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Abstract

We discuss the dispersion relations for diffusive motion. These can be quickly computed and can be a useful
diagnostic tool to explore the validity range of various approximations. Illustrative examples are presented for
cases including dominant helicity, focusing, and hemispherical scattering.

1 Introduction:
The evolution of the distribution,f(z; �; t) for impulsive particle events in time,t, space,z, and cosine of

pitch-angle,� is governed, in the simplest rectilinear geometry, by the equation
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whereD�� is the pitch-angle scattering coefficient. (1) is often approximated by the diffusion equation which
operates with the omnidirectional densityf0(z; t) =< f(z; �; t) > only (<> indicates average over�). The
diffusion model is inaccurate for short times and fails to describe the early phase of events. Several efforts
have been made to improve the diffusion model. Fisk & Axford (1969) introduced the telegrapher’s equation.
The modified equations can be written in the general form of
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where� = 0;� = 0 corresponds to the standard diffusion equation,� = 1;� = 0 yields the telegrapher’s
equation. Pauls et al (1993) suggested a cross-derivative term (� 6= 0) to account for a possible dominant
helicity in the random component of the heliospheric magnetic field. Gombosi et al (1993) pointed out that a
modified�, which depends on the actual form ofD�� gives better approximation. The right hand side of (2)
includes adiabatic focusing due to the possible divergence of field lines, A(z) is the area element, andL is the
focusing length, with1=L = @lnA=@z).

One way to explore these approximations is to look at the dispersion relations they yield. Consider the
solution,f(z; �; t) as a sum of eigenfunctions,F (k; �)e(ikz��t). Then, (2) transforms into

��2 + i�k� � �=� = �v2(k2 � ik=L)=3 (3)

The resulting�(k) relations are easy to evaluate and are shown in Figure 1. Here we cover only the half
plane, obviouslyRe(�) is an even andIm(�) is an
odd function ofk. To use dimensionless quantities,
we take the particle speed,v, and the scattering time,
� , to be unity (v = � = 1). These dispersion rela-
tions of the approximations can then be compared to
those obtained from the full equation (1). In general,
the full equation has infinite number of eigenfunc-
tions and eigenvalues (see Earl, 1974). Here we fo-
cus on the two lowest eigenvalues which are the most
important in determining the evolution of the particle
density and anisotropy. Clearly the value of� ap-

Figure 1: Dispersion relations for the diffusion (dotted
line) and the telegrapher’s equation (solid lines)

pears in�1(k = 0), while a non-zero� would appear as a non-zero (imaginary) value ofd�1=dk at k = 0.
The dispersion relations for the ‘billiard-ball’ scattering were first given by by Fedorov and Shakov (1993).
‘Hemispherical’ scattering was considered by K´ota (1994).



2 Dispersion Relations:
For the sake of simplicity we assume that bothD�� and the focusing length,L, are independent of loca-

tion, which correspponds to an exponentially diverging geometry (see, Earl 1981). The pitch-angle scattering
coefficient,D�� is allowed to be arbitrary function of�, we assume

D�� =
v(1 � �2)

2�(�)
=

(1� �2)j�jq

(1� �)(1 � q)(3� q)�
(4)

In this formulation,� accounts for helicity (Bieber et al., 1987) and� represents the effective scattering time so
that the resulting spatial diffusion coefficient be�k = v2�=3 (Hasselman & Wibberenz). The Fokker-Planck
equation, including focusing, can then be rewritten as
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where@G=@� = �(�)=L (Kunstmann, 1979). In terms of the eigenfunctions,F (k; �), (6) reads as
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The eigenvalues,� = �j(k) (j = 0; 1; 2; ::), are complex in general. Slow spatial variation corresponds to
k � 0. At k = 0, the lowest eigenvalue is always�0 = 0, corresponding to the completely homogeneous
and isotropic solution, and all the other eigenvalues are real and the eigenfunctions are identical with the
eigenfunctions of the scattering operator (Earl, 1974). Moving fromk to k + �k, the eigenfunctions and
eigenvalues change toF + �F , and� + ��, yielding
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Multiplying equation (7) byF (k; �) and integrating over�, the left hand side should vanish
Z 1
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(���F 2 + i�kv�F 2)e�G d� = 0 (8)

hence the variation of�(k) is given by
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The derivatived�=dk is the group velocity which can be associated with the coherent propagation speeds while
the second derivatived2�=dk2 is characteristic of the dispersion and can be associated with the diffusion
coefficients. It can be shown that, for the rectilinear case,d2�=dk2 at k = 0 exactly returns the diffusion
coefficient derived by Hasselman & Wibberenz (1970).

3 Illustrative Examples:
Below we present some examples to illustrate the method for various kinds of scattering. We assume the

dependence ofD�� as given in (5). Clearly,q = 0; � = 0 describes isotropic scattering,� 6= 0 implies
dominant helicity, whileq � 1 represents hemispherical scattering. We consider both rectilinear and focusing
geometries, with a constant focusing length,L.

3.1 Isotropic Pitch-angle scattering: The simplest scattering is isotropic pitch-angle scattering. Then
the eigenfunctions atk = 0 are the spherical harmonics, while the eigenvalues are�j = j(j + 1)=2� (j =

0; 1; 2; :::). The variations of�0(k) and�1(k) as function ofk are shown in Figure 2. The general pattern is
similar to that of the telegrapher’s equation but there are noticeable differences at the same time.



3.2 Dominant Helicity: Bieber et al, Evenson & Matthaeus (1987) called attention to the possible role
of a dominant helicity, which introduces an asymmetry intoD��. Figure 3 shows how the dispersion relations
for a dominant helicity� = 0:5. Note that the imaginary part of the derivatived�1=dk becomes finite atk = 0

in accord with the predictions of (2) for a non-zero value of� (Pauls et al., 1993).

Figure 2: �0(k) (solid line) and�1(k) (dashed line) for isotropic pitch-angle scattering without a dominant
helicity (� = 0, left) and with a dominant helicity (� = 0:5, right)

3.3 Focusing: Adiabatic focusing becomes important when field lines diverge on a scale comparable or
smaller than the scattering mean free parth. Focusing appears in (7) through the function,G(�)

In a focusing geometry, (3) suggests that� can be obtained as� = �iL d�0=dk, atk = 0. Since the ze-
roeth eigenfunction,F0, is always constant atk = 0,
(9) immediately leads to� = �vL < �e�G >
= < e�G >, which is identical to the expression in-
ferred by Bieber and Burger (1990) using a Born ap-
proximation. Bieber, Evenson & Matthaeus (1987)
pointed out that the combined effect of focusing and
dominant helicity leads to charge dependence in�.
This effect is clearly demonstrated in the dispersion
relations shown in Figure 3 for a focusing length,
L = 1, and helicities,� = 0:5 and� = �0:5. Both
the curvature ofRe(�0), and the slopes ofIm(�0) at

Figure 3: Dispersion relations for a focusing geometry
(L = 1), with � = +0:5 (+) and� = �0:5 (-) helicities

k = 0 indicate different effective diffusion coefficients for the two different signs of helicity.

4 Hemispherical Scattering:
A case of particular importance is the hemispherical scattering when particles are strongly scattered both

in the� < 0 and� > 0 hemispheres but scattering through� = 0 is restricted. Such a case is described, for
instance, byq � 1 or, in another formulation with the introduction of two distinct levelsf+ andf� for the
two hemispheres. The equations forf� have been developed and discussed in detail by Isenberg (1997) and
Schwadron (1998).

Figure 5 shows the dispersion relations forq = 0:9 for a rectilinear case, without focusing (left panels),
and those for a focusing scenario (L = 1:). For the rectilinear case, the dispersion relations are quite similar
to those of the telegrapher’s equation (see Figure 1). Moreover, the higher eigenvalues,�j (j = 2; 3; ::) are
remarkably large. For instance, the second eigenvalue is already�2 � 23, thus the contributions from the
higher eigenfunctions vanish quickly and can be neglected. This also reaffirms that the use of the two distinct
levels,f� andf+ is a good approximation. For the evolution off+ andf�, we suggest the coupled equations



Figure 4: Hemispherical scattering (q = 0:9) for rectilinear (left) and focusing (L = 1, right) geometries
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which, in the focusing term, are somewhat different from the equations of Schwadron (1998) and Isenberg
(1997). Combining (10) and (11) leads to
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implying a modification of�0(k) due to the effect of focusing. The right panels of Figure 5 shows that, as
expected from (12), the dispersiond2�=dk2 does indeed decrease in the presence of focusing.

5 Summary:
We have presented some illustrative examples how the dispersion relations, which can be computed quickly,

can be used to explore some characteristic features of the full transport equation and to diagnose various
approximations.

6 Acknowledgement:
The author benefited from discussions with G. Erd˝os, J.R. Jokipii, and G.M. Webb. This work has been

supperted by NASA under Grants NAG5-4834 and NAG5-6620 and by NSF under Grant ATM-9616547.

References

Bieber, J.W, & Burger, R.A. 1990, ApJ, 348, 597
Bieber, J.W, Evenson, P. & Matthaeus, W.H. 1987, GRL, 14, 864
Earl, J.A. 1974, ApJ, 188, 379
Earl, J.A. 1981, ApJ, 251, 739
Fedorov, Yu.I. & Shakov, B.A. 1993, 23rd ICRC, Calgary, 3, 215
Fisk, L.A. & Axford, W.I. 1969, Solar Phys., 7, 486
Gombosi, T.I., Jokipii, J.R., K´ota, J., Lorencz, K., & Williams, L.L. 1993, ApJ, 403, 377
Hasselmann, K. & Wibberenz, G. 1970, ApJ, 162, 1049
Isenberg, P.A. 1997, JGR, 102, 4719
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