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Abstract

An analytical solution for the Green’s function of the fundamental transport equation of cosmic rays, i.e. of
the Parker equation, is presented. Among the new features of the approach are a simultaneous dependence
of the coefficient of spatial diffusion on the configuration as well as momentum space coordinates and an
incorporation of wave-particle interactions due to the effect of transit-time damping. After the determination
of the transport parameters for three turbulencemodels the analytical solutions are applied to the transport of
anomalouscosmic rays.

1 Int roduction:
Anomalous cosmic rays (hereafter abbreviated ACR) have been first detected in the early seventies (e.g.

Garcia-Munoz et al. 1973). This mainly low energetic particles are thought to originate from neutral atoms
which are swept into the heliosphere from the local interstellar medium because of the motion of the solar
system relative to this medium and that have become subsequently ionized in the heliospheric space by the
solar ultraviolet radiation or by charge exchange with solar wind ions (Fisk et al. 1974). These mostly
singly ionized atoms, theso-called pickup ions, arepicked up by thesolar wind electromagnetic fieldsand are
convectedoutwardwith thissolar plasmaflow, whileundergoingadiabaticcoolingand momentum diffusion in
theambient wavefields. Oncethey reach thesolar wind terminationshock, preacceleratedpickup ionsundergo
diffusive shock acceleration and create the population of ACR (Pesses et al. 1981). After this acceleration
an as yet unknown fraction diffuses backwards into the inner heliosphere against the solar wind, i.e. the
anomalouscomponent issubjected to theeffectsof solar modulation. Thiscauses, with decreasingheliocentric
distancer, a rapid decrease in ACR-density due to the outward flow of the solar plasma and a shift of the
particleflux maximum to lower momentaresulting from theadiabatic deceleration by thisradially magnetized
diverging solar wind plasma. In order to taketheseeffectsinto account, onehasto usetheappropriateequation
describing the transport of cosmic rays, i.e. the Parker equation, which was first derived 1965 by E. Parker
(Parker 1965). He has given a variety of solutions for simplified cases which show the effects of spatial
diffusion, convection and energy loss.

In the past 34 years many analytical solutions were presented in the literature (e.g. Fisk and Axford
1969; Gleeson and Webb 1974; Cowsik and Lee 1977). Although these solutions describe the effects of
solar modulation and its two major features, they still werenot really exact in amathematical sensebecauseof
using approximationsand asymptotic formsor making assumptionsabout sourcefunctionsin their derivations.

It is thepurposeof thispaper to present, to thebest of our knowledge, for thefirst timeoneof several exact
solutionsof Parker’sequation, which arevalid for arbitrary sourcefunctions. Al l theseanalytical solutionsare
determined by thecoefficient of spatial diffusion and hence they depend characteristically on thecomposition
and topology of heliospheric turbulence, which wil l be considered in the next section from the plasma wave
viewpoint. Wewil l do this for threedifferent modelsof turbulence.

2 Spatial diffusion coefficients
Energetic charged particles likecosmic rays in general and, in particular, themostly singly ionized anoma-

louscomponent areembedded in thesolar wind plasmaand thereforethey can interact resonantly with plasma
waves, which are in the low-frequency rangeand in a low-� plasmamainly determined by their magnetic field
component. Hence, the phase space distribution function of the particles adjust to a quasi-isotropic state due
to pitch-anglediffusion. Thisquasi-isotropic distribution function obeys theequation of transport.



Within the framework of quasili near theory the coefficient of spatial diff usion canbe defined as a pitch-
angle averaged Fokker-Planck coefficientD��, which is determined by the composition and the geometry of
the plasma wave turbulence,
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where� = pk=p andv are the pitch-angle and the particel velocity, respectively.
In this paper we consider three different models of turbulence, i.e. on the one hand shear Alfvén waves in a

slab turbulence (A) and on the other hand fast magnetosonic waves in an isotropic turbulence model (F). The
third model consists of a mixture of slab Alfvén waves and isotropic fast magnetosonic waves (M). Schlickeiser
(1989) and then Schlickeiser and Miller (1998) have calculated the coefficients of spatial diffusion for these
three cases. In their calculations they assumed for the plasma wave spectrum a Kolmogorov-like power-law
dependence above some minimum wavenumberkmin with indexq > 1.

Considering, for simplicity, in wavenumber-space forward and backward propagating plasma waves with
same intensities and assuming equal spectral shapes, scales and equal intensities of Alfvén and fast mode
waves, that meansqA = qF , kmin;A = kmin;F and(ÆBA)
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different diffusion coefficients,
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wherei refer to the different models A, F and M. The reference values�
(i)
rr;0 are different but of the same

order of magnitude for all three models. Herer andp are the heliocentric distance respectively the momentum
of the particle and the reference valuesrE = 1AU andpA denote the Earth‘s orbit respectively the particle
momentum for particles propagating with Alfvén speedvA. It has to be pointed out that especially the exponent
�(i) is determined by the composition and geometry of the heliospheric turbulence, that means�A = 3� q for
slab Alfvén waves,�F = 2 in the case of isotropic fast mode waves, and�M = 1 for the mixed turbulence.

3 The Parker propagator
After having established the relevant parameter of transport in three turbulence models, we have to enter

into the considerations with regard to the spherically symmetric, steady state transport equation for the quasi-
isotropic phase space distribution functionF (r; p),
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which describes on the left hand side the effects of spatial diffusion and spatial convection as well as convection
in momentum space.S(r; p) denotes the source function andV the solar wind speed.

Using equation (2) and, for mathematical generality,V (r) = V0r
Æ equation (3) may be manipulated such

that the following form results:
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Here we have introduced the new variables (see also Jokipii 1967)� = p and
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Furthermore, wehave used the abbreviations� = (1 + Æ � �+ 2+Æ

3
�) and b = (2 + Æ)=(1 + Æ � �).

The general solution for the distribution function can be expressed by the Green’s functionG(y; y0; �; �0),
i.e Parker’s propagator,
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which has to satisfy, after appling the Laplace transform technique, the following ordinary and inhomogeneous
differential equation, which results from equation (4):
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Hereg(y; s) denotes the Laplace transformed Green’s function ands is the Laplace variable. The homoge-
neous part is the confluent hypergeometric differential equation, also called Kummer’s equation. Following
the standard method of solving such equations and constructing the Green’s functions one can derive, hav-
ing executed the inverse Laplace transformation, the exact solution for the differential particle flux (Stawicki
1999):

j(r; p) = p2F (r; p) =
3

b

Z
dr0

Z
dp0

S(r0; p0)

V (r0)

p0y0
f(p; p0)

�
r0
r

� 1+�
2
�
p0
p

� 3��4Æ�5
2(2+Æ)

� exp

�
�

y0
f(p; p0)

�
1 + h2(r; r0; p; p0)

��
I 1+�
1+Æ��

�
2y0

f(p; p0)
h(r; r0; p; p0)

�
: (7)

To simplify the notation we have introduced the functions
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as well as the modulation parametery0 = y(r0; p0). In(z) is a modified Bessel function of the first kind. This
solution is valid for arbitrary source functions in which super-alfvénic charged particles of momentump0 are
injected continuously from a spherical source surface at radiusr0 into the inner heliosphere. Notice that, in
contrast to the solutions of the last 34 years, no assumptions were made with regard to Kummer’s functions
or the source function. Consequently, equation (7) is an exact solution of Parker’s equation for the condition
�� Æ < 1.

Considering small heliocentric distances, i.e. going into the inner heliosphere, one can obtain, with the aid
of the asymptotic form of the Bessel function at small radii, the expression
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where�(z) is the gamma function. This approximation is finite and shows, that the ACR flux depends not
only at large but also at small distances, e.g. the Earth’s orbit, characteristically on the source functions and
their structure. In the same way we can approximate equation (7) for low momenta, i.e.p ! 0, through the
form
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Notice, that for the case of p sufficiently small, we getj / p2. That means the phase space distribution
function is constant as p approaches zero.



4 Conclusions
In thispaper wepresented oneof several exact solutionsof thesolar modulation transport equation of cos-

mic rays. Al l these solutions, which are determind characteristically and sensitively by the composition and
topology of the turbulent wavefieldsarevalid for arbitrary sourcefunctions, which contain radial dependence
as well as a dependence of momentum and can be freely choosen. In the simplest case, one can use a mo-
noenergetic injection at a fixed radius to the sun, e.g. the heliospheric distance of the solar wind termination
shock. A more realistic dependence in momentum is the power-law or modified power-law injection of pre-
and diffusively shock-accelerated pickup ionsat theso-called heliospheric shock.

Comparisons of the corresponding solutions derived with the analytical Parker propagator for this most
interesting case with ACR observations (e.g. Christian, Cummings and Stone 1995) should provide a very
useful tool to address the general problem of the radial variation of the spatial diffusion of energetic particles
within theheliosphere.

Besides, thesesolutionsshould render acheck on computer codeswhich treat thesolar modulation problem
moregeneral.
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