency, 

which wedefine as [ 1 - S(h = 0,s)l -I, is logarithmically increasing 

with s because of the factor E log(:). Finally we find that the elastic 
0 

cross section 

J 
2 

0 
el 

= d2b/ 1 - S(b_,s)i2 = o s > 
32rr E lOg$i 

0 

(5.49) 

tends to zero as s - m 

Let us describe a nucleus approximately as a composite system 

specified by a wave function referring to the individual coordinates 

of the constituent nucleons. Assuming that high-energy NN scattering 

is controlled by Regge poles, we compute the amplitude for high-energy 
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N-d scattering. The probability distribution / $1 2 of the nucleon 

positions is integrated over the beam direction (z coordinates) to give 

a probability distribution P(b_*, -2 b ) of two-dimensional vectors b_. . Then 
I 

the transmission coefficient for the deuteron, Sd(b_, s), is just the 

averaged product of the transmission coefficients for the constituent 

nucleons : 

Sd(b s 1 =l;2bJ d2h2 P(p,, h,) S(b - h,. s) S(p - b2, s). (5. 50) 

Now we take the deuteron c. m. as the origin so that b1 = :P,: where p 

is the two-dimensional relative coordinate. Let the wave function-- 

ignoring spin--be +(p, z) and define 
- 

G(p2) = 7 dzJd2pi $(p,z)l 2 e’~‘~. 
-co 

(5.51) 

Then we get for the scattering amplitude and total cross section 

fXd(s,t) = 20 G(-t/4) B(t) (@(t)-’ 
0 

(5. 52) 

-$/d2p G(p2) B(-; - P_ )‘) B(-(; + P_ i”) 

x (pa (-l;+PJq+ a(-% 421 

and 
2 2 

tot 
IJ Xd 

= 20 - L2 d2e G(p’) [ B(-p2)] 2 (x)2a (-p )-2, (5.53) 
8rr sO 

where B(t) = {I + i cot [ r@(t)/ 21 Iso yX(t) yY(t)/yX(O) ~~(0) is the Regge 
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residue function. 

In addition to the Pomeranchuk pole term, with a coefficient twice 

as large in the forward direction as in the NN case, there is an eclipse 

term which corresponds to a continuous “smear” of Regge poles, i. e. 

to a Regge cut with branch point at 

a = Z&/4) - 1. (5.54) 
C 

This is the result ofudgaonkar and Gell-Mann (1962). At very high 

energies, the eclipse term at t = 0 vanishes like l/log (s/s,) and 

tot 
oXd 

- 2~s. [See also Gribov, Ioffe, Pomeranchuk, and Rudik (1962). 1 

This is sensible because,. as we saw above, the nucleons become very 

transparent at high energies. For intermediate energies, the eclipse 

term can be identified with Glauber’s. 

Abers et al. (1966) observed that from the point of view of Feynman 

graphs the double scattering term contains no Regge cut, so the validity 

of the result of Udgaonkar and Gell-Mann and, by extelrsion, of Glauber 

theory at high energies is questionable. To compress this discussion 

somewhat we draw from a recent lecture by Wilkin (1969). We may 

represent the Glauber terms graphically as the impulse (or single 

scattering) terms of Figs. 32a, b and the eclipse (or double scattering) 

term of Fig. 32~. Regarded as a Feynman diagram, the double scatter- 

ing graph has no Regge cut,because the off-mass-shell part of the loop 

integral cancels the Regge cut from the on-mass-shell contribution 
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which is obtained by replacing the propagator by a delta function. Thus 

it contributes asymptotically only as s 
-3 

, not as s/log s, which is given 

by the Glauber formula. ,4 general Feynman diagram as in Fig. 33 has 

a j-plane branch cut on the physical sheet only if both the left hand and 

the right hand blobs have nonzero third double spectral functions 

[ p,,(s, t)l in the t-channel sense. In other words, crossed lines are 

required on both sides of the graph; the simplest diagram with a Regge 

cut appears in Fig. 34 [cf. Mandelstam (1963), Wilkin (i964)l 

Such a result must be a source of embarrassment either for Glauber 

theory as embodied in the calculation of Udgaonkar and Gell-Mann or 

forFeynman graphs, ,if not for both. On the one hand Feynman diagrams 

are “fundamental” and therefore to be believed. On the other, Glauber 

theory has been checked experimentally for energies up to a few GeV. 

One may try to circumvent the difficulty by imputing to the projectile 

hadron an internal structure which includes a cross (e. g. , Fig. 34b) and 

claiming that the compositeness of hadrons restores the Regge cut. Such 

a calculation was performed by Abers et al. (19661, who thereby proposed 

to replace the Glauber eclipse with a complicated expression dependent 

upon the internal structure of the projectile. Assigning a particular 

internal structure to the projectile seems artificial, especially when 

the imputed structure may be absent. As Quigg (+970) emphasizes, the 

statement psu# 0 is equivalent to the statement that the projectile has 

definite (s-channel) signature. To the extent that exchange degeneracy is 
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exact, hadrons do not have definite signature and the cross, artificial 

or not, simply does not coriespond to physics. Under the assumption 

that duality diagrams are meaningful for Reggeon-hadron scattering, 

Finkelstein (1971) derived a selection rule for Regge cuts which makes 

more precise the conflict between arbitrary imputed structure and 

exchange degeneracy. This phenomenological argument provides 

strong circumstantial evidence against the imputed structure Feynman 

graph approach. 

Landshoff (1969) has estimated the energy at which the Glauber 

theory result (the Regge cut of Udgaonkar and Gell-Mann) ceases to be 

valid numerically under the assumption that the relevant amplitude is 

given by the Feynman graph of Fig. 32c, without assigning any structure 

to the projectile. As the deuteron is very lightly bound, the critical 

laboratory energy at which the Glauber theory should break down is very 

large. On the basis of heuristic arguments about the off-mass-shell 

behavior of scattering amplitudes, Landshoff estimates 

Ecritical = m projectile IM nucleon/Deuteron Binding Energy) ‘. 

(5.55) 

For incident nucleons this is about 20 GeV. Thus while the Feynman 

diagram considered has no cut in the j plane its numerical properties 

are quite similar over a wide range of energy to those of the Glauber 

eclipse term. 
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Further doubt has been cast upon the simple diagram approach by 

a potential theory calculation of Harrington (1969b). In Glauber theory 

the amplitude for scattering from a potential V is given by [ see 

Section II. 3 I 

f(q) = & J 
d7.b ei4,. 4 , eix (4) -1l , 

where m 

x(4) = - $ 
/ 

dz V(Sr. z). 

-m 

We let q E k-k_’ and invert the Fourier integral (5. 56). Thus 

f(4)=& d2qe 
J- 

+?.4 f(q), (5. 58) 

In momentum space we have 

G’(p) = 1 
(2*13 J d3x e’e’ ’ V(X), 

and,the phase shift expressed in terms of ? is 

J- d2q e -i9_. 4 v(g)‘. 

1 

We expand the integrand of (5. 56) in powers of ix (41, 

f=k J d2b eiq_'4 5 [ ix(4)ln 
2ni - n=l n! 

and substitute (5.60) into (5. 61) to obtain 

f = -2rri k ii $Jd2ti 

x t$) S(q2) . . * “‘gel ) TT(s_ -c gi). 

i -1 

(5. 56) 

(5.57) 

(5.59) 

(5.601 

(5.611 

(5.62) 
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This represents an infinite sum of ladder graphs in which the Feynman 

loop integrals are integrated only over transverse momentum components. 

We can reexpress (5. 56) in terms of the Born amplitude 

f,Cs_, = -2n 2 V(q), (5.631 

f = -hi k, fl $Jd2cii.. ./d2!n-i 

x(ifyq!) . . . (ifB” iFgi ‘)(5’64’ 

Thus we have a prescription for calculating the “absorptive corrections” 

to any Born term fB. Wilkin next applies these rules to rrd scattering 

to give some intuitive background to Harrington’s result. First notice 

that the vertex d - np is merely a deuteron wave function which we 

write in momentum space as $(p 1. If the np amplitude of Fig. 32b 

is the Born term fL(s_) we get 

1 
d3 q’ $(q/4 - 9’) O(q/4 +q’) fB(qL (5.65) 

which is the expected result. It is straightforward to verify that the 

right answer is obtained for Fig. 32~. 

Now consider the graphs in Fig. 35. Remarkably, both of these 

give the same answer, 

s 
(5.66) 

x d222 fBP(22) fBp@/2 + q-l - y2’. 
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which is recognizable as part of the Glauber multiple scattering term 

expanded in a Born series. Thus the Glauber theory includes triple 

scattering terms such as those in Fig.~ 35. Notice that the ordering 

of the rrp and rn potential interactions does not affect the contribution 

of the graph. This is true for any complicated graph, as can be proved 

from the rules obtained above. It is then a basic property of Glauber 

theory that the order in which the interactions take place does not 

matter. A picturesque explanation of this fact [ Wilkin (1969)] is 

that in deriving Glauber theory it is always assumed that the incident 

energy is large and any changes are very small. Complementary to 

this certainty in energy is an uncertainty in time: it is impossible to 

tell which interaction takes place first and hence there is a commutativity 

among the several scatterings. Glauber theory exploits this independence 

of time order by lumping all the up interactions together at one end of 

the (Glauber, not Feynman! ) diagram and pushing all the Tn interactions 

to the other end. 

Harrington’s calculation goes further. Employing the Faddeev 

multiple scattering series (cf. Sec. III. 2 of this review) he proves that 

in the high energy limit and in the Glauber approximation the off-shell 

contribution to the double scattering term is canceled by the higher 

order terms in the series. The proof consists in observing that in the 

high-energy limit the scattering amplitude is given by the Glauber 

approximation 
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T-T 
Glauber = c 

Tb) 
- Glauber ’ 

n 
(5.67) 

where Tg;auber is TCn) after the Glauber approximations have been 

made. If we break the linearized propagator into its 6 -function [ 6 1 

and principal value [ P 1 (off -mass -shell) parts and correspondingly 

separate T (2) 
Glauber as 

T(2) 
Glauber = Tj;Zl)auber, 6 + TE/auber,P ’ (5.68) 

then 

T 
Glauber = TE;auber ’ TzAuber, b ’ (5.69 1 

Thereby it follows that in the 

tion to TC2’ must be canceled 

scattering series 
m 

T t2) t c 
Ttn’ _ 

P n=3 

high-energy limit the off-shell contribu- 

by the higher-order terms in the multiple 

m 
T(2) 

Glauber, P + n=3 c 
.(n) 

Glauber 
= 0. (5.70) 

It is not known whether this exact cancellation carries over to 

the relativistic domain, but the likelihood that more complicated 

diagrams will continue to be important means that the use of a few 

Feynman graphs to debunk (or derive! 1 Glauber is a very dubious 

procedure. There is a lesson here for Regge cut calculations in nonnuclear 

hadron-hadron scattering as well. [ We do not pursue nondeuteron 

scattering any further here, but for the connection between multiple 

scattering and Regge cuts see the discussion by Jackson (197011 
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We now turn to the question of singularities in the Mandelstam 

variables. We shall not dwell on the analytic structure of the hadron- 

deuteron scattering amplitude in the momentum variables, for we are 

able to refer the reader to the elegant review by Ericson and Lecher 

(1969) on hadron-nucleus forward dispersion relations. In the language 

of S-matrix theory, the lightly bound structure of the deuteron is 

evidenced through the existence of anamalous threshold singularities 

(so called because they cannot be discerned in straightforward fashion 

from unitarity) in d - ab Regge residue functions [ Karplus et al. 

(1958 ,I . A rather complete discussion of the singularities of the dpn 

Regge residue function has recently been given by Lee (1968). Here 

we content ourselves with recalling for the reader what anomalous 

singularities are, by giving an intuitive discussion due to Bohr (1960). 

Consider the virtual process d Z np. The deuteron is stable in 

the usual sense because Md < M + Mn. For states below threshold, 
P 

with energies 1 wi 1 < Mi, a virtual decay can take place if all the 

particles have positive imaginary momenta (+iK ) in the z direction, 

say. The four-momentum vector of a particle with imaginary three- 

momentum is Euclidean: M2 
2 2 =o +K. The energy momentum 

conservation equation can be represented geometrically by a triangle 

in the W-K plane as in Fig. 36. For the virtual decay to occur all 

the energies 0 and pseudomomenta K must be positive, which means 

the triangle will close if Md2 > M 
2 

+ Mn2. Hence an anomalous 
P 
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singularity will occur for the deuteron because the deuteron mass 

satisfies 

(Mp + Mn)’ > Md2 > M 2 + M 2. 
P n 

For the deuteron this anomalous threshold lies very near the physical 

region, at 

tO 

2 (Md2 - M 2 - Mn2J2 
=4M - 

P 2 
= 0. 03(GeV/cJ2. (5.72) 

Md 

In most phenomenological studies the full complications of kinematics 

(in particular, of the anomalous threshold) have been ignored. As an 

:I: ” 
example we cite the analysis of coherent K (890) production Kd + K d 

at 4. 5 GeV/c of Eisner et al. (1968), in which the deuteron is treated as 

a structureless spin-l object. Typically statistics have been so low that 

more sophisticated analysis would be unwarranted. For example, see 

Buchner et al. (1969) for coherent K“ production at 3 GeV/c. Alberi 

and Bertocchi (1969a) estimated the contribution of inelastic intermediate 

meson states in nd + Td. Again the subtleties of kinematics were ignored 

as the Regge pole parametrization was used to give the Phragmgn- 

Lindelgff theorem connection between asymptotic energy dependence and 

the phase of an amplitude. Given the success of theories for ird - ird which 

take proper account of spin [ cf. V.2.1 , the corrections due to inelastic 

intermediate states are likely to be small. An exception to the general 

rule is the paper by Barger and Michael (1969) in which the full gore 
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of Lee’s kinematics is applied to pp - rr+d, despite the relative absence 

of data. 

Having analyzed Glauber theory in the J-plane and the singularities 

in the Mandelstam variables, we now consider a modification of the 

theory recently proposed by Gribov (1969b). This author has argued 

that for incident momenta > 10 GeV/c the screening effect changes 

markedly as inelastic rescattering becomes competitive with the elastic 

rescattering responsible for the conventional Glauber screening. 

Similar proposals have been advanced on intuitive or phenomenological 

grounds by Pumplin and Ross (1968), by Alberi and Bertocchi (1969a), 

and by Harrington (1970). Gribov’s proposed modification of Glauber 

theory has its roots in his earlier work on a Reggeon calculus. (Gribov, 

1967) and on the question of the vanishing of the eclipse term at very 

high energies (Gribov, 1969a). The essence of the suggestion is that 

inelastic scattering leading not only to discrete resonances, but also 

to continuum excitation, be taken into account in the computation of 

rescattering corrections. These inelastic intermediate states are 

indicated in Fig. 37; their contributions are to be evaluated as usual, 

by putting the intermediate states on the mass shell. 

It is straightforward to apply these ideas to an evaluation of the ?rd 

total cross section defect at high energies. Neglecting spin and 

assuming all production amplitudes to be purely positive imaginary, 

Gribov (1969b) writes the inelastic screening correction as 
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’ oinelastic = 2 xjt p(4t) da ,(t)/dt, (5.73) 

Q 

where p(t) is the deuteron form factor and do Q /dt is the differential cross 

section for production of the 1 th intermediate state. As data becomes 

available on the inclusive reaction 

TP -P + anything (5.74) 

[See, for example, Antipov, et al., 19721 it may prove useful to 

recast (5.73) as 
t minbf2) 

’ oinelastic 
= ~/d@~,s,/- dt p(4t) do 

dC.ef2/ s )dt 
(5.75) 

-m 

where do/dM2/s)dt is the inclusive cross section to produce a proton 

recoiling against missing mass AT 

Several attempts have been made to estimate inelastic screening 

effects on the basis of (5. 73). Gurvits and Marinov (1970) predicted that 

inelastic effects should diminish above 20 GeV/c. However, their con- 

clusion was based on the identification of a decreasing experimental 

cross section as “diffractive, ” and hence with a purely imaginary ampli- 

tude, in conflict with analyticity, and should be disregarded. Kancheli 

and Matinyan (1970), employing the triple-Regge techniques introduced 

by Kancheli (1970), traced qualitatively the energy dependence of the 

eclipse term. They found that, with the onset of inelastic rescattering 

the eclipse term increases until the inelastic screening reaches its 
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asymptotic limit, then decreases as the conventional Glauber term 

diminishes 5, la Udgaonkar, Gell-Mann, Gribov, Ioffe, Pomeranchuk, 

and Rudik, and approaches a constant limit given solely by inelastic 

screening. This is in accord with the expectations of Gribov (1969b). 

More recently, Sidhu and Quigg (1973) have given a quantitative 

estimate of the inelastic screening to be expected at high energies. 

They included as intermediate states all those multipion states which 

may be reached from the incident pion by diffractive excitation. For 

simplicity the differential cross sections are parametrized as exponen- 

tials 

dol/dt =AeoP exp [Apup (t-tQ (p,,,)) 1 , (5.76) 

where t Q is the minimum squared momentum transfer required to pro- 

‘duce the state e from an incident beam of momentum plab, and A1 is 

the slope of the differential cross section. If the deuteron form factor 

is approximated by an exponential as well, p(t) = e +, at 
, one may 

simplify (5.73) to 

‘oinelastic = 2 c 
AQop(a+Ap!-* exp [atQ(plab)l. (5.77) 

Q 

They took as intermediate states all channels containing an odd number 

of pions (> 1) and assigned them the cross section suggested by the Nova 

model for inclusive distributions (Jacob and Slansky, 1972). Choosing 

*Q 
= 2. 5(GeV/c) 

-2 
for every P , they computed the inelastic screening 

,. r~i :.’ 
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contributions shown in Fig. 38, which they estimate reliable within 

a factor of two in magnitude. The energy dependence is in agreement 

with the qualitative description given by Kancheli and Matinyan (1970). 

Recent measurement of the n*p total cross sections reveal several 

interesting features. Unlike the ir*p total cross sections [ Fig. 391 , 

which remain constant above 30 GeV/c, the rrd cross sections [ Fig. 401 

continue to fall. To the extent that the TTP cross sections are constant, 

the decrease of the ird cross sections must be laid to inelastic screening 

correstions. Gorin, et al. (1972) determined the amount of screening 

directly from the high-energy data as 

6. = ot(a+p) + c&p) - $[ o+r+d) + o&d) 1. (5. 78) 

Their results are shown in Fig. 41 together with the corresponding 

results of Galbraith, et al. (1965). The newly-measured screening 

corrections are clearly increasing with energy; the Serpukhov points 

are well-fitted by the form 6o = (1.39 + 0. 004 [p lab/ (1 GeV/c)l ” 05)mb. 

Taken literally, they seem to indicate the presence of additional screen- 

ing corrections, above and beyond those predicted by Glauber theory, 

of roughly the magnitude that Sidhu and Quigg (1973) found plausible in 

Gribov’s (1969b) formulation. Less convincing evidence for a similar 

effect in pd scattering is shown in Fig. 42, compiled by Kreisler, et al. 

(1968 ,. 
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Following the lead of Kancheli and Matinyan (1970), Quigg and Wang 

(1973) have calculated the nd total cross section defect using as input 

a triple- Regge analysis of the reaction rr-p - p + anything published 

by Paige and Wang (1972). In this way the phases of amplitudes are 

prescribed by the Regge pole signature factors, and need not be assumed. 

The results of their calculation (cf. Fig. 41) are in remarkable agree- 

ment with the trend of the Serpukhov data, and differ markedly from 

the conventional Glauber theory prediction at high energies. Indeed 

it does not seem too much to hope that deuteron corrections can provide 

an important consistency check on the Reggeon calculus program in 

which Gribov vertices are extracted from data on inclusive reactions. 

To conclude this section, we shall now present a few remarks 

concerning the experimental situation. As we have indicated in the 

introduction to this review of high-energy hadron-deuteron scattering, 

Glauber theory has been tested and refined extensively for elastic 

hadron-deuteron collisions. Such detailed comparison of theory with 

experiment has not yet been made in inelastic reactions, and we therefore 

wish to close by making some simple remarks about inelastic scattering. 

Little is known about the catastrophic case in which the deuteron is 

broken up and one of the constituent nucleons is transformed into a 

nucleon resonance or a hyperon. A purely experimental investigation of 

“< 
great value is the comparison of N production cross sections off 
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deuterons with the corresponding cross sections off protons. For 

example, examination of 

K+d -K” A 
++ 

ns vs Kt p - K” A 
t+ 

(5.79) 

will reveal whether the neutron is truly a spectator or not. This kind 

of information is needed for one critically to assess the evidence for 

11 exotic” I = 2 exchange reported in a comparison of vp - IT* A with 

yd + T*A ns. [ See the discussion by Diebold (1969). 1 One such 

com~parison has been published by Buchner, et al. (1971) who claim 

that at 2.97 GeV/c the differential cross section for Kfd -K 
‘ho 

A++n 
S 

is not distinguishible from the differential cross section for K’p + K 
:::. ++ 

A . 

In their data the impulse approximation seems completely adequate. 

Backward hadron-deuteron scattering is a case in which the Glauber 

approximation would presumably break down. 

The most straightforward reaction is pd + dp, for which Bertocchi and 

Capella (1967) proposed a double scattering mechanism with nucleon 

exchange which was in satisfactory agreement with the data of Coleman, 

et al. (1966). No single (known) particle exchange is allowed in nd - drr, 

so any explanation of this reaction will suffer all the ambiguities of exotic 

Regge cut box graphs for hadron-hadron scattering. 

Coherent excitation of the projectile seems a more tractable problem 

theoretically, and several experiments have been proposed (Bertocchi 

and Caneschi, 1967; Formanek and Trefil, 1967) as means to unstable 
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hadron-nucleon cross sections. Of these we mention in particular 

(i) nd-A d 
1 ’ 
::: 

(ii) pd -N (1688)d, 

(iii) Kd + Qd, 

(iv) yd - pod. 

(5.80) 

All of these final states may be obtained by vacuum exchange from the 

initial states. Using the multiple scattering formalism, we can formu- 

late the problem to show explicitly what is to be learned from this class 

of experiments. 

For a general coherent production 

i:i 
X+d-X +d (5.81) 

we generalize the multiple scattering expansion (3. 38) in an obvious 

way to write 

T=T c T + E :% G :,:T + E :I; G 
P n Xn X’p XP X 

:1; Tn + Tn + Tn G x EXp + 

(5.82) 
+T G E f...., 

P X Xn 

where Eij describes the elastic scattering of particules i and j and Tk 

is the amplitude corresponding to the process Xk +~X k. For applications 

one assumes in the spirit of Harrington (2969b) that the infinite series 

implied by (5.82) can be replaced by the on-shell contributions to the 
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terms we have displayed explicitly. Then for the reactions (5.80) above 

everything is known (or otherwise measurable) except the X:“-nucleon 

elastic scattering amplitude. Thus diffractive excitation of hadron 

resonances off deuterons becomes a technique for studying unstable 

hadron-nucleon scattering. Here we have committed the usual sin, 

discussed in Section V. 2, of assuming that the excited object indeed 

corresponds to X:” when it interacts with the second nucleon. 

We have already remarked that this implicit assumption is more 

plausible for reaction (iv) than for the others. In a recent experiment 

Anderson, et al. (1971) have studied yd + pod at 6, 12 and 18 GeV over 

a wide range of momentum transfer. Their data, which are shown in 

Fig. 43, greatly extend the older results of Hilpert, et aL(j.970). The 

shape of the differential cross section is the one characteristic of elastic 

.hadron-deuteron scattering that we have seen already in Figs. 21, 24 - 

29. Using the spin formalism of ZIichael and Wilkin ( 1969) and assuming 

equality of the pop and pan elastic scattering amplitudes, Anderson et al. 

0 extracted from their data the differential cross section for p -nucleon 

scattering over a limited range of momentum transfer. Their results 

are compared with the differential cross sections for rr-p - n-p in Fig. 

44. The rough agreement exhibited there is in accord with simple quark 

model ideas. Because of the ambiguities in the details of the theory in 

the region of the break in dcr/dt for yd - pod. the analysis cannot 
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reliably be extended to larger values of 4. 
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FIGURE CAPTIONS 

Fig. 1. The real part of the scattering amplitude for a superposition 

of two Yukawa potentials of the form given in Eq. (2. 52), 

with U = 
0 

-20, a = 1, p = 1.125, and ka = 5. The solid curve 

shows the exact result, the dashed curve gives the eikonal 

result, and the dashed-dotted curve is the second Born 

approximation. (From Byron, Joachain and Mund, 1973. ) 

Fig. 2. Same as Fig. 1 except that the imaginary part of the ampli- 

tude is shown. (From Byron, Joachain and Mund, 1973. ) 

Fig. 3. The real part of the scattering amplitude for a superposition 

of two Yukawa potentials of the form given in Eq. (2. 52), 

with U 
0 

= -20, a = 1, p = 1.125, and ka = 2. The solid curve 

shows the exact result and the dashed curve gives the eikonal 

result. (From Byron, Joachain and Mund, 1973..) 

Fig. 4. Same as Fig. 3 except that the imaginary part of the amplitude 

is shown. (From Byron, Joachain and Mund, 1973). 

Fig. 5. Illustration of the distorted-wave Born approximation for 

a process A + B - C + D. 

Fig. 6. Comparison of the energy dependence of the differential cross 
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section for electron and positron elastic scattering by 

hydrogen atoms, as given by the first order FWMS expansion 

and by the first Born approximation. [ Taken from Sinfailam 

and Chen, 1972. 1 

Fig. 7. Differential cross section for elastic scattering of electrons 

and positrons by atomic hydrogen at an energy of 100 eV. 

The solid curve is obtained for electrons by using the 

eikonal-Born series method (Byron and Joachain, 1973b). 

The dash-double dot curve is the corresponding one for 

positrons. The dashed curve represents the first Born 

approximation, and the dash-dot curve corresponds to the 

Glauber approximation. The experimental points refer to 

the work of Teubner, Williams and Carver, quoted in Tai, 

Teubner and Bassel (1969). [ From Byron and Joachain. 1973b. i 

Fig. 8. Differential cross section for the excitation of the 2s state 

of atomic hydrogen by electrons at an incident energy of 100 eV. 

Curve 1: Glauber approximation (Tai, Bassel, Gerjuoy and 

France, 1970); Curve 2: First Born approximation; Curve 3: 

Eikonal DWBA method with static distorting potentials (Chen, 

Joachain and Watson, 1972); Curve 4: Eikonal DWBA method 

with Glauber distorting potentials (Joachain and Vanderpoorten, 

1973a). [Taken from Joachain and Vanderpoorten, 1973a. ] 
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Fig. 9. Total cross section for the excitation of the 2~~ state of 

atomic hydrogen by electron impact as a function of the inci- 

dent energy. Curve 1: First Born approximation; Curve 2: 

four-channel approximation of Sullivan, Coleman and 

Bransden (1972); Curve 3: Glauber approximation (Tai, 

Bassel, Gerjuoy and France, 1970); Curve 4: Eikonal 

DWBA method with Glauber distorting potentials (Joachain 

and Vanderpoorten, 1973a); Curve 4’: same as curve 4, 

except that the quantity Q, defined by Long, Cox and Smith 

(1968) is shown; Curve 5: Eikonal calculation of Byron (1971), 

using Eq. (3. 56); (x): four-state close-coupling calculation 

for D 2p (Burke, Schey and Smith, 1963); (+): four-state 

close coupling calculation for Q, (Burke et al., 1963). The 

dots are the experimental data of Long, Cox and Smith (1968). 

[ Taken from Joachain and Vanderpoorten, 1973a. 1 

Fig. 10. Differential cross section for elastic scattering of electrons 

by helium at an incident electron energy of 500 eV. The solid 

curve is obtained from the eikonal-Born series method of 

Byron and Joachain (1973b). The dash-dot curve represents 

the Glauber approximation; the dashed curve is the first Born 

approximation. The dots correspnd to the absolute measure- 

ments of Bromberg (1969). [Taken from Byron and Joachain, 

1973b. 1 

--..-I 
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Fig. 11. Same as Fig. 10, except that the quantity da/dS2 x sin 0 is 

shown in order to exhibit more clearly the larger angle 

behavior of the various theoretical curves. [Taken from 

Byron and Joachain, 197313.1 

Fig. 12. Differential cross section for elastic electron-helium 

scattering at 300 eV. Curve 1: eikonal-Born series 

calculations of Byron and Joachain (1973b); Curve 2: 

calculations of Berrington, Bransden and Coleman (1973); 

Curve 3: eikonal optical model results of Joachain and 

Mittleman (197ia, b). The dash-dot curve represents the 

Glauber approximation and the dashed curve the first Born 

approximation. The experimental points refer to the 

measurements of Vriens, Kuyatt and Mielczarek (1968) 
as renormalized by the absolute measurements 
and of Chamberlain, Mielczarek and Kuyatt (1970). 

Fig. 13. Differential cross section for the process e- + He(l IS) + 

e- + He(2 4s) at an incident energy of 200 eV. Curve 1: 

First Born approximation; Curve 2: Eikonal DWBA method 

with static distorting potentials (Joachain and Vanderpoorten, 

1973b); Curve 3: Eikonal DWBA method with Glauber distor- 

ting potentials (Joachain and Vanderpoorten, 1973b); Curve 4: 

four-channel calculations of Berrington, Bransden and Cole- 

man (1973); (x): Second Born results of Woollings and 
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McDowell (1972). The dots refer to the measurements~of 

Vriens, Simpson and Mielczarek (1968) renormalzed by-Chamber- 

lain, Mielczarek and Kuyatt (1970). [ Taken from Joachain 

and Vanderpoorten, 1973b. 1 

Fig. 14. Total cross section for the process e- + He(l IS) - 

e- + He(2 
1 

P) as a function of the incident electron energy. 

Curve 1: four-channel calculation of Berrington, Bransden 

and Coleman (1973); Curve 2: First Born approximation; 

Curve 3: Eikonal DWBA method with Glauber distorting 

potentials (Joachain and Vanderpoorten, 197313); Curve 4: 

Eikonal calculations of Byron (1971). The triangles (A) 

are the experimental points of de Jongh and Van Eck (1971); 

the circles refer to the measurements of Donaldson, Hender 

and McConkey (1972). [ Taken from Joachain and Vanderpoorten, 

1973b. 1 

Fig. 15. The differential cross section for the process e- + He(l ‘5) + 

e- + He(2 3S) at an incident electron energy of 225 eV. The 

solid curve refers to the first Born approximation. The 

dash-dot curve corresponds to the Ochkur approximation 

(Ochkur and Brattsev, 1965). The squares are the results 

of the many-body eikonal approximation (Byron and Joachain,l972). 
The dots refer to the measurements of Vriens, Simpson, and 
Mielczarek (1968 ), renormalized by Chamberlain, Mielczarek, 
and Kuyatt (1970). [From Byron and Joachain, 1972. ] 
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Fig. 16 The two types of diagrams which contribute to elastic hadron- 

deuteron scattering in the high-energy diffraction theory. 

[See Eq. (5. 16). 1 (a) Single scattering diagram; (b) double 

scattering diagram. Another single scattering diagram with 

proton and neutron interchanged also contributes to the 

scattering. 

Fig. 17. The various processes which contribute to charge-exchange 

scattering by the deuteron in the case of a positively charged 

incident hadron of isotopic spin ? / 2. 

. 
Fig. 18. The double charge-exchange process. 

Fig. 19. The total and absorption cross sections for antiproton- 

deuteron scattering. From Franc0 and Glauber (1966). 

Fig. 20. The contributions to proton-deuteron elastic scattering 

from the single and double scattering terms in the region 

15 to 20 GeV/c. From Glauber (1969). 

Fig. 21. The proton-deuteron elastic scattering data of Bennett, et al. 

(1967 ), showing the absence of a dip in the “intermediate” 

region of momentum transfers. 

Fig. 22. Squares of the deuteron form factors given by the hard core 

model of Reid (1968). 
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Fig. 23. A simple model calculation [ Michael and Wilkin, 1968 1 

showing how the contribution from quadrupole transitions 

fills in the expected dip in the rrd differential cross section. 

Fig. 24. Comparison of the theoretical calculations by Alberi and 

Bertocchi (196913) with the rrd elastic scattering data of 

Bradamante, et al. (1968) at 895 MeV/c. The dashed 

curve corresponds to a pure S-wave deuteron wave function. 

The solid curve includes the effect of the D-wave. 

Fig. 25. The differential cross section for r-d elastic scattering at 

9 GeV/c calculated by Sidhu and Quigg (1973) is compared 

with the data of the CERN-Trieste Group (Bradamante, et al. , 

1971). In addition to the statistical errors shown, the data 

carry an absolute normalization error of 20%. 

Fig. 26. Same as Fig. 25 at 13.0 GeV/c. 

Fig. 27. Same as Fig. 25 at 15. 2 GeV/c. 

Fig. 28. Comparison of the theoretical predictions of Franc0 and 

Glauber (1968) with the proton-deuteron elastic scattering 

experiments (a) at 1 GeV by Bennett, et al. (1967); (b) at 

2 GeV by Coleman, et al. (1966). 
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Fig. 29. Fits to the data of Bunce, et al. (1972) using the Glauber 

model. (a) The coefficient A in N( VP) = No(l + Acos2~ + 

Bcos p ); (b) The coefficient B; (c) Differential cross section 

from Bennett, et al. (1967). 

Fig. 30. Diagram corresponding to the contribution of an inelastic 

intermediate state for elastic scattering. 

Fig. 31. Reggeon exchange diagram for X-Y elastic scattering, which 

is governed by Pomeranchuk (P) exchange. 

Fig. 32. Graphical representation of the Glauber series for hadron 

(dashed line) - deuteron scattering: (a) and (b) impulse 

terms; (c) eclipse term. The wavy lines are Regge poles, 

the solid line the proton and the dotted line the neutron. 

Fig. 33. General Fey-nman graph for two-Reggeon exchange in (quasi) 

two-body scattering. The blobs may have complicated 

structure. 

Fig. 34. (a) The simplest Feynman graph which has a Regge cut; (b) 

redrawn for hadron-deuteron scattering. 

Fig. 35. Triple scattering Feynman graphs which appear in the Born 

series for the Glauber eclipse term. 
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Fig. 36. The virtual dissociation d 2 np for imaginary momenta of 

the three ~particles. The length of a vector is proportional 

to the mass of the corresponding particle. 

Fig. 37. Gribov’s (1969b) proposed double scattering diagram which 

contains the full spectrum of physical states into which the 

projectile may be excited. In conventional Glauber theory, 

only the projectile itself is retained in the intermediate 

state. 

Fig. 38. Inelastic screening corrections to the pion-deuteron total 

cross section calculated in a nova model by Sidhu and Quigg 

(1973). Compare the experimental results shown in Fig. 41. 

Fig, 39. Pion-nucleon total cross sections at high energies. The 

v-p points are from Foley, et al. (1967) LO1 and from 

Gorin, et al. (1971) [Ol ; the rrfp points are from Foley, 

et al. (1967) [+I andfromDenisov, et al. (1971) [el. 

Fig. 40. Pion-deuteron total cross sections at high energies. Notice 

that whereas the pion-nucleon total cross sections shown in 

Fig. 39 are essentially constant between 30 and 60 GeV/c, 

the pion deuteron cross sections continue to decrease. 

Fig. 41. Experimental results for the screening correction 6 o are 
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shown together with the expectations of Glauber theory 

(solid curve). Data are from Galbraith, et al. (1965) [O] 

and from Gorin, et al. (1971) [Ol . The dotted line is a 

best fit of the form A + Bpc to the Serpukhov data. The 

dashed line is the calculation of Quigg and Wang (1973) 

which combines Gribov’s scheme with a triple-Reggeon fit 

to inclusive spectra. 

Fig. 42. Compilation of data on the pd total cross section defect 

(from Kreisler, et al., 1968). 

Fig. 43. Differential cross sections for the reaction yd - pod at 

6, 12, and 18 GeV/c from the experiment of Anderson, et al. 

(1971). The solid lines are Glauber theory fits made to 

extract information on p”-nucleon scatteri ng. 

Fig. 44. Differential p”- nucleon scattering cross sections as derived 

from the experiment of Anderson, et al. (1971). Only 

experimental errors are indicated; the authors estimate 

a theoretical uncertainty of about 10%. For comparison, 

the solid lines represent r-p elastic scattering results of 

Foley, et al. (1963a)at 7, 13, and 17 GeV/c. 
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