
SH.3.1.03

Cosmic-ray Modulation and the Structure of the Heliospheric
Magnetic Field
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Abstract

We explore how heliomagnetic coordinates can be utilized to model the transport of cosmic rays in heliospheric
magnetic field configurations where the magnetic field has an organized meridional component and the field
lines have a complex geometry. The Fisk field is considered as an outstanding example. We also discuss cases
when the global heliospheric field undergoes a reorganization, such as a tilted dipole model with the tilt-axis
varying in time. Our numerical code, at its present stage, includes parallel diffusion only. Preliminary results
are presented for illustrative purposes.

1 Introduction:
The modulation of cosmic rays in the heliosphere critically depends on the large-scale structure of the

heliospheric magnetic field (HMF). The large-scale HMF determines the pattern of drift motion as well as the
preferential direction of diffusion.

In a steady Archimedean spiral configurationB# = 0, i.e the HMF does not have meridional component.
Fisk (1996) has suggested that the HMF is not a simple Archimedean spiral, but has an organizedB# 6= 0

component which can establish a very complex but organized latitudinal transport between high and low
heliographic latitudes. Cosmic-ray transport in a Fisk field is inherently 3-dimensional which poses a serious
challenge for both analitycal and numerical models (e.g. K´ota & Jokipii, 1997). An additional technical
difficulty is that field lines at the poles are in general not aligned to the radial direction thus the use of polar
coordinates becomes problematic.

The Fisk-field called attention to the potential significance of a regularB# component. The problem, how-
ever, is more general. Almost any global reorganization in the HMF generates,inevitably, aB# component.
It is the purpose of the present work to explore a particular way to handle this problem by usingheliomag-
netic coordinates, which are attached to the field lines. This technique was applied successfully by K´ota &
Jokipii (1983) and Hattingh & Burger (1995) to model cosmic-ray transport in a rigidly corotating Parker field
with a tilted Heliospheric Current Sheet (HCS). Here we advance this concept to address more complex HMF
structures.

The heliomagnetic coordinates offer a promising avenue if diffusion is primarily field aligned. The geom-
etry of the field lines is probably less important if perpendicular diffusion due to the random mixing of field
lines is effective. The present work is a progress report, we do not aim quantitive comparison with observa-
tions at this stage. Our numerical code, in its present form, considers parallel diffusion along the magnetic
field only, drift and perpendicular diffusion are not yet included. Consequently the predicted variations are
irrealistically large. These will certainly be reduced when perpendicular transport is incorporated.

2 Heliomagnetic Coordinates:
The equation governing the variation of the omnidirectional cosmic-ray density,f(xi; p; t), in the position,

xi, momentum,p, and time,t, was written down by Parker (1965). In Cartesian coordinates:
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whereVj andVDj are the convection and drift velocities, respectively. Q accounts for sources. The anisotropic
diffusion tensor,�ij , can be written as

�ij = �?�ij + (�k � �?)bibj (2)



with bi = Bi=B denoting the unit vector pointing in the direction of the field.
What we call heliomagnetic coordinates is essentially using (beside the radial distance,r) the angular

variables� and�, which identify the footpoints of the respective field line at a reference time,t0. Then,�
and� remain constant on a field line. This choice of curvilinear coordinates calls for the use of co-variant and
contra-variant coordinates. The form of (2) for the diffusion tensor, expressed in covariant form, becomes

�ij = �?g
ij + (�k � �?)b

ibj (3)

while Parker’s equation (1) takes the form
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whereg is the determinant of the metric tensor,gij , andgijgjk = �ik. The structure of the HMF and the
geometry of the field lines appear in the metric tensor,gij , which will, in general, evolve in time according to
the dynamics of the footpoints, and then propagate outward in radius at the solar wind speed,V .

The virtue of magnetic coordinates is that the magnetic field has only one non-zero component, bothb�

andb� vanish. The components of the drift velocity,VDj, are easy to obtain, and the HCS can be defined
as a� = const: surface. The random transverse field component suggested by Jokipii & K´ota (1989) to
impede fast polar transport can be incorporated as well. At the same time, the method has its drawbacks and
limitations. The metric tensor,gij , becomes ill-conditioned at large radii where the HMF is predominantly
azimuthal. For similar reasons the solar wind speed should preferably be uniform, and the motion of footpoints
needs to be regular and tractable.

3 Numerical Results and Discussion:
We consider HMF models where the motion of the footpoints can be described as a rotation but the axis of

rotation is allowed to vary in time. For instance, such is the Fisk field which is generated by the combination
of two rotations, the momentary axis changes in time. The solar wind speed is taken uniformly 500 km/s, the
outer boundary is placed at 60 AU. At this stage, the code can handle parallel diffusion only, thus drift and
diffusion are not included. In the simulations we assume�k = �0(r=r0)(P=P0)�, so that� = 1:51023�cm2=s
atP = 1 GV rigidity, andr = 1 AU (� is the particle velocity expressed in units of the speed of light).

Figure 1: Variation of simulated cosmic-ray flux in an Archimedean spiral field model. Observers are at
latitudes15o and60o at4 AU (solid lines) and25 AU (dotted lines) from the sun. The tilt angle of the HCS is
changed from20o to 30o at the mark.



First, we consider a tilted dipole model with a random transverse component (Jokipii & K´ota, 1989) to
impede the easy diffusive access in the polar regions. The tilt angle,� is changed from the initial20o to 30o

between day 30 and day 40. The results of this model calculation are shown in Figure 1. In the absence of
drift the solution settles to a steady state after an initial period. Modulation is essentially determined by the
length of the field lines to the outer boundary. Solid curves refer to observers at 4 AU, dotted curves refer to
observers at 25 AU. The shifts of levels are due to radial and latitudinal gradients. Latitudinal gradients arise
since the field lines are less tightly wound at higher latitudes. As the tilt of the magnetic axis is changed from
20o to 30o, 26-day waves appear simultaneously at both latitudes, and these variations last for several solar
rotations. Clearly, cosmic rays sense the variations in the field between the observer and the outer boundary.
The delay in the onset time, in this simple model, corresponds to a propagation speed equal to the solar wind
speed. Conceiveably, the inclusion of drift will modify this simple picture.

Though the model is overly simplified, it demonstartes that a global reorganization of the the current sheet
and the HMF may produce enhanced simultaneous 26-day variations at varous latitudes. Similar simultaneous
26-day waves were observed at Ulysses and IMP in early 1996 (McKibben, 1998).

Figure 2: Variation of the cosmic-ray flux at the equator (solid line) and60o latitude (dotted line) at4 AU
from the sun obtained in a model calculation (see text) for a Fisk field configuration. The tilt of the offset axis
is changed from20o to 30o at the mark.

Figure 2 shows a similar model calculation for a Fisk field. The offset axis is changed from20o to 30o. The
observers are 4 AU from the sun, at the equator (solid line) and at60o latitude (dotted line). In the Fisk field
configuration an observer would, even in the absence of drifts, see recurrent variations due to the variation in
the length of the field line that passes the observer (Zurbuchen, 1999). The magnitude of the 26-variation is
expected to increases following the change in the offset axis. As a rule of thumb, cosmic-ray intensity close to
the equator is expected to increase while intensities at high latitudes are expected to decrease as the tilt of the
offset axis increases. A larger tilt of the offset axis, as could be anticipated, results in more effective latitudinal
transport and thus reduces the latitudinal variation. We note that the magnitude of variations resulting from this
model are irrealistic, these extreme variations are expected to reduce considerably when transverse transport
is incorporated.

Figure 3 shows the results of an exercise when the offset axis of the Fisk field was changed gradually from
20o to 160o, executing a complete flip, between day 0 and 600. An observer near the heliographic equator
would be expected to see an increase then a decrease in the level of 1 GeV cosmic rays, and the whole period
of transition would be characterized by intense 26-day variations



Figure 3: Simulated variation of cosmic ray flux at5o latitude,4 AU from the sun in a Fisk field configuration.
The tilt of the offset axis changes gradually from20o to 160o, executing a complete flip, between the two
marks.

4 Summary:
We have presented model calculations to demonstrate how heliomagnetic coordinates can be used in situa-

tions when the field lines follow a complex geometry. We call attention that almost any global reorganization
of the HMF, for instance a global change in the HCS, may and probably will lead to a regular meridional
component in the the HMF, the structure of which may be quite complex (see K´ota & Jokipii, 1997). This can
affect cosmic rays and might produce simultaneous enhanced 26-variations, lasting for several solar rotations,
at different latitudes.

So far our numerical code includes parallel diffusion only. Results may give insight into some phenomena
but must not be taken quantitively. Conceiveably, the inclusion of drift and perpendicular diffusion will sig-
nificantly reduce the magnitude of the variations that were obtained without transverse transport. The goal of
our effort is to explore and quantify the effect of transverse transport on these variations.

Finally we note that the use of heliomagnetic coordinates may prove fruitful in analytical approximations.
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