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Abstract

We have developed a novel computer code designed to follow the evolution of cosmic-ray modified shocks,
including the full momentum dependence of the particles for a realistic diffusion coefficient model. In this
form the problem is technically very difficult, because one needs to cover a wide range of diffusive scales,
beginning with those slightly larger than the physical shock thickness. With most finite difference schemes
for Euler’s equations the numerical shock thickness is at least one zone across, so this provides a lower bound
on the physical scale for diffusive transport computation. Our code uses sub-zone shock tracking (LeVeque &
Shyue 1995) and multi-level adaptive mesh refinement to provide enhanced spatial resolution around shocks at
modest cost compared to the coarse grid and vastly improved cost effectiveness compared to a uniform, highly
refined grid. We present and discuss the implications from our initial results.

1 Introduction:
Diffusive shock acceleration is now widely accepted as the model to explain the production of cosmic

rays (CR) in a wide range of astrophysical environments. Owing to complex nonlinear physics involved in
the model, numerical simulations have been quite useful and successful in understanding the details of the
acceleration process and dynamical feedback of the CRs to the underlying plasma. Accurate solutions to
the CR diffusion-convection equation require a computational grid spacing much smaller than the diffusion
lengths of the CR particles. In a realistic diffusion transport model, it is thought that the diffusion coefficient
should have a steep momentum dependence,�(p) / ps, with s � 1 � 2. For the lowest energy particles
the diffusion lengths are only slightly greater than the shock thickness, while they can be many orders of
magnitude greater than that for the highest energy particles. Thus, a wide range of length scales is required to
be resolved in order to solve the diffusion convection equation correctly for the model with a realistic diffusion
coefficient. Especially the diffusion of particles whose mean free paths are a few times that of thermal particles
determines the injection rate of the CRs in the so-called “thermal leakage” type injection model. Thus resolving
these smallest scales is of critical importance in estimating the injection and acceleration efficiency. Previous
numerical simulations which adopted the traditional flux-differencing method on a uniform grid were often
forced to assume a weak momentum dependence (e.g.s = 0:25 in Kang & Jones 1991). Here we present a
new hydro/CR code that can track exactly a shock wave as a discontinuous jump and use multiple levels of
grid refinement around the shock.

2 Numerical Method:
2.1 Shock Tracking: The hydrodynamic conservation equations are solved in the 1D plane-parallel
geometry by the wave-propagation algorithm described in LeVeque (1997). In this method a Riemann problem
is solved at each interface between grid cells and the wave solutions (i.e., speeds of waves and jumps associated
with three wave modes) are used directly to update the dynamic variables at each cell. Within this method a
shock-tracking algorithm of LeVeque & Shyue (1995) can be incorporated easily, since the Riemann solutions
tell us exactly how the waves propagate. An additional cell boundary is introduced at the location of the shock,
subdividing an uniform cell into two sub-cells. This cell boundary (shock front) is moved to a new location
using the Riemann solutions (i.e. , xn+1s = xns + vs �t) in the next time step and the waves are propagated
onto the new set of grid zones. Since the new grid is chosen so that the shock wave is propagated exactly
to cell boundaries, the shock remains as an exact discontinuity without smearing. One advantage of using



the wave-propagation method for the shock tracking scheme is that the large time step satisfying the Courant
condition for the uniform grid can be used even if the shock is very close to the boundary of the uniform cell
and so the sub-cell is much smaller than the uniform cell. The CR diffusion-convection equation is solved
in two steps: 1) the diffusion term is solved by the Crank-Nicholson scheme as described in Kang & Jones
(1991). 2) the advection term is solved by the wave-propagation method as for the gasdynamic variables.

2.2 Adaptive Mesh Refinement: We also adopted the Adaptive Mesh Refinement (AMR) technique
developed by Berger & LeVeque (1998).

Ideal gasdynamic equations in 1D planar geometry do not contain any intrinsic length scales to
be resolved, but once the pre-
cursor due to the CR pressure
modification becomes signifi-
cant, the grid spacing should
be fine enough to resolve the
precursor structure. The CR
diffusion-convection equation,
however, involves a wide range
of length scales corresponding
to the diffusion lengths which
can depend strongly on the par-
ticle momentum in realistic dif-
fusion models. Compared to
the general version of the AMR
code of Berger & LeVeque (1998),

Figure 1: Layout of original grid and two refined grids.Nrf = 4 cells
around the shock are refined by a factor of two. The shock is indicated by the
dotted lines.

a much simpler scheme is sufficient for our needs, since we only need to refine the region around the shock
whose location is exactly known in our shock-tracking code.
A fixed number of cells around the shock (Nrf ) are identified as the “refinement region" on the 0-th level
grid (i.e. , original uniform coarse grid). Then each cell is refined by a factor of two by placing2Nrf cells
within the refinement region at the 1st level grid. ThenNrf cells around the shock on the 1st level grid are
chosen to be refined further to the 2nd level grid, making the length of the refinement region a half of that in
the 1st level grid. The same refinement procedure is applied to higher level grids. So at all levels, there are
2Nrf cells around the shock, but the length of the computation domain is shrunk by a factor of 2 from the
previous level. Fig. 1 shows an example of refined grid levels up tolg = 2 with Nrf = 4. The refinement
is done so that the shock remains near the middle of the computational domain at all levels. This is possible
only because we know the exact location of the shock. The velocity in the refined grid is transformed so that
the shock is at rest in the frame of the numerical simulation. This is to ensure that the shock remains near the
middle of the computational domain at all grid levels during the time integration of one time step of the coarse
grid. Thus the refinement region at all levels is moving along with the shock. Integration of the gasdynamic
variables and advection of the CR distribution function are done by the wave-propagation method at each level
grid. The detailed description of how to coordinate the time integration between levels and how to preserve
global conservation at the interfaces between coarse and fine grids will be presented elsewhere. The basic idea
applied for one level of refinement can be found in Berger & LeVeque (1998).

3 Simulation Results:
The dynamics of the CR modified shock depends on four parameters: the adiabatic index, = 5=3,

gas Mach number of the shock,M = Vs=cs, � = Vs=c, and the diffusion coefficient, wherecs andc are the
upstream sound speed and the speed of light, respectively. For our simulations we considerM = 20, � = 10�2,
and two diffusion models,�A = p0:525 and�B = p. The initial conditions in the rest frame of the shock for the



test problem are:�1 = 1:; Pg;1 = 1:5�10�3; u1 = �1: upstream and�2 = 4:; Pg;2 = 7:5�10�1; u2 = �0:25
downstream. Here the velocities are normalized to the initial shock speed. We adopted the “thermal leakage”
type injection model introduced in Kang & Jones (1995), in which the injection pool of particles are established
by letting the particles withp > c1pth diffuse across the shock, wherepth is the thermal peak momentum and
c1 = 2:8 is a free parameter that limits the injection rate. The numerical domain is [-25,+75] and the number
of cells,n, ranges from 1000 to 4000. The number of refined cells around the shock isNrf = 100 on the
original grid and so there are2Nrf = 200 cells on each refined level. For the�A model the diffusion length
of pth is ld = 0:09, while it is ld = 0:01 for the�B model. We used 230 logarithmic momentum zones in
log(p/mc)=[-3.0,+3.0].

Fig. 2 shows how the particle distribution (g(p) = f(p) p4) at the shock evolves in time in our simulations
with different grid spacings. There are 6
curves corresponding tot =10, 20, 30, 40,
50, and 60 in each panel. They show the
typical Maxwellian distribution that peaks
at pth = 10�2 and the CR particle distri-
bution that asymptotes to a power-law as
time increases. Forn = 1000, the cell
size�x = 0:1 is too large for the diffu-
sion of the particles in the injection pool
to be treated correctly, so the injection and
the acceleration are under-estimated. We
note the results ofn = 2000 and lg = 1

are consistent with those ofn = 4000

and lg = 0, as expected. For the highest
resolution case (n = 2000, lg = 3), the
CR pressure increases up to 13% of the
postshock gas pressure and a weak precur-
sor develops by the end of the simulation.
The distribution reaches a power-law of
p4, but it flattens slightly at higher mo-
mentum since those particles can sample
the total velocity jump, which is slightly
greater than a factor of 4. The injection
and the acceleration processes depend on
the momentum dependence of the diffu-
sion coefficient models. In the low energy
regime, the particles in the injection pool
have much smaller diffusion lengths in the
�B model than in the�A model, so the
injection is more severely underestimated
in the�B model than in the�A model in
a given spatial resolution. In the high en-
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Figure 2: Time evolution of the distribution functiong = fp4 at
t = 10; 20; 30; 40; 50, and 60 from the simulations with different
grid spacings and levels of refinement.�A model is used.

ergy regime, on the other hand, the cut-off at the high momenta sets in much more abruptly in the�B model
than in the�A model due to the stronger momentum dependence of the acceleration time scale.

Fig. 3 shows how the CR pressure increases with time at different spatial resolutions for the same simulations
shown in Fig. 2. The numerical frame is chosen so that the shock moves to the right withus = 0:05, if there
is no modification due to CR pressure. It also demonstrates that injection and acceleration are much slower in



under-resolved simulations.

4 Summary:
We have developed a new hydro/CR dynamics code by incorporating the shock-tracking method and

the Adaptive-Mesh-Refinement technique
into a hydrodynamics code based on the
wave-propagation method. By tracking
the shock location exactly, we can refine
the regions around the shock to an arbi-
trary level of refinements. The code has
been applied to simulations of CR mod-
ified shocks with more realistic diffusion
coefficient models which were not possi-
ble previously due to severe computational
requirements. Some preliminary results
from the time-dependent simulations have
been presented here. The AMR technique
we adopted proves to be very cost effec-
tive. In typical simulations considered
here, for example, the computing time in-
creases by factors of 1.5, 2.3, 4., 7. for the
maximum refinement levelslg = 1, 2, 3,
4, respectively, compared with the case of
no refinement (lg = 0). It should be com-
pared with the time increases by factors of
(2lg )2 for the simulations of an uniform
grid spacing that matches the cell size at
the lg � th refined level grid.
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Figure 3: Time evolution of the CR pressure for cases in Fig. 2.
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