
SH 3.1.08

Velocity Correlation Functions and Cosmic-Ray Transport

J.R. Jokipii1, J. Kóta1
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Abstract

The method based on the velocity correlation function, developed by Kubo in 1957, can be used, under very
general conditions, to evaluate spatial diffusion coefficients, if conditions are statistically homogeneous over
several coherence times. Here we address aspects of interest in cosmic-ray transport and where the application
of Kubo’s formalism is not obvious. We consider an idealized model of perpendicular transport in a homoge-
neous magnetic field, called compound diffusion, in which the particles scatter back and forth along field lines
and do not move normal to them. Transport normal to the average field occurs solely from the random walk of
the field lines. Compound diffusion is non-Markovian, which leads to a situation in which the perpendicular
displacement increases as the fourth root of time, in contrast to the square root of time, which is the depen-
dence of standard diffusion. Among other things, we show that, the non-Markovian nature of the motion gives
rise to a long-term anticorrelation in velocity, which causes the spatial diffusion coefficient to vanish. This
behavior of compound diffusion can also be recovered from the Laplace transform of the velocity correlation
function. Further implications of the long-term anticorrelation are discussed.

1 Introduction:
The transport of energetic charged particles in a turbulent magnetic field is often diffusive, where the time

evolution of the omnidirectional particle density, f0(xi; t) is described by a diffusion equation with diffusion
tensor �ij . We consider here some consequences of a particular way of looking at the diffusion. For a random,
diffusive motion, the spatial diffusion tensor, �ij , can be related, under very broad conditions, to the velocity
correlation function Kubo (1957)

�ij =

Z �

0

< vj(t)vi(t+ t0) > dt0 (1)

in the limit that � ! 1. Here �xi = xi(t + t0) � xi(t) is the spatial displacement of particle positions
between times t and t+ t0; the brackets <> denote averages over an ensemble. We assume that the fluctuating
velocities are statistically homogeneous over the time and length scales of interest, so the velocity correlation
function, < vj(t)vi(t + t0) >, depends only on the time difference t0. For any physical random velocity,
< vj(0)vi(t

0) > must go to go to zero at large t0, and the integral in (2) approaches a constant value for for
t0 !1. The virtue of this method is that only the particle velocity needs to be considered.

Forman (1977) was the first to apply Kubo’s formalism to the transport of cosmic rays. It has recently been
invoked by Bieber and Matthaeus (1997), who postulated a simple exponential form for the correlation tensor
< vi(0)vj(t) > to infer the corresponding perpendicular diffusion coefficient, �?, and effective drift, which
is related to the antisymmetric component of �ij .

In this paper we address the special case of the perpendicular diffusion of particles tied to the turbulent
magnetic field lines, which is important in understanding the transport of energetic charged particles in the
heliosphere, and for which the application of Kubo’s formalism is not obvious.

2 Compound Diffusion
The most poorly-understood area of cosmic-ray transport at present is the transport of particles perpendic-

ular to the direction of the average magnetic field. This motion is due to at least two distinct effects. Particles
may scatter across field lines and the field lines may depart from the mean field due to the random walk and
mixing of field lines (Jokipii and Parker, 1969). This random walk of the field lines plays an important role in



the perpendicular diffusion [see, e.g. Jokipii, (1966); Forman, Jokipii, and Owens, (1974), and Giacalone and
Jokipii (1999)].

Low-rigidity particles in certain cases may be effectively tied to magnetic field lines, so it is useful to
consider an idealized, but physically consistent, approximation, in which particles are assumed to be strictly
tied to the field lines. The particles are assumed scatter back and forth along the field lines, in which case
the particle perpendicular transports arises solely from the random walk of field lines. This then can serve
as a starting point for understanding the more general problem of particle transport. This approximation has
been termed compound diffusion, and has been used to discuss transport of cosmic rays in the galaxy (e.g.
Getmantsev (1963); Lingenfelter et al (1971); Allan (1972).

Compund diffusion may be written as the convolution of two diffusive processes. Particles scatter back and
forth and spread strictly along the field lines with a diffusion coefficient �k, and the field lines, in turn, diffuse
perpendicular to the mean field’s (z) direction with a diffusion coefficient DL. The mean square displacement
in a perpendicular direction, say x, is then proportional to the length travelled along the field line, which, from
simple scaling properties, is proportional to �t1=2. A quantitative calculation evaluating the convolution of
the x and t motions yields

< �x2 >= 2DL <j � j>= 4DL

s
�k�t

�
(2)

which is slower than the standard diffusion, where < �x2 >= 2�?t, and so is fundamentally non-Markovian.

3 The Kubo Formulation Applied to Compound Diffusion
Kubo’s formalism states essentially that the mean square displacement, < �x2 >, in a time, �t, can be

obtained from very general principles as

< �x2 >=

*"Z
�t

0

vx(t
0)dt0

#2+
= 2

Z
�t

0

(�t� t0) < vx(0)vx(t
0) > dt0 (3)

which, for �t large compared with the coherence time of vx(t), yields diffusive motion with a diffusion
coefficient given by

�xx =



�x2

�
�t

=

Z 1

0

< vx(0)vx(t
0) > dt0 (4)

The only requirement, in addition to statistically homogeneous conditions, is that the velocity correlation
function < vx(0)vx(t) > should vanish sufficiently fast as the time lag, � increases. Under these conditions,
the Kubo model would always give a diffusion / �t, and could not yield compound diffusion, which results
in a slower, / �t1=2 transport. There is clearly a problem with the application ot Kubo’s formulation to this
problem.

To explore this more deeply, to see where the problem lies, we have considered a simple, transparent
model in which the particles propagate either forward or backward along a magnetic field line, which executes
random walk about the main field direction in z. The z axis points in the direction of the mean background
field; � denotes the position, measured along the field line, and x(�) stands for the departure of the field line
from the mean field. We consider particles released, in random directions, at � = 0 (x = 0) at time t = 0.
The variation of the number of forward (n+) and backward (n�) moving particles as a function of time, t, and
position along the field line, �, is governed by the pair of equations:

@n+

@t
+ v

@n+

@�
= �n+ � n�

2�
+ q+�(t)�(�) (5)

@n�

@t
� v

@n�

@�
= �n� � n+

2�
+ q��(t)�(�) (6)



where � represents the average time of scattering. q+ and q� are the number of particles released in positive
and negative directions, respectively.

Obviously, the velocity in the x direction is �v(dx=d�) depending on whether the particle happens to
move forward or backward along the field line. Thus to obtain the velocity correlation, < vx(0)vx(t) >, the
mean velocity (vn+ � vn�) along the field is to be averaged over position, with the inclusion of the actual
orientation of the field line �

< vx(0)vx(t) >= v2
Z 1

�1

D�dx
d�

�
j0

�dx
d�

�
j�

E
(n+ � n�) d� (7)

where subscripts imply the position in �. Since the source q+ accounts for positive initial speed, while q�
corresponds to negative intial speed, n+ and n� can be taken as the solutions for sources q+ = 1=2 and
q� = �1=2. This ensures that the initial speed vx(0) is properly taken into account.

Instead of considering the directly the velocity correlation < vx(0)vx(t) > we consider its Laplace trans-
form, Lxx(s) =

R1
0

< vx(0)vx(t) > e�st dt. We note that Lxx(s = 0) yields exactly the corresponding
perpendicular diffusion coefficient, �xx, while the behavior of Lxx at small s values brings information on the
behaviour of < vx(0)vx(t) > for large times (t� � ).

We adopt the technique of Fourier and Laplace transforms (Fedorov and Shakov, 1993; Kóta 1994). First,
taking the Fourier transform of equations (5) and (6) and Laplace transforming the resulting pair of equations
yields a solution for Lxx(s):

Lxx(s) =
v

2

r
s�

s� + 1

Z 1

�1

D�dx
d�

�
j0

�dx
d�

�
j�

E
e�k0j�j d� (8)

Inspection of (8) shows that Lxx(0) = 0, unless the integral over �, which is related to the random walk
of field lines, is infinite (this would be the case only if the field had a nonzero regular component in the x

direction). Since the Laplace transform at s = 0 is identical to �xx, the derivation above demonstrates that
Kubo’s theorem yields precisely zero perpendicular diffusion coefficient, �xx, for compound diffusion. This
result could intuitively be anticipated, since compound diffusion produces slower than / t diffusion.

A further study of (8) reveals the character of < vx(0)vx(t) > in more detail. First we notice that, for
small values of s, k0 � 0, and the integral over � in equation (8) gives the power of field fluctuations at zero
wavenumber, which is equivalent to 2DL, where DL is the diffusion coefficient of field line random walk
(Jokipii, 1966). For small values of s, Lxx � vDL(st)

1=2, and (8) implies that, for large values of t

< vx(0)vx(t) >� �
vDL

p
�

2
p
�

t�3=2: (9)

The velocity correlation function has a long negative tail to balance the positive values at smaller t, and to give
an exactly vanishing integral in (4). This long term behaviour could be obtained directly from considering
the solutions for n+ and n� Fisk and Axford, (1969) in the t � � limit, when the exact solutions can be
approximated by diffusive time profiles.

Thus we find that, in a broader sense, compound diffusion fits into Kubo’s theory. The velocity correlation
function < vx(0)vx(t) > exhibits a long-term anticorrelation, causing the diffusion coefficient, �xx, (i.e. the
integral (4)) to vanish. This is connected with the non-Markovian nature of the compound diffusion.

At this point it is of interest to establish the connection between the present discussion and some current
ideas in time-series analysis. The fact that the mean square displacement, < �x2 > increases as �t:5 means
that the motion is non-Markovian. In fact, the case in which < �x2 >/ �t2H (0 < H < 1) has been
given the name fractional Brownian motion, where H is the Hurst exponent (Mandelbrot and Van Ness, 1968).
The case of compound diffusion corresponds to a Hurst exponent H = :25.It may be shown (Feder,1988),
that if H > :5 the process exhibits long-term positive correlation and conversely, if H < :5 corresponds to



long-term anticorrelation of the process. Clearly, then, the case of no correlation requires H = :5. This agrees
with the determination using Laplace transforms, described previously. Now, physically, we expect particles
in a turbulent magnetic field will loose correlation and we retrieve the standard form < �x2 >/ �t. But this
cannot occur if particles are strictly tied to field lines.

3.1 Summary We considered compound diffusion, which is a non-Markovian diffusion leading to�x2 /
�t1=2. This idealized but valid motion is seemingly in contradiction with Kubo’s theory, which yields
�x2 / �t. We have shown that compound diffusion fits into the general theory in a broader sense. We
determined the Laplace transform of the velocity correlation, and showed that the diffusion coefficient, as
defined by (1) turns out to vanish. A study of the Laplace transform revealed, furthermore, that the velocity
correlation has a negative non-exponential tail, < vx(0)vx(t) >/ �t�3=2 indicating a long-term anticorrela-
tion. The �x2 / �t1=2 behavior of the compond diffusion could also be recovered from Kubo’s formalism.

The compound diffusion may serve as a starting point for understanding the perpendicular transport of
low-rigidity particles. The question is how to proceed from this picture to a model including some scattering
across field lines. A small amount of cross-field scattering can be amlified by the subsequent mixing of
field lines; originally nearby field lines may separate to great distances. The time scales of these processes
may be large for low rigidity particles. In this case, the long non-exponential tail of the velocity correlation,
which is a result of the long-term anticorrelation, may be of importance; the velocity correlation function may
considerably differ from the simple exponential decay postulated by Bieber and Matthaeus, (1997). These
questions need further exploration. We also point out that consideration of temporally-varying magnetic fields
suggests that the conclusions derived here apply also to this situation.

4 Acknowledgements
The authors greatly benefited from discussions with G.M. Webb and J. Giacalone. This work has been

supported by the National Astronautical and Space Administration under Grants NAG5-4834 and NAG5-
6620, and by the National Science Foundation under Grant ATM-9616547.

References

Allan, H.R., 1972, Astrophys. Lett., 12, 237
Bieber, J.W, & Matthaeus, W.H. 1997, Astrophys. J.485, 655
Feder, Jens, 1988, in Fractals, Section 9.4., Plenum Press, New York
Fedorov, Yu.I., & Shakhov, B.A. 1993, Proc. 23rd Int. Cosmic Ray Conf., Calgary 3, 215
Forman, M.A., 1977, Astrophys. Space Sci., 49, 83
Forman, M.A, Jokipii, J.R., & A.J. Owens,1974, Astrophys. J., 192, 535
Getmantsev, G.,G., 1963, Soviet Astron., 6, 477
Giacalone, J. & Jokipii, J. R. 1999, Ap. J , in press. Jokipii, J.R., 1966, Astrophys. J.146, 480
Jokipii, J.R. & Parker, E.N. 1969 Astrophys. J.155, 777
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