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Abstract
The main problem of the ACR dynamics analysis in the Earth’s magnetic dipole trap is developing
of the model of charged particle nonadiabatic motion and determination of the adiabatic motion
boundary. The adiabaticity parameter χ  is used for motion analysis. Here χ  is the ratio of the
particle gyration radius to the curvature radius of magnetic field line at the equator. We constructed
a Poincare mapping for particle dynamics in a dipole magnetic field, based on the quasi-adiabatic
motion model. The adiabatic motion boundary and energetic range for trapped particles at different
L-shells were found by means of this mapping.

1   Introduction:
In the process of ACR ion stripping a jump-like change of magnetic rigidity R , and therefore, of
the adiabaticity parameter 22100.5 −−∗= RLχ occurs, where R  is measured in GV. Hence, the
particle motion changes qualitatively: from infinite CR motion (χ>0.75) to finite motion of
geomagnetically trapped particles (χ<0.75) and, under certain conditions, to stable trapping of
particles, moving adiabatically. These processes may be studied by means of numerical integration
of the motion equation, however, along with an extensive amount of calculations a significant
problem is the generalization of the calculated trajectory parameters and obtaining of the general
regularities of particle motion.
    We will study the processes of ACR stripping and trapping on the basis of the quasi-adiabatic
model of particle motion, which we developed for the dipole magnetic field.

2   Quasi-Adiabatic Model of Particle Motion:
The main ideas of the quasi-adiabatic model of particle motion, based on the integrating of the
motion equations, are formulated in the following way (Ilyina et al, 1993, Kuznetsov et al, 1993,
Ilyin et al, 1997):
1. The character of particle motion is determined by the adiabaticity parameter χ .
2. The most suitable model of the particle guiding centre trajectory (GCT) is the central trajectory
(CT) - the particle trajectory, crossing the dipole origin.
3. During particle motion from the equatorial plane towards the mirror point and back to the
equator an analogue of the transverse adiabatic invariant (magnetic moment) Bmv 2/sin *22* αµ =
is conserved with high accuracy. Here *α  is the angle between the particle velocity vector and the
tangent to the CT.
4. During the equatorial plane crossing a jump-like change of *µ  occurs due to a distinction
between the equatorial parameters of the CT, directed from the dipole centre (direct CT), and the



CT, directed towards the dipole centre (reversed CT). If for the direct CT the phase - the angle
between the radius-vector and the projection of the tangent to the CT to the equatorial plane – is
equal to 0ϕ , then for the reverse CT it is equal to 0ϕπ − . The other equatorial parameter – the
angle 0α  between the magnetic field line and the tangent to the CT - is the same for both CT. The
parameters 0α  and 0ϕ  depend on χ only and are unambiguous functions.
5. It is necessary to use as the GCT the CT, corresponding to the effective value of the adiabaticity
parameter 00
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6. The phase accumulation φ∆ during half a bounce-period, measured in the coordinate system,
associated with the CT, depends on the initial value of φ (Dmitriev et al, 1996).

3 Mapping:
We have constructed a Poincare mapping, corresponding to the quasi-adiabatic model. Three
coordinate systems in two-dimensional (pitch-angle/ phase) phase space are employed in this
mapping:

 a) MFS, associated with the magnetic field line;
 b) CTS1, associated with the reversed CT;

c) CTS2, associated with the direct CT.
      Below we describe the mapping routine step by step.
1. The starting point of the particle is determined in MFS by coordinates iα and iϕ .

2. The angle *
iα  in CTS1 and effχ  are found by means of numerical solution of the equation

system, describing ( ))( *
0 ieff αχα , ( ))( *

0 ieff αχϕ  and including the next one:
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3.After mirroring the particle returns back to the equator, and its coordinates in CTS2 are
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4. Coordinates of CTS2 origin in MFS are ( ))( *

100 += ieff αχαα ; ( ))( *
100 += ieff αχϕϕ . Then 1+iα and

1+iϕ  may be calculated, and it is possible to return to point 1 and continue this routine.
    Thus, this mapping includes the main features of the quasi-adiabatic model: the quasi-moment

*µ conservation during half a bounce-period and the quasi-moment jump *µ∆ during equatorial
plane crossing.
    The studies of particle dynamics by means of this mapping showed that for a given χ  there is a
boundary value *

crα , separating two motion modes. Above *
crα  the particle motion is stable with

conservation of *α , i.e. adiabatic, below *
crα  the motion is stochastic. In Fig.1 dependencies of *α

on N - the number of half a bounce-period are shown for χ = 0.13 (initial *α =15°.5 and 15°.6 ) and



for χ =0.15 ( *α =21°.9 and 22°.0). The dependence of *
crα  on χ  at 0.1 < χ <0.27 may be

approximated as:
)]/615.0exp(486.0[arcsin 2* χχα −= −

cr (1)
This dependence agrees well with previous estimates, based on the concept of motion stochastity
due to resonant interaction between the Larmor gyration of the particle and its oscillations between
mirror points (Ilyin et al, 1993).
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Figure 1: Long-term particle dynamics           Figure 2: Trapping Boundaries

4   Trapping Boundaries for Full-Stripped Ions:
During analysis of ACR particle dynamics in the geomagnetical trap we assume, that particle

motion occurs in a dipole field. At the same time the boundary conditions, determining the
stripping and loss of particles in the upper atmosphere, are calculated according to IGRF90.

The lower boundary of trapping, determined from cut-off value χ =0.75 for the case of full
stripping of single charged primary oxygen ions, is equal to minχ = 0.0933. It follows from (1) that
at a given *α  there is a maximum value of χ , at which stable particle motion is possible. Taking
as *α  the value of the equatorial pitch-angle, L -dependent and corresponding to the stripping
altitude strh  in the South-Atlantic Anomaly, we obtain the upper limit maxχ of trapping as a function
of L . We assume that strh  is equal to 250 km, which agrees with measured pitch-angle distribution
of trapped ions (Selesnick et al, 1997). Determined in such way maxχ  is shown in Fig.2 as well
as minχ . In fact maxχ  is not the strict boundary since strh  is not the exact value but extends from 220
to 350 km. Corresponding ambiguity of maxχ  is estimated to be about 1 %.
    Kinetic energies, corresponding to minχ and maxχ and calculated for full stripped oxygen ions, are
also shown in Fig.2. It should be noted, that with decreasing L  both minE  and maxE increase, and
the energetic range of trapped ions extends too. Similar changing of trapped ion energetic range
was observed by Looper et al (1996).
    According to Fig.2 primary ACR ions, having charge Q=2 (Mewaldt et al, 1996), after their
stripping may be trapped at L <1.75.



    Thus, the mapping permits to study single particle dynamics from the primary ACR particle
stripping to the transition into the stable motion mode or entering into the loss cone. The primary
ACR spectrum must be specified in the South-Atlantic Anomaly region, where the initial stripping
is localized.

5   Conclusion:
1. The mapping discussed above is an effective tool for study of ACR ion stripping and trapping

processes.
2. The adiabatic motion boundary is found as a function of adiabaticity parameter χ  for the

dipole magnetic field.
3. Upper and lower limits of trapped particle energies are defined for different L -shells.
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