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Abstract

Unlike larger spatial scales of the interplanetary magnetic �eld uctuation spectrum, study of the
smallest scale uctuations (comparable to the gyroradius of a thermal proton) which form the so-
called dissipation range has been somewhat neglected. This spectral range is characterized by a
steeply falling power spectrum and frequently nonzero magnetic helicity, features thought to result
from the dissipation of magnetic uctuations by thermal particle populations. Although this range
contains relatively little energy, it is relevant to energetic particle scattering because low-rigidity
particles and all particles at large pitch angles become resonant with these uctuations. Analyzing
power and helicity spectra of WIND data, we deduce the orientation of the wavevectors and �nd that
most of the wave energy is associated with wavevectors at large angles to the mean magnetic �eld.
We place these observations within an existing framework for turbulent scattering of cosmic rays.

1 Introduction
Relatively few studies of the dissipation range of interplanetary magnetic turbulence exist when

compared to the inertial range at lower frequencies. Figure 1a shows an example of a high-resolution
spectrum taken by the WIND spacecraft in near-Earth orbit, and its associated reduced magnetic
helicity spectrum. The inertial range spectrum terminates at 0:44 Hz in a spectral break to a steeper
spectral index. This break marks the onset of the dissipation range.

The possible involvement of ion cyclotron ac-
tivity in the observed onset of steepening has
been discussed for some time (Behannon 1976;
Denskat, Beinroth, & Neubauer 1983); we too
observe such a correlation. In all of our events,
this steepening of the dissipation range sets in at
fsc > 
p=2�, where 
p is the proton cyclotron

frequency, but the k � VSW Doppler shift makes
it likely that ! < 
p. In the spacecraft frame, we

�nd that as a reasonable �rst approximation, the
break frequency fsc is about 4 times the gyrofre-
quency 
p=2�.

Although the dissipation range contains very lit-
tle energy, it is important because low-rigidity
particles and all particles at large pitch an-
gles become resonant with uctuations at those
scales. Magnetostatic, quasilinear scattering by
the \slab" geometry that omits consideration of
the dissipation range gives too much scattering,
especially at low rigidity. To counter this, Bieber,
Smith & Matthaeus (1988) and Smith, Bieber &
Matthaeus (1990) argue that incorporation of a
dissipation range in magnetostatic scattering sig-
ni�cantly alters the mean-free-paths of energetic

Figure 1: Typical interplanetary power spectrum
showing the inertial and dissipation ranges. (a)
Trace of the spectral matrix with a break at �
0:4 Hz where the dissipation range sets in. (b)
The corresponding magnetic helicity spectrum.



particles. Bieber et al. (1994) employ the dissipation range, together with magnetodynamic e�ects, to
produce mass-dependent mean-free-paths that are distinct from the usual rigidity-dependent forms.
This leads to di�ering mean-free-paths for protons and electrons of equal rigidity, in general agreement
with a large class of solar energetic particle observations.

Understanding suprathermal particle scattering therefore requires better determination of the tur-
bulence geometry; i.e., direction of k. Traditionally, the reported observation of magnetic uctuations
perpendicular to the mean magnetic �eld (Belcher & Davis 1971) has been used to motivate k kB.
However, the possibility that an energetically signi�cant fraction of the wave vectors could be nearly
at k ? B was shown by Matthaeus, Goldstein & Roberts (1990). Bieber, Wanner & Matthaeus (1996)
assumed a composite two-dimensional (2D)/slab model for the magnetic turbulence and determined
that in the inertial range there is a dominant (� 85% by energy) 2D component. The 2D component
does not contribute to resonant scattering of very energetic particles (cosmic rays) and can explain
the observed problem of \too small" cosmic ray mean free paths (Bieber et al. 1994). Whereas Bieber
et al. (1996) considered solar particle events, we shall extend their methods to the undisturbed solar
wind and in frequency to the high-frequency end of the inertial range (� 0:02 to � 0:2 Hz) and the
low-frequency end of the dissipation range (� 0:5 to <

� 2 Hz).

2 Magnetic Helicity
The results presented here are based on the analysis of 33 1-hour intervals of quiet solar wind

data, from the magnetic �eld and thermal plasma instruments of the WIND spacecraft. This data
set and the method of analysis is described in detail by Leamon et al. (1998).

For the 33 quiet solar wind intervals, the spectral indices of the inertial range were between �1:46
and �1:93, with an average of �1:67. The dissipation range indices range from �1:93 to �4:43, with
the average being �3:01. No clear correlation between the �tted indices of the two ranges is observed.

Figure 1b shows the reduced magnetic helicity spectrum for that interval. Note the negative
signature at dissipation frequencies, averaging �0:275 over those frequencies used to compute the
dissipation range spectral slope. If there is �nite magnetic helicity, the sign of the particle's charge
can enter into the rigidity dependence of mean free path as a second order e�ect (Goldstein &
Matthaeus 1981; Bieber, Evenson & Matthaeus 1987; Bieber et al. 1994). This is accomplished by
changing the amount of energy available for resonant scattering by adjusting the net polarization of
the power spectrum within any given range.

Perhaps more importantly, nonzero magnetic helicity can lead to charge-sign dependent resonant
scattering. Dissipation of outward propagating Alfv�en waves leads to hBRih�M i e�ects that modify
scattering of energetic particles when in resonance with the small scales. Of the 33 events studied,
27 have dissipation range helicity signatures of j�M j > 0:1, and only 3 events have hBRih�M i > 0.

The apparent depletion of outward propagating Alfv�en waves at frequencies comparable to the
proton gyrofrequency naturally suggests resonant cyclotron damping of such Alfv�en waves as the
leading candidate for the formation of the dissipation range. However, such a theory cannot predict
the onset of the dissipation range (Leamon et al. 1998).

3 Anisotropy
The classic study of inertial range magnetic uctuations is that of Belcher & Davis (1971), They

de�ned a coordinate system relative to the mean magnetic �eld direction, B̂, and radial direction,
R̂, according to: fB̂ � R̂; B̂ � (B̂ � R̂); B̂g and showed that the average variances for these three
components are in the ratio 5 : 4 : 1. We note that this implies a ratio for the total variance
transverse to and aligned with the mean �eld of 9 : 1. This high level of anisotropy is consistent with
the uctuations consisting of Alfv�en waves, especially considering the high degree of hv �bi correlation
observed.



We de�ne Pk to be the power in uctuations parallel to B̂ and P? to be the total power in both
components perpendicular to the mean �eld. We acknowledge that there is a subtle di�erence between
our method and that of Belcher and Davis who use average variances. For the high-frequency end of
the inertial range, our results �nd a mean P? : Pk ratio of 14 : 1, with a range 3:0 � P?=Pk � 53:2.
Taking into account that the above mean may be unduly biased by several samples with unusually
large values, we note that the geometric mean of P?=Pk is only 10.4, which is in closer agreement
with the result of Belcher and Davis. For the dissipation range we �nd a mean ratio of 5:4 : 1 with
a range 2:36 � P?=Pk � 12:8 and a geometric mean ratio of 4:9 : 1. The dissipation range ratios
P?=Pk are consistently less than inertial range ratios, implying a decreased importance of transverse
uctuations in the dissipation range and an increase in the compression of the plasma at these scales.

4 Geometry
The Belcher & Davis anisotropy is usually taken as evidence of slab waves, even though it is

consistent with 2D turbulence. By 2D turbulence we mean uctuations that have wave vectors
that are nearly transverse to B. Most people interpret Belcher & Davis' 5 : 4 : 1 anisotropy as a
P? : Pk = 9 : 1 ratio; the 5 : 4 part is considered physically unimportant. However, there is physical
meaning to the ratio of the power in the two perpendicular directions (i.e., x̂ and ŷ in the mean-
�eld coordinate system outlined in section 3), and reason to expect that they should not be equal.
Following Bieber et al. (1996), in a test based on the analysis of Oughton (1993) we use this ratio as
a direct link to the percentage of slab waves and 2D modes in the uctuations. Bieber et al. use a
coordinate system that is a 90� right-handed rotation away from Belcher & Davis (around the ẑ or
B̂ axis). In the analysis that follows, we use Bieber's conventions, such that ŷ = B̂� R̂.

We assume that the magnetic uctuations consist of a mixture of slab and 2D geometries and
compute their relative strengths from the ratio of transverse spectral powers. CS and C2 are the
amplitudes of the slab and 2D components, respectively; i.e., the slab spectrum in the range of
interest is parameterized by CSk

�q and the 2D spectrum by C2k
�q. We further assume that the

two components obey the same power law (that is, they have the same spectral index �q). This is
equivalent to the statement that Pxx and Pyy obey the same power law, which is not strictly obeyed,
at least not within our data set, but is approximately true.

The \slab fraction," r, is the contribution of the slab component to the energy spectrum, relative
to the total energy,

r �
CS

CS + C2

=
1

1 + r0
; (1)

where r0 = C2=CS . Equations (16) and (17) of Bieber et al. (1996) and the above de�nition leads to
the following formula for the ratio of power between components:
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The ratio Pyy=Pxx (which under our assumptions becomes independent of frequency in the relevant
range) and the parameters VSW , �, the angle between the magnetic �eld and solar wind velocity, and
q are derivable from observations by a single spacecraft. Thus the only unknown in equation (2) is
r0, which, in turn, gives us the slab fraction r.



For the \middle" of the inertial range, Bieber et al. conclude that IMF geometry is � 85% 2D and
only � 15% slab waves. Our results provide an essentially identical result for the high-frequency end
of the inertial range, with � 89% of the energy in 2D uctuations. In the dissipation range, on the
other hand, the 2D component falls to � 55%, which we may explain by preferential dissipation of
2D structures.

In terms of application to scattering theory, the large 2D component reduces the overall scatter-
ing rate by the same percentage. Perpendicular wavevectors are ine�cient scatterers of particles,
essentially making their percentage of the total energy unavailable for particles.

5 Discussion
In recent work (Leamon et al. 1998, 1999) we have shown that there is both observational and

theoretical evidence to support the claim that the dissipation range forms as the result of dissipating
energy associated with wave vectors at large angles to the mean magnetic �eld. This is consistent
with inertial range studies (Matthaeus, Goldstein & Roberts 1990; Bieber et al. 1996) that indicate
the same geometry at these larger scales and cosmic ray mean-free-path analyses (Bieber et al. 1994).
The results described here are expected to aid in the re�nement of ongoing cosmic ray propagation
analyses.

Additionally, we hope to examine the possible role of magnetic helicity within the dissipation
range in determining cosmic ray propagation. Since resonant scattering of large pitch-angle particles
by the dissipation range is balanced against magnetodynamic e�ects and other considerations, the
possible role of helicity at the small scales is unclear.
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