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ABSTRACT

We digcuss in a unified and straightforward manner the various
requirements for the vanishing of the couplings of a vacuum pole with
QV(O) = 1 and factorizable residues. We show how the proof of these
results goes through even in the presence of J-plane branch cuts which
may collide with the pole at J = 1, if the residue at the pole remains
factorized. Special attention is devoted to the question of the two particle-
vacuum pole coupling which sets the scale of total cross sections. We

indicate how the argument that this may also vanish can be incorrect,



I Introduction

Over the past several yvears rather severe restrictions
have been given on the allowed couplings of the vacuum trajectory
when it is supposed to have qvuﬁ=1, in order to account for
the remarkable constancy of hadron total cross sections. Several
of these restrictions are moderately old and familiar" and
require the two vacuum-one particle coupling to vanish when
the Reggeon four momenta, qy have qi:O. Some of these restrict-

ions have been more recently derived, such as the vanishing of

the three wvacuum vertex appearing in the Reggeon calculus and

3.

in inclusive reactions and the c¢oupling of the wvacuum trajectory

L,,5.

to any two states of unequal mass

h.,5.,6.

or even to any Reggeon

The most striking resulth"7' is

and other particles.
that at q2=0 the vacuum trajectory appears at first sight to
decouple from two particles; for example, the two pion-vacuum
coupling would vanish, This, of course, immediately implies
that the Pomeron does net contribute to total cross sections

and the whole raison d'etre for discussing it would be lost.

In this note we would like to present a straight-
forward, and we believe instructive, derivation of these
restrictions. It sets the issues out rather plainly and because
of the importance of the problem being considered, it may be
of some general wvalue to have in hand a unified discussion,

Beyvond pedagogy we show how the decoupling phenomena transpire

even in the presence of J-plane cuts which may collide with poles
at t=0, Also we give a critical presentation of the result that

the Pomeron-two particle coupling wvanishes at q2=0 pointing out
that the argument could well be invalidated by additional structure
in the wvacuum coupling to many particle states at ql=o. A detailed
account of the source and consequences of such structure is

reserved for a separate article,
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II Derivation of the Restrictions on Vacuum Couplings

Our procedure here will be to follow the technique of
Reference 5 and use the Schwartz inequality and the vanishing
of the three Pomeron vertex measured in inclusive processes to
provide restrictions on the coupling of the vacuum trajectory.

TOrestabiish our notation and to provide some connection
among the works in the wvarious cited papers let us begin with
the amplitude for the exclusive reaction a+b-~» ¢ + N particles
with invariant mass M, This is shown in Figure 1. We choose
the usual variables s = (pa + pb)z, q2 = (pa - pc)2 and imagine
that an appropriate choice of cluster variables for the N particle
missing mass has been made. Denote these variables by wv; besides
invariant subenergies and momentum transfers these wvariables
must specify the orientation of the cluster particles with
respect to a, b, and c, We want to consider this exclusive
amplitude for large incident energy s with q2, M, and v fixed.
The behaviour in this limit coming from the exchange of a

factorizable Regge pole with trajectory <KR(%Q will be

£ (§%) |
TO,b-)gN (AJ%%MJV);’ A ot ﬁacR (g&) ﬁbNR (%% U, M>) (l)

200

where ﬁacR is the Reggeon-two particle coupling and EEHR
is the Reggeon-particle- N particle coupling. Any behaviour of
—EABJ>CN arising from other Regge poles or from J-plane
branch cuts can be distinguished at this point by their distinct
s dependence, and therefore, we mav quite generally, even
when poles and cuts are colliding, speak separately about
any given Regge pole exchange as in (1).

It is alwavs possible to label the couplings ﬁ by some
choice of invarjants like qz, but it is often advantageousz'
to give explicitly the components of momenta, especially the

Reggeon momentum q, perpendicular to the plane (in four space)



g

formed by the incoming momenta P, and Py, To see something of
the equivalence of the characterizations let us work in the
rest frame of particle b and choose a to move along the J3-axis

with large momentum p:

b“ = <:E)(>JCM P)) (a;)

and bo= (my,0,0,0). (3)

In this frame we give gq as

%: (%U %LJ g3l (4)
As p = O
d=mEemiyamE ~ ampp t olfp)- (5)
We reguire péq to remain finite in the limit corresponding

to (1), so

pa.'% = P(go‘g3)+ O(’/,b) = ‘Finl+6 [é)
and  g.-¢2 = 0 (). (7)

In addition since M2= (qa =+ pb)2 is fixed)pbvq =m,q . is finite.

Phus the mass squared of the Reggeon is
- Gegd(gegd - 4F = - g2 0CU) ()

where S1.='%¢| . S0 to order 1/s it suffices to give {; instead
of q2 as a label for the Reggeon. We remind the reader that
all these statements are really familiar from the use of
infinite momentum wvariables in field theory.

Now since the whole idea of the donminance of some J-plnne
singularity, pole or cut, is meaningful only to 0(1/s), the
two labelings are identical in physical content. The %;
notation has the additional wvirtue of reminding us that statements
we will make about Reggeons are in reference to exchanged
objects in some process where a time, 3-axis plane is defined.
We shall adopt this designation in our subsequent discussion.

After this small kinematic digression we are ready to
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turn our attention to the problem at hand. Choose particle
¢ in Eguation (1). to be the same as a, but with momentum p_.
We may now pick out from the asymptotic behaviour of —Tﬁb~vc1h

the contribution of the vacuum trajectory “U(%L):

,___V dvtgx) )
owa = A Baav (80 Buyy (g, M) (@)

Form the quantity (shown in Figure 2)

Vv - ‘
% _,:ib-‘?O.N (4 41 )Mf”') _H:;N (%;) 2§)M§ 54(g+ibb")7fd>) (/0)

where d and f are anvy two hadron states, with invariant masses
qi and A respectively, which can communicate with the chosen
X particle state, The sum on N includes the usual phase space
integration consistent with p§ = M2. This sum in (10) is,

up to some constants, just the imaginary part of the "five
point" function a + b—>a + d + £ taken in the wvariable M2D
The Schwartz inequality provides an upper bound to this

sunm in the form

| dum, ™ <€ { %— ’ T;‘-\:J-?aN [a 84(%*}’1:‘}9/1;)} '

A S o S s £, 01

N

where we recognize the first term on the right as the vacuum

pole contribution to the inclusive cross section for a + b —>

a + anything in the region s ->»po, qz, M2 fixed, while the
second term is the forward absorptive part of the guasi- two body

process d@ + £ —» d + f. (Again see Figure 2 )

—~e

OQur next step is to choose the hadron state f such that
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the guantum numbers in the bf channel include the vacuum and
then consider the limit of (11) as M%$>00 . It is necessary
to take this limit maintaining s/M2—§ o, so the kinematiec
statements above are still correct.

On the right hand side of our inequality we encounter

as the leading behaviour in M2

{ g\/(%-l-) ﬁbb\/ (0) (A/Ma)ao(v('gLB(MQ)"(v LO)\? .

X { By (©) Besy (0) (Mafvmf > (12)

where gv(qJ_) is the three wacuum pole coupling with two legs
carrving %l . On the left hand side we have a process with
minimum momentum transfer t. = (pb - qf)2 of order 1/Mh for
large M2, so we may extract out the leading contribution in

M2 even at (q$B1L =0, TPhisg is

2
2, oy (1), \Kvio) '
[B"“(g*)gi’(gf-b)fo)ﬁbf‘v(3?)(‘3;5)?)@/:11‘*) N ] . (3)

It is important to mote that branch cuts in the J-plane may

be present and contribute both to (12) and to (13), but at

(q$hlL =0 the pole term provides the leading behaviour by
powers of logMZ. We have written (12) and (13) in factorized
form making gquite explicit our assumption that the leading
pole at c{v(d) factorizes even in the presence of colliding
cuts,

At this point we call upon References 2 and 3 to remind
us that if oyle)=1, §y (§1=0)=0., So for §,=0 , the leading
behaviour on the right hand side o@khe inequality wvanishes

P
and so it must on the left, We learn then (see Figure 3)
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Buav (§2=0, Zf, %1305 =0 (14)

that is, two vacuum trajectories with &FC’ must decouple
from any hadron state d identically for all choices of
variables for d. Phis is the key result.h"5' The wvarious
decouplings listed in the introduction follow from this
restriction on the two vacuum coupling.

First, split d into two clusters d1 and d2 each of which
can couple to vacuum quantum numbews, As (1&) must wvanish
for all q§ = (qd1 + qdz)z, the contribution of anyv particular

exchange between the clusters must also vanish. Indeed the

term coming from the factorizable vacuum pole (see Figure

4) %k a X |
G Bugy (370, 84 *u) Bvay (e, 955 90z0)  (1s)

must be zero, where k = (q - q,.) = (q - q'). Thus,
di do

Bvav (8:70, 43, k1) =0, (1¢)

and one wvacuum peole with gL=C) decouples.

Second, split d into two clusters again, this time choosing
each cluster to carry the quantum numbers of some Regge
trajectory R, The contribution to (14) of the exchange of
this particular trajectory ( Figure 5)

JUD /
0D Bune (170 0 %) Brgy oy g0 80790, (17)
Bvdr (410 gi)%\w; (18)

thnt is, a vacuum pole with %J:O decouples from any Regge
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trajectory and any hadron state with the appropriate guantum

4.,5.,6.

nunmbers.

This last result can be extrapolated with no ambiguity
2

to a single particle state, call it b, at kL = ums when

qg % mi. (We will discuss this important case and the argument
of Brower and Weis'®' in one moment.) This means that the
coupling of a Pomeron at ;=0 +to a particle b and any
hadron state d vanishes. Precisely this coupling is measured
in the diffraction dissociation cross section a + b—=> a «+

heys.

anvthing, Our result says that the contribution of the

vacuum pole to the differential cross section dc¢ (a+b—>a'+

Missing Mass)/dqsz2 at q2=0 will wvanish for anv value of

the missing mass M#mb. The depth of a dip at q2=0 or more

correctly the tendency toward a dip at (qz) =O(1/52) will

be set by the size of secondary contributio::? cuts and poles,
Of course, we are unable to say anything quantitative about
that. However, if one sees the dip at all, then he must see
it become deeper as the initial energy is increased.
This covers all of the physicallyhinteresting decoupling
esTe

results except the most intriguing one that the wvacuum
pole at %l’c’ must also decouple from itwo particles. The

next section is devoted to that.
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III The Vacuum Pole - Two Particle Coupling

In this section we shall discuss the question of whether
the decoupling of a ﬁi=0 Pomeron from any Reggeon and any
hadron state indeed necessitates the vanishing of the Pomeron-
twoe particle coupling whicli is supposed To give the sooln
of constant total cross sections., This matter has been treated
in detail by Drower and Weis7', and we shall comment on
their work after our own treatment.

Let us begin with the statement of Equation (18) extrap-

2 &
olated to ki='1nb

Bogy (M) 44 3:=0) = O, (19 )

and inquire how this can occur., To be concrete consider b

a pion and d a state of three pions. From the point of view
of singularities in variables connected with the state du
any contribution to (19) which involves a Pomeron at g¢=v0
connecting states of different mass must be zero. Definite
contributions not suffering from this problem are pole terms
such as the one shown in Figure 6, The residue at this pole

and at each of the other poles is proportional to ﬁnntv(e)/ic-

If these are the only terms singular as q:%'O, which one

would expect from the usual notions of analyticity, then

{(19) requires i}tmv[b)’=[> . The same argument applied to
other choices for the states b and d leads to the con-

clusion that ﬁbbv(g)chcﬁyal =0 +» It is clear from this
very elementarv argument that the key point is the persistance
of a conventional pole structure in Riy . That additional
singularities might well be plaving a role may be seen by
remembering that ocur coupling (19) has been extracted as the

residue of a Regge poele in some larger process., Just at the

point of interest, namely a, —=> 0, however, the energy across

that Regge pole is no longer allowed to become large, and

it is no leonger appropriate to consider that pole exchange
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as an asymptotic representation of the overall amplitude.
Indeed, the full amplitude certainly has a pole at hi::'ynb
whose residue is connected with,‘ﬁbbv . It is not correct

to assume that only some particular piece oif the amplitude

has that particle pole unless it is the appropriate represent-
ation of the full amplitude in a region of phase space, When,
in (19), qd¥m (that is, q #0) then the Regge pole exchange
term is a valid representation and the pole must be in it.

So our result on diffraction dissociation stands.

it is our opinion that the right way to look at the apparent
vanishing of Bbefd) is that there must be additional
structure in multiparticle amplitudes at qO:O and one should
find the physics behind it. Precisely such a suggestion will
be explored in detail in Reference 8.

Although their argument is couched in rather different
terms our observation applies to the work of Brower and Weis?'
as well. They proceeded as follows. In the decoupling result
(18) they take qd_m2 of some single particle state d lying
on the Regge trajectory R. Then they remark that this coupling
appears in the five point function of Figure 7, whose asvmptotic

behaviour we have written in (13) for large s and s =M2

ay(ga) ,  @rlky) 2
('Q/&a) {Aa R BvdRr (%.L) %L) | (ao)

which using the kinematic relation

dda o (nd e X3 G0 ) (a1)

A

correct as usual to leading order in energy, they write as

(fdn)d”%ﬂ (Aa i dﬂ) R (%L) NSJJ . (Q;O
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The relation between R and ?

- oy (1)
RCgs, %L) N (}lj* my + %i) .

ﬁ ( ’g-‘-) kl\ (QS)

causes no problems when @¢4=0 y but appears to introduce
a spurious singularity at ki:-Tmf' into R when gi= O .
Brower and Weis argue in essence that no such behaviour can
be present in the full five point function and use know-
ledge of the analytic properties of the vertex R to see how
this singularity may be canceled in the asymptotic form (22)
by itself.They conclude this requires ﬁddv(0)=‘of

This is certainly an unassailable exercise as long as
(22) is a proper representation of the 2 ~>3 amplitude. We
see from (21), however, that in the case ¢i =0, taking
&i=-md3 means 5152/5 is zerg., Since we want there to still

be a vacuum pole exchanged across the energy Sqs this means

s, cannot be large, The five point function is therefore mno

linger given by (22) and one need not cancel the singularities
just mentioned by the structure of the two Reggeon-particle
vertex itself. It is quite possible forthere to appear
additional structure for finite S5 which can be put together
with (22), say, to remove the unwanted singularities.

Contact is made with our previocus argument by noting that when

= d q
%.L'O)Q?_L_) -my, , then Q> a.
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v Discussion and Observations

We have enumerated several processes from which the
vacuum trajectory with de)=1 must decouple at q,=0. The
method of derivation makes it clear that, except for the
vanishing of the elastic transition pbbwd)mlsagir' , the
results are rather tight., From our point of view the most
interesting result with experimental content is the decoupling
of the Pomeron in the diffraction dissocciation of any missing
mass at zero momentum transfer. +his will exhibit itself as
a dip in the diffraction disscciation cross section as

2 2 2
a”=> (q7) . =0(1/s7).

ITf this phenomenon is obserwved and total cross sections
persist in behaving as constants for s— 00 , then it would
seem very compelling to search (theoretically) for structure
in the coupling of a ifw Pomeron to multiparticle systems
in addition to the conventional structure, A beginning in
direction will be presented in Reference 8. It seems
appropriate to have some confidence that a consistent
picture of diffraction scattering will emerge from such an

investigation.
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Figure Captions

Figure 1 The amplitude IQU?CAJ to produce a distinguished
particle ¢ and N particles of invariant mass M in the collision

of a and b.

Figure 2 The Schwartz inequality relating the absorptive
. 2 2 2 :
part in M =(pa + pb - p;) = (pd + pf) of -T;bgyadF
to the inclusive process a + b—> a + anything and the forward
absorptive part of "elastic" d,f scattering. d and f are
any hadron states. The inequality is exhibited for large
s=(p_ + p, )7
a b’
Figure 3 Illustration of the vanishing of the coupling of

two vacuum poles at %fo to any hadron state d,

Figure 4 Illustration how the result in Figure 3 leads to the
vanishing of the coupling of one vacuum pole with.glzo with

another vacuum pole with $i$4) and any hadron state d.

Figure 5 Tllustration of how the decoupling of two wvacuum
poles with gi=0 y Figure 3, leads to the decoupling of
one vacuum pole with gi:c to any Reggeon with any %L and
any hadron state d., The last step shown extrapolates this

result to a particle pole on the trajectory and illustrates

the vanishing of the diffraction dissociation transition at glfo

Figure 6 A pole contribution to the diffraction dissociation
transition Pomeron + T, => 37T . The residue at the pole is

proportional to BW[V R

Figure 7 The kinematies of the 2-%3 amplitude in the
double Regge regime where the Pomeron-Reggeon~particle

vertex appears.
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