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ABSTRACT 

We discuss in a unified and straightforward manner the various 

requirements for the vanishing of the couplings of a vacuum pole with 

av(0) = 1 and factorizable residues. We show how the proof of these 

results goes through even in the presence of J-plane branch cuts which 

may collide with the pole at J = 1, if the residue at the pole remains 

factorized. Special attention is devoted to the question of the two particle- 

vacuum pole coupling which sets the scale of total cross sections. We 

indicate how the argument that this may also vanish can be incorrect. 
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1 Introduction 

over the past several years rather severe restrictions 

have been given or: the allowed couplings of the vacuum trajectory 

when it is supposed to have +(o)=l, in order to account for 

the remarkable constancy of hadron total cross sections. Several 

of these restrictions are moderately old and familiar" and 

require the two vacuum-one particle coupling to vanish when 

the Reggeon four momenta, qi, have qf=O. Some of these restrict- 

ions have been more recently derived, such as the vanishing of 

the three vacuum vertex appearing in the Reggeon calculus 
2. and 

in inclusive reactions 3. and the coupling of the vacuum trajectory 

to any two states of unequal mass 4.,5. or even to any Reggeon 

and other particles. 4.,5.,6. The most striking result 4.97. is 

that at q2=0 the vacuum trajectory appears at first sight to 

decouple from two particles; for example, the two pion-vacuum 

coupling would vanish. This, of course, immediately implies 

that the Pomeron does not contribute to total cross sections 

and the whole raison d'etre for discussing it would be lost. 

In this note we would like to present a straight- 

forward, and we believe instructive, derivation of these 

restrictions. It sets the issues out rather plainly and because 

of the importance of the problem being considered, it may be 

of some general value to have in hand a unified discussion. 

Beyond pedagogy we show how the decoupling phenomena transpire 

even in the presence of J-plane cuts which may collide with poles 

at t=o. Also we give a critical presentation of the result that 

the Pomeron-two particle coupling vanishes at q2=0 pointing out 

that the argument could well be invalidated by additional structure 

in the vacuum coupling to many particle states at ql=O. A detailed 

accotlnt of the source and consequences of such structure is 

reserved for a separate article. 8. 



II Derivation of the Restrictions on Vacuum Couplings 

Our procedure here will be to follow the technique of 

Reference 5 and use the Schwartz inequality and the vanishing 

of the three Pomeron vertex measured in inclusive processes to 

provide restrictions on the coupling of the vacuum trajectory. 

To: establish our notation and to provide some connection 

among the works in the various cited papers let us begin with 

the amplitude fori'he exclusive reaction a+b+ c + N particles 

with invariant mass M. This is shown in Figure 1. We choose 
2 2 the usual variables s = (p, + p,) , q = (p, - p,) 

2 and imagine 

that an appropriate choice of cluster variables for the N particle 

missing mass has been made. Denote these variables by Y; besides 

invariant subenergies and momentum transfers these variables 

must specify the orientation of the cluster particles with 

respect to a, b, and c, We want to consider this exclusive 

amplitude for large incident energy s with qL, M, and v fixed. 

The behaviour in this limit coming from the exchange of a 

factorizable Regge pole with trajectory C$i$a) will be 

T ub+,-$ k@bJ~ - 
4303 

A’R”“/%c~ (j”) /%NR c$~r;M) 1 (1) 

where j?~q is the Reggeon-two particle coupling and Pb#f( 
is the Reggeon-particle- N particle coupling. Any behaviour of 

%b -c-c N arising from other Regge poles or from J-plane 

branch cuts can be distinguished at this point by their distinct 

s dependence, and therefore, we may quite generally, even 

when poles and cuts are colliding, speak separately about 

amy given Regge pole exchange as in (1). 

It is always possible to label the couplings /3 by some 
2 choice of invariants like q , but it is often advantageous 2. 

to give explicitly the components of momenta, especially the 

Reggeon momentum q, perpendicular to the plane (in four space) 



-4- 

formed by the incoming momenta p, and pb. To see something of 

the equivalence of the characterizations let us work in the 

rest frame of particle b and choose a to move along the 3-axis 

with large momentum p: 

jl, = (E,o, o,b), 

and bb= c mblo,O, 0). 

In this frame we give q as 

8= (gc, $4. ) $3). 

Asp+& 

(3) 

(4 

A:~~~wI;+~I,E - aTh,b 6) 

We require p;q to remain finite in the limit corresponding 

to (l), so 

id 

and to-83 = 0 (yk). C?‘) 
In addition since M2= (q + P,)~ is fixed,pdq =mbqo is finite. 

Thus the ma** squared of the Reggeon is 

f = cgc-@&q3) - g; = - g; + o( i/Al 01 

wher; g~=i&l . So to order l/s it suffices to give fL instead 

of 9 as a label for the Reggeon. We remind the reader that 

all these statement* are really familiar from the use of 

infinite momentum variables in field theory. 

Now since the whole idea of the dominance of some J-p??ne 

singularity, pole or cut, is meaningful onI) to 0(1/s), the 

two labelings are identical in physical content. irhe fL 

not:ltion has the additional virtue of reminding us that statements 

we will make about Reggeons are in reference to exchanged 

objects in some process where a time, 3-axis plane is defined. 

We shall adopt this designation in our subsequent discussion. 

After this small kinematic digression we are ready to 



turn our attention to the problem at hand. Choose particle 

c in Equation (1). to be the same as a, but with momentum p;. 

We may now pick out from the asymptotic behaviour of Tk;,,,,Ir, 

the contribution of the vacuum trajectory 

.- \/ 
1 = /a 

d, i $1) 
sb+QN FJ CL&V (8~) pb,,,,, (.& M,v)* CQ) 

Form the quantity (shown in Figure 2) 

where d and f are any two hadron states, with invariant masses 
2 

and q 
2 

'd f respectively, which can communicate with the chosen 

N particle state. 'Ike sum on N includes the usual phase space 

integration consistent with p: = M 2 
. This sum in (10) is, 

up to some constants, just the imaginary part of the "five 

point" function a + b-+a + d + f taken in the variable P120 

The Schwartz inequality provides an upper bound tn this 

sum in the form 

s L z I T;{+.d i” s’~gd+g~-/d 3 I (Ii) 
N 

where we recognize the first term on the right a.s the vacuum 

pole contribution to the inclusive cross section for a + b-> 
2 2 a + anything in the reg$on ~~3~3, q , I4 fixed, while the 

second term is the forward absorptive part of the quasi- two body 

process d + f 4 d + f. (Again see Figure 2.) 

Our next step is to choose the hadron state f such that 
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the quantum numbers in the gf channel include the vacuum and 

then consider the limit of (11) as M2-?C0 . It is necessary 

to take this limit maintaining s/M23 I% ) so the kinematic 

statements above are still correct. 

On the right hand side of our inequality we encounter 

as the leading behaviour 

[ $d ($1) p b),\/ (‘0) 

x [ j$jdv (0) p.fJ v (0.) (Ma)“‘viO’J , 0 la 

where gv(qL ) 1s the three vacuum pole coupling with two legs 

carrying 
?J 

. One the left hand 

minimum momentum transfer tfb = 

large M 2 , so we may extract out 

~~ even at (qT1;)L =O. This is 

side we have a process with 

(P, - qf)2 of order l/M4 for 

the leading contribution in 

[Pvdil (YQ- j 8: ) (pFb)~=O)/3bfV (8;joi;D)tp,~a~~*1(M~~Y10il * ' "j 

It is important to note that branch cuts in the J-plane may 

be present and contribute both to (12) and to (13), but at 

( ‘$bL .) =O the pole term provides the leading behaviour by 

powers of logM2. We have written (12) and (13) in factorized 

form making quite explicit our assumption that the leading 

pole at 4 
V 

((j) factorizes even in the presence of colliding 

cuts. 

At this point we call upon References 2 and 3 to remind 

us that if~(y(o)=l,~y(-~~~o)=~. So for @=O , the leading 

behaviour on the right hand side of/ch e inequality vanishes) 

and so it must on the left. We learn then (see Figure 3) 
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p”&/ (g,:Oj g;, g:=d = 0 

that is, two vacuum trajectories with fi=O must decouple 

from any hadron state d identically for all choices of 

variables for d. This is the key result. 4. I5. The various 

decouplings listed in the introduction follow from this 

restriction on the two vacuum coupling. 

First, split d into two clusters d 
1 

and d 
2 

each of which 

can couple to vacuum quantum numbers. As (14) must vanish 

for all q; = (q 
dl + 'd2 )"9 the contribution of any particular 

exchange between the clusters must also vanish. Indeed the 

term coming from the factorizable vacuum pole (see Figure 

4) 2 M?J 
tl ) d /3,g,\1(81=% fd71 h) p v&/j h, Q J g:=d 0s > 

must be zero, where. k = (q - qd,) = (qd2 - 9' ). Thus, 

and one vacuum pole with $1~0 decouples. 

Second, split d into two clusters again,,this time choosing 

each cluster to carry the quantum numbers of some Regge 

trajectory R. The contribution to (14) of the exchange of 

this particular trajectory ( Figure 5) 

must be zero. So we learn 

BlJdR (8150, f; ) Jkl\ = 0; 

W) 

118) 

thnt is, a vacuum pole with G=O decouples from any Regge 
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trajectory and any hadron state with the appropriate quantum 

nmbers.4'*5-*6* 

This last result can be extrapolated with no ambiguity 

to a single particle state, call it b, at k: = -mt when 

q: # 4. (We will discuss this important case and the argument 

of Brewer and Weis 7. in one moment.) This means that the 

coupling of a Pomeron at g,=o to a particle b and any 

hadron state d vanishes. Precisely this coupling is measured 

in the diffraction dissociation cross section a + b-> a + 

anything. Our result4"5' says that the contribution of the 

vacuum pole to the differential cross section dr(a+b+a'+ 

Missing Mass)/dq'dN* at q*=O will vanish for any value of 

the missing mass M#mb. The depth of a dip at q*=O or more 

correctly the tendency toward a dip at (q2)mi,=O(l/s2) will 

be set by the size of secondary contributions, cuts and poles. 

Of course, we are unable to say anything quantitative about 

that. However, if one sees the dip at all, then he must see 

it become deeper as the initial energy is increased. 

This covers all of the physically interesting decoupling 

results except the most intriguing one 4.,7. that the vacuum 

pole at $1=0 must also decouple from two particles. me 

next section is devoted to that. 



III The Vacuum Pole - Two Particle COUpling 

In this section we shall discuss the question of whether 

the decoupling of a L=O Pomeron from any Reggeon and any 

hadron state indeed necessitates the vanishing of the Pomeron- 

ix;0 pnrticle coupling xiiich is supposed to ,rivr2 +:-IS: 5::.1:: 

of constant total cross sections. This matter has been treated 
n 

in detail hy ilrower and lieis I. , and we shall conment on 

their work after our own treatment. 

Let us begin with the statement of Equation (18) extrap- 

olated to 1,:=-&t 
\ 

/$,dv h;, j;, @=d = 0, 

and inquire how this can occur. To be concrete consider b 

a pion and d a state of three pions. From the point of view 

of singularities in variables connected with the state d 

any contribution to (1')) which involves a Pomeron at ,c 0 

connecting states of different mass must be zero. Definite 

contributions not suffering from this problem are pole terms 

such as the one shown in Figure 6. The residue at this pole 

and at each of the other poles is proportional to P irnv (0) /g 
If these are the only terms singular as qi 0, which one 

would expect from the usual notions of analyticity, then 

(19) requires jTEKV [o) = 0 . The same argument applied to 

other choices for the states b and d leads to the con- 

clusion that j3b&,j~Q)O(~~=O . It is clear from this 

very elementary argument that the key point is the persistance 

of a conventional pole structure in pi,dV . '&at additional 

singularities might well be playing a role may be seen by 

remembering that our coupline (19) has been extracted as the 

residue of a Regge pole in soms larger process, Just at the 

point of interest, namely q, -7 0, however, the enerm across 

that Regge pole is no longer allowed to become large, and 

it is no longer appropriate to consider that pole exchange 
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as an asymptotic representation of the overall amplitude. 

Indeed, - the full amplitude certainly has a pole at ky=-mz 

whose residue is connected with FbbV . It is not COrreCt 

to assume that only some particular piece of the amplitude 

has that particle pole unless it is the appropriate represent- 

ation of the full amplitude in a region of phase space. When, 

i* (19), si#mE (that is, s,#O), then the Regge pole exchange 

term is a valid representation and the pole must be in it. 

So our result on diffraction dissociation sttids. 

It is our opinion that the right way to look at the apparent 

vanighing of pbhv(o) is that there must be additional 

structure in multiparticle amplitudes at qo=O and one should 

find the physics behind it. Precisely such a suggestion will 

be explored in detail in Reference 8. 

Although their argument is couched in rather different 

terms our observation applies to the work of Brewer and Weis 7. 

as well. They proceeded as follows. 

(18) they take qz=mz 

In the decoupling result 

of some single particle state d lying 

on the Regge trajectory R. Then they remark that this coupling 

appears in the five point function of Figure 7, whose asymptotic 

behaviour we. have written in (13) for large s and s2=M 2 

h4aYg3 (AJR(BIJ /3VdR ( + ) XgI) , 

which using the kinematic relation 

correct as usual to leading order in energy, they write as 

I ) 4 dv $1 du al) c 1 4 RC&) PzJ. 

ho) 
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'&he relation between R and B 

causes no problems when $1#0 , but appears to introduce 

a spurious singularity at J$t=-mJa into R when b;= 0 . 

Brewer and Weis argue in essence that no such behaviour can 

be present in the full five point function and use know- 

ledge of the analytic properties of the vertex R to see how 

this singularity may be canceled in the asymptotic form (22) 

by itself.'Ehey conclude this requires j3ddv(O)=Or 

This is certainly an unassailable exercise as long as 

(22) is R proper representation of the 2-33 amplitude. We 

see from (21), however, that in the case $I= 0, taking 

!?2;=+Qa means s,s2/s is zero. Since we want there to still 

be a vacuum pole exchanged across the energy s,, this means 

s2 cannot be large. the f' Eve point function is therefore no 

longer given by (22) and one need not cancel the singularities 

just mentioned by the structure of the two Reggeon-particle 

vertex itself. It is quite possible forthere to appear 

additional structure for finite s2 which can be put together 

with (22), say, to remove the unwanted singularities. 

Contact is made with our previous argument by noting that when 

$i=O j k$ -mi , then so+ 0. 
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IV Discussion and Observations 

We have enumerated several processes from which the 

vacuum trajectory with d,(o)=1 must decouple at q,=O. '8he 

method of derivation makes it clear that, except for the 

vanishing of the elastic transition p&3jN O& i""-' , the 

results are rather tight. From our point of view the most 

interesting result with experimental content is the decoupling 

of the Pomeron in the diffraction dissociation of any missing 

mass at zero momentum transfer. This will exhibit itself as 

a dip in the diffraction dissociation cross section as 

q2-+ h2)min=w*2). 

Tf this phenomenon is observed and total cross sections 

persist in behaving as constants for s+oO , then it would 

seem very compelling to search (theoretically) for structure 

in the coupling of a j1= 0 Pomeron to multiparticle systems 

in addition to the conventional structure. A beginning in 

direction will be presented in Aeference 8. It seems 

appropriate to have scame confidence that R consistent 

picture of diffraction scattering will emerge from such an 

investigation. 
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Figure Captions 

Figure 1 The amplitude T sbqcN to produce a distinguished 

particle c and N particles of invariant mass 11 in the collision 

of a and b. 

Figure 2 The Schwartz inequality relating Che absorptive 

part in M2=(pa + pb - P;)~ = (p, + p,)' of T,b+adf 
to the inclusive process a + b-jr a + anything and the forward 

absorptive part of "elastic" d,f scattering. d and f are 

any hadron states. 'Ehe inequality is exhibited for large 
2 

s=(p, + P,) . 

Figure 3 Illustration of the vanishing of the coupling of 

two vacuLlm poles at 
'& 

'0 to any badron state d. 

Figure 4 Illustration how the result in Figure 3 leads to the 

vanishing of the coupling of one vacuum pole with 

hadron .,a!:", with another vacuum pole with . 

Figure 5 Illustration of how the decoppling of two vacuum 

poles with g,=o , Figure 3, leads to the decoupling of 

one vacuum pole with G=c to any Reggeon with any pi, and 

any hadron state d. 7%~ last step shown extrapolates this 

result to a particle pole on the trajectory and illustrates 

the vanishing of the diffraction dissociation transition at 

Figure 6 A pole contribution to the diffraction dissociation 

transition Pomeron +n ,33X . The residue at the pole is 

proportional to P.mv * 

Figure '7 The kinematics of the 2+3 amplitude in the 

double Regge regime where the Pomeron-Heggeon-particle 

vertex appears. 
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