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Abstract

The measurement and analysis of<�B�f >, the correlation between fluctuations in the magnetic field and
fluctuations in the particle phase space density, has the potential to provide new information on the geometry
of magnetic turbulence in the solar wind and on the process of particle scattering by magnetic turbulence. The
theoretical description of<�B�f> uses instantaneous values of�B and�f , but real world measurements only
yield discrete or time-averaged values. Using a simulated slab magnetic field to represent the interplanetary
magnetic field, we plan to determine what time resolution for�B and�f is required to yield an acceptable
approximation to the theoretical continuous quantity. Interim results are reported here.

1 Introduction
A means of better understanding cosmic ray transport in the heliosphere may be provided by studies of

the relationships between the fine scale structure of the interplanetary magnetic field (IMF) and the fine scale
structure of the cosmic ray distribution function. Jokipii and Owens (1974) and Owens and Jokipii (1974)
have emphasized the valuable information to be gained from studies of cosmic ray scintillations and the co-
herence between scintillations and magnetic field fluctuations. Bieber (1987) took a related approach, but
with a different emphasis. He focused on the correlation between fluctuations of the magnetic field,�B, and
fluctuations of the cosmic ray distribution function,�f . This quantity,<�B�f>, which occupies a central
role in quasi-linear theory, is measurable and has the potential to provide new information on the geometry of
magnetic turbulence in the solar wind and on the process of particle scattering by magnetic turbulence.

2 Computational Experiment
In our analysis, we use a slab magnetic field to represent the IMF. The magnetic field,~B(~r), is Fourier

decomposed in terms of~b(~k), which is related to the power spectrum. The slab model assumes that the wave-
vector of each of the infinite Fourier components points in the same direction, say thez-direction. Therefore
in the slab model, the magnetic field is written as~B(~r) = (Bx(z); By(z); B0).

Now we discretize the above results; therefore,

Bj(q) =
NX

n=�N

bjn e2�{nq=(2N+1); (1)

whereBj(q) = Bj(zq), bjn � bj(kn)�k andzq = q�z, kn = n�k. It is important to note that the choice
of �k, �z, andN is not an arbitrary process; these quantities are related by the so-called reciprocity relations
(Briggs and Henson, 1995):

(2Kd)(2L) = 2�(2N + 1); (2)

�k�z =
2�

2N + 1
; (3)

where2L = (2N + 1)�z, 2Kd = (2N + 1)�k. The actual values used for these quantities depends on the
minimum and maximum scale sizes of a given problem. We will return to this issue in the discussion, Sec. 3.



We have used the following two-sided power spectrum to describe the magnetic power spectrum in the IMF
(Bieber et al., 1994):

P (k) =

(
2�c� (1 + k2�2)�5=6 k < kd
0 k > kd

(4)

wherekd � 2�=�d and�d is the dissipation scale. The constants in the above equations arec = 0:075 nT2,
� = 4:55�109 m, andkd = 2:0�10�5 m�1. The modal power,Pn, is related to the magnetic power spectrum
by Pn = P (kn)�k. The modal power is related tobjn by Pjjn = bjnbj�n, where, for a real magnetic field,
=B(q) � 0, it can be shown thatb�n = b�n. Random fluctuations in the magnetic field are created via a
random phase, jn, in bjn; therefore,

bjn =
p
Pn e{ j : (5)

For charged particle scattering in slab turbulence, Bieber (1987) and Chen (1989) show that, under certain
assumptions, the fluctuations in the particle phase space density,�f is given by

�f(z) = �f(0)�
kr
B0

@ <f >

@�

����
z

Z 0

�z
[�Bx(z + �) sin(�� kr�)� �By(z + �) cos(�� kr�)] d�; (6)

where(p; �; �) gives the particle momentum in spherical polar coordinates and<f > is the ensemble average
of the particle phase space density. The resonant wavenumber,kr � 1=(RL�), where,� = cos �, is the cosine
of the pitch angle andRL = P=(cB0) is the Larmor radius in terms of the particle rigidity,P ; c is the speed
of light. We setkr � r�k. Thed� integral is straightforward to do, ifB(z + �) is Fourier decomposed. For
future reference, we also include the equation used to calculate the discrete analogue of�f ; in the remainder
of this paper it is assumed that all sums are fromn = �N to n = N , unless otherwise stated:
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; (7)

A sample calculation of the particle phase space density is shown in Fig. 1 for a 10 GV particle with� = 0:5
moving in a magnetic field with an average magnitude ofB0 = 4:0 � 10�9 T. For this calculation we set
�f(0) = 0 and@ <f >= @� = 1.

Assuming that the data set is large enough and that conditions of ergodicity and stationarity are satisfied,
the ensemble average,<�Bj�f>, is given by

<�Bj�f> =
1

2N + 1

NX
q=�N

�Bj(q) �f(q): (8)

Bieber (1987) showed that the continuous analogue of<�Bj�f> approaches a constant value forz � �c,
where�c is the magnetic field correlation length. This value depends only upon the power spectrum matrix and
is independent of the wave phase. On the otherhand, for the discrete calculation we found that<�Bj�f> is
inherently random; that is, it retains an explicit dependence upon the wave phase. Therefore it varies according
to the value of the random seed used to determine the wave phase.
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Figure 1: Particle phase space density fluctuations for a 10 GV particle. For further details see the text.

A look behind the scenes of Eq. 8 reveals how the dependence on the random seed is introduced. If we
substitute Eq. 1 and Eq. 7 into Eq. 8 we obtain

<�Bx�f> = �f(0)bx0 �
kr
2B0
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(9)

wherer is the mode of the resonant wavenumber. Equation 9 reveals two ways that the random seed enters.
The most obvious problem is the presence of the random termsbjn. A less obvious problem is the terms
containingPjkn. For two uncorrelated sequences,Pjkn ! 0 asN ! 1, in agreement with the continuous
analogue; however, as shown in Fig. 2,Pjkn is finite, random, and large compared toPxxn for finiteN .

3 Discussion
Our computer model of the IMF contained some surprising elements that are not present in the continuous

theory presented by Bieber (1987). The most surprising difference was the dependence of<�Bj�f > on
the random seed, as discussed above. This problem appears to be inherent in the discretization process. As
an interim solution we set therth term of the modal power,Pjjr � 0; this also implies thatbxr = 0. In
addition, setting xn =  yn makesPjkn equal to the modal power, which is not random. Note that magnetic
helicity is equal to zero when we set the random phase for both components equal. These interim measures
introduce problems of their own, not the least of which is that it is artificial. In addition, if xn =  yn then
Pxyn = Pyxn, which violates one of the properties of Bieber’s (1987) simple turbulence model; namely, the
property of axisymmetric slab turbulence, which implies thatPxyn = �Pyxn.

We have thoroughly tested the program; for example, we checked that the magnetic field data we generated
satisfied the Weiner-Khinchin Theorem. It should also be noted thatN ,L, andKd have been chosen to provide
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Figure 2: The powerPxyn compared withPxxn.

good resolution of all significant scales in the problem and to reduce edge effects. For example, for a 10 GV
particle we chooseL = 5:0� 1012 m andKd = 5:0� 10�7 m�1. These values ensure that both the resonant
wave-number,�r = 2�=kr, and the magnetic field correlation length,�c, are well resolved and smaller than
the box size used in the simulation.

Our aim in performing this computational experiment is to answer two practical questions concerning the
measurability of<�B�f>. Magnetic field data and cosmic ray intensity data do not exist with infinitesimal
time resolution; rather, the data gives discrete or time-averaged values of�B and�f . Therefore we plan to
determine the time resolution required in�B and�f to yield an acceptable approximation to the theoretical
value of<�B�f>. At the opposite end of the scale, the theoretical calculation of<�B�f> assumes that the
average is taken over an infinite region, which is an experimental impossibility. Therefore a related question
that we plan to study deals with the length scale that needs to be probed to yield an acceptable approximation
of <�B�f>.
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