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Abstract

We examine the drifts of particles in a fluctuating magnetic field using direct numerical simulation of particle
trajectories. We superimpose a randomly fluctuating magnetic field upon a background uniform field, as
in previous papers. We show that the relation �ij = hwi�xjiis particularly useful, in that it allows direct
computation of the antisymmetric diffusion coefficient. We focus on deviations from the standard result vd =
(pcw=3q) r� (B=B2) caused by fluctuations in the magnetic field.

1 Introduction:
Particle drifts in a magnetic field which has a mean which varies with position are a basic aspect of the

motion of energetic particles or cosmic rays. In general, the motion of cosmic rays is composed of the diffusive
motion caused by the scattering of the particles due to the fluctuating part of magnetic field and the drift
motions resulting from large-scale gradient and curvature of the average magnetic field. The nature of the
diffusive transport, and the relation of the diffusion coefficients to the turbulent structure of the magnetic field
has been extensively studied over the years. In particular, the diffusion parallel to the average magnetic field
seems to be fairly well understood, whereas the perpendicular diffusion �? is less so (Fisk et al., 1998). In
addition to the perpendicular and parallel diffusion, determined by the symmetric part of the diffusion tensor,
a mean magnetic field produces in general an antisymmetric part to the diffusion tensor, usually termed �A. In
general we may write the diffusion tensor as
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Bk

jBj
; (1)

where �ijk is the totally antisymmetric tensor. The drift velocity vD(averaged over the nearly-isotropic distri-
bution) may be shown to be precisely the divergence of the antisymmetric part of the diffusion tensor (Jokipii,
Levy, & Hubbard, 1977). Depending on the situation, one may work in terms of either the drift velocity itself
or the antisymmetric diffusion tensor. In the following we will use the term drift velocity or antisymmetric
diffusion tensor interchangeably.

In this paper we examine the nature of the gradient and curvature drifts in the presence of turbulent fluctu-
ations. The standard expression for the drift velocity of a charged particle of mass m, charge q, momentum p,
and speed w in a magnetic field B, in the limit that the scattering mean free path is much larger than the gyro-
radius rg, is vd = (pcw=3q) r � (B=B2), where c is the speed of light. The corresponding �A = wrg=3.
This is the limit most-frequently used, since we expect that the mean free path is generally somewhat larger
than the gyro-radius. A finite amount of scattering should reduce this somewhat.

A simple analysis based on the venerable billiard ball scattering picture suggests that scattering by fluctu-
ating magnetic field might reduce the drifts by a noticeable amount for cosmic rays in the heliosphere (Jokipii,
1993; see also, Burger & Moraal, 1990). Similarly some analyses of the modulation of galactic cosmic rays by
the solar wind suggest that the drift motions in the heliospheric magnetic field are significantly reduced from
the classical value given above (e.g Potgieter, Le Roux, & Burger, 1989). In this special case the expressions
for �? and �A become, in terms of the ratio � of the mean free path � to the gyroradius rg,
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where �k is the parallel diffusion coefficient. Again vd is the divergence of the antisymmetric part of the
diffusion tensor.

Here we utilize direct numerical simulations of particle motions in the turbulent magnetic field to analyze
the effects of fluctuations on the drifts. As far as we know, this has not been done before.

2 Particle Drifts:
Before proceeding to the results of the numerical simulations, we first present an analytical result which

we believe has not been previously published and which enables us to simplify and make more precise the
numerical analysis. For simplicity in notation, we assume without loss of generality that the average magnetic
field, at least locally, is in the z direction, so that the perpendicular directions are x and y. In determining the
transport coefficients from numerical simulations it is usual to work in terms of the Fokker-Planck transition
moments



�x

2
�
=�t, etc (e.g., Giacalone & Jokipii, 1999). In this case the drift term appears in one or

more of the first-order coefficients, for example h�xi =�t. However, this will only be non-zero when the
magnetic field has spatial variation, and this is more complicated to compute numerically. Hence it is usually
more convenient to work with the antisymmetric diffusion coefficient, which is non-zero even if there are no
gradients, and whose divergence is the drift velocity. But the obvious Fokker-Planck Coefficient h�x�yi =�t

is obviously symmetric. The reason is that the divergence of the antisymmetric tensor is zero if the field does
not vary, and in this case the antisymmetric coefficient does not appear in the diffusion equation. But it does
appear in the equation for the streaming flux, or anisotropy. We must proceed differently.

It may be shown that, in general, the equation for the streaming flux in a simple system with no convection,
may be written

Fi = ��ij
@f

@xj
(4)

where the diffusion tensor �ij can be written �ij = hwi�xji. It is easily seen that this also gives the antisym-
metric part of �ij . Furthermore, this form is much simpler to compute in a simulation.

The above result can be demonstrated as follows. At some time t, we may express the value of the distribu-
tion function f(xi; pi; t) in terms of the values of the pi = p

0
i and xi = x

0
i corresponding to the xi; pi at some

other time t0 (following the actual particle trajectories) by the exact relation

f(xi; pi; t) = f(x0i; p
0
i; t

0); (5)

which is simply a restatement of Liouville’s theorem. Now consider the situation where the time �t = (t0� t)

is many scattering times, but where the corresponding �xi = (x0i�xi) is much smaller than the scale of spatial
variation of f (this is equivalent to the usual diffusion approximation). Then, since f is nearly isotropic and
the momentum magnitude of a particle is constant, the spatial gradient @f=@xi is approximately the same for
all directions (all particles at a given p) and we may write f(x0i; p

0
i; t

0) � f(xi; pi; t) + �xi@f(xi; pi; t)=@xi.
Therefore, since the p0i at x0i are scrambled relative to the pi, so that
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which is the desired result (4). Here we make use of the fact that the diffusion coefficient �ij depends on
the magnitude of p as well as xi and t, so the integral over 
 sums over all the particles at a given p and the
@f=dxi properly weights the sum over particles. Below we compute �A from the relationship �ij = hwi�xji.



3 Numerical Simulations
We integrate the trajectories of particles moving under the influence of a time-independent magnetic field

of the form B(r) = B0ẑ + �B(r). The fluctuating component, �B(r), is determined in a manner similar to
that which we have described previously (c.f. Giacalone & Jokipii, 1994, 1996, 1999). They are characterized
by a discrete sum of individual stationary plane waves with random wave vectors, phases, and polarizations.
The amplitudes are given by a Kolmogorov-like power spectum which is described mathematically in terms
of three parameters: the total integrated power, �2, the correlation length, Lc, and the spectral index  (for all
simulations considered here we set  = 5=3). Here we consider fluctuations which are approximately spatially
homogeneous and isotropic.

Particles are injected at a given energy (which remains constant since the field is time stationary)
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Figure 1. Comparison of numerical simulations (sold circles), and
analytic theory based on classical scattering (curves).

chosen in such a way that the particle
gyroradius is 0:1Lc. For the interplane-
tary magnetic field with a typical corre-
lation length of 0.01 AU and mean field
strength at 1AU of 5nT, this would cor-
respond to proton with an energy of 31.6
MeV. The particles are released isotropi-
cally in velocity space at a point in space
which we arbitrarily take to be the ori-
gin. They are followed for 1000 gyrope-
riods, which is larger than the scatter-
ing time for all runs that we report here.
The numerical scheme is described in
detail in our previous articles (Giacalone
& Jokipii, 1996, 1999).

We compute the diffusion coeffi-
cients in the following manner: the
cross-field and parallel diffusion co-
efficients are determined by comput-
ing the averages over all particles of
h�x

2i=(2�t) and h�z
2i=(2�t), re-

spectively. The antisymmetric diffusion
coefficients are determined from (6) as
the average over all particles of Kxy =

h�xwyi, and Kyx = h�ywxi, respec-
tively.

In order to compare our numerical results with Equations (2) and (3), we must vary the particle mean
free path. To accomplish this, we vary the power in the random fluctuations, �2. According to the standard
quasilinear theory (e.g. Jokipii, 1966) the mean free path varies as the inverse of �2. We emphasize, however,
that here we compute the mean free path directly from the simulations from the relationship �k = 3�k=w

(which we divide by the particle gyroradius to get �).
Shown in Figure 1 are the ratios �?=�k and �A=�k as a function of �. The corresponding values of the

turbulence variance range from 0:03 < �
2
=B

2
0
< 30. The curves on this plot are Equations (2) and (3).

Figure 1 shows that the cross-field diffusion coefficient is considerably larger than the classical scattering
result of Equation (2). This is due to the fact the �? is enhanced by the field-line random walk. This result
is consistent with our earlier findings (e.g. Giacalone & Jokipii, 1999). On the other hand, the simulated
values of �A agree nicely with the classical scattering result of Equation (3) for large values of �. In order



to obtain the smaller values of �, we had to set the power in the random fluctuations considerably larger than
the power in the mean field. Consequently, the field becomes almost completely random with no preferential
direction. There should be no drifts under such a situation. This is the reason why the simulation results
deviate noticeably from the curve. We point out however that the statistics were very poor in determining
these points and that additional simulations are needed to verify these findings.

4 Summary and Conclusions
We have performed numerical simulations of charged-particles moving in turbulent magnetic fields and

compared these with analytic theory. We have concentrated primarily on the drifts associated with these
motions and have derived expressions for determining the antisymmetric diffusion coefficients.

We have found that the computed antisymmetric diffusion coefficient agrees well with the classical theory
when mean-free path largely exceeds the particle gyroradius. On the other hand, �A is significantly smaller
than the predicted value when the mean-free path is less than several particle gyroradius, which occurs when
the power in the random fluctuations exceeds that in the mean field.

These conclusions regarding �A are restricted to a small range of parameters. Future work will extend this
to a more comprehensive range of parameters. The small value of �A at � < 5 is potentially of significance
for models of cosmic-ray transport in the heliosphere, where drifts play an important role.
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