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Abstract

In this paper, a Lagrangian approach to wave mixing in cosmic-ray modified flows is developed. In particular,
the wave mixing equations for short wavelength sound waves and entropy waves in a large scale background
flow obtained by Webb et al. (1997) are cast in the form of two coupled equations for the Lagrangian fluid
displacement� and the Lagrangian entropy perturbation�S. The fluid displacement vector�(x; t) satisfies
a second order wave equation, which describes the propagation of short wavelength sound waves in the large
scale background flow, with source terms owing to the the cosmic ray squeezing instability, and the entropy
perturbation�S. The source of the squeezing instability is identified with the non-adiabatic compression of
the fluid element by the cosmic rays. The entropy perturbation�S, is advected with the background flow. It
is noted that these equations can be generalised to arbitrary wavelength waves.

1 Introduction
Webb, Brio, Zank and Story (1997) derived linear and weakly nonlinear evolution equations describing

wave coupling and cosmic ray squeezing instabilities for short wavelength sound waves and entropy waves
in a large scale background flow. The equations were used in Webb et al. (1999) to discuss instabilities in
cosmic ray modified shocks with application to SNR shocks. The wave interaction equations were written in
terms of the Eulerian density perturbations for the waves. In this paper, the equivalent Lagrangian form of the
equations is obtained.

2 The Model
For the case of one dimensional flow along thex-axis, the two-fluid cosmic ray hydrodynamical equations

may be written in the form:
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whereS = Cv ln(pg=�
g ) is the gas entropy. In the above equations�, u, pg andg denote the density, fluid

velocity, pressure and adiabatic index of the thermal gas; andpc, c and� denote the cosmic ray pressure,
adiabatic index and hydrodynamical diffusion coefficient respectively.Cv is the gas specific heat at constant
volume.

3 Eulerian Wave Mixing Equations
From Webb et al. (1997,1999), linear, short wavelength waves propagating through a non-uniform, large

scale background flow governed by (1)-(4), satisfy wave mixing equations of the form:
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where thef�i : i = 1; 2; 3g are the Eulerian density perturbations for the backward sound wave(�1), entropy
wave(�2), and forward sound wave(�3) respectively. The phase speeds of the waves are:

�1 = u� ag; �2 = u; �3 = u+ ag; (6)

whereag = (gpg=�)
1

2 is the thermal gas sound speed. From the eigenvector relations thef�j : j = 1; 2; 3g
are given by the equations:
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where��, �u and�S are the total Eulerian density, fluid velocity and entropy perturbations respectively.
The wave interaction coefficients�ij in (5) depend on the gradients of the non-uniform background flow

and have the form:
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where the parameter� = @ ln�=@ ln�; du=dt = @u=@t + u@u=@x is the acceleration vector of the fluid;
andR� = u � 2ag=(g � 1) are the Riemann invariants of isentropic gas dynamics. The@pc=@x terms in
(8) correspond to the cosmic ray squeezing instability investigated by Drury and Falle (1986) and Zank and
McKenzie (1987). Thea2c=� terms represent damping of the sound waves by the diffusing cosmic rays, and
ac = (cpc=�)

1

2 is the ‘cosmic ray sound speed’. Note that the character of the instability depends on whether
� < �1, � = �1 or � > �1, where� = @ ln�=@ ln�. For quasi-parallel shocks in which the scattering wave
field is due to a pre-existing Alfv´en wave field upstream of the shock� / ��

3

2 , and� = �3
2 , whereas for a

quasi-perpendicular shock in which� � �? is due to random walk of the field lines� � const:, and� = 0

(e.g., Webb et al. 1999).

4 Lagrangian Wave Interaction Equations
In this section we generalize the Lagrangian wave interaction equations for adiabatic gas dynamics derived

in Webb Brio and Zank (1998), to include the effect of cosmic rays. The resulting wave interaction equations
can be shown to be equivalent to the Eulerian wave mixing equations (5). To proceed with the analysis, first
note the perturbed mass continuity equation:
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is satisfied automatically by setting
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where� is the Lagrangian fluid displacement. From (10), we obtain the formula

�u = �t + u�x � �ux; (11)

for the Eulerian fluid velocity perturbation�u. The Lagrangian perturbation� of a physical quantity and
the corresponding Eulerian perturbation� are related by

� = � + ��r ; (12)

(e.g. Newcomb, 1962). Using (10)-(12), we obtain the standard formulae:
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for the Lagrangian density and fluid velocity perturbations.
From (2), the linearized momentum equation may be written as:
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In (14),�� and�u are given by (10) and (11). The gas pressure perturbation�pg:

�pg = a2g��+ pg� �S � a2g��+ pg(� �S � �@ �S=@x); (15)

can be written in terms of� and��S, where�S = S=Cv.
By using a multiple scales analysis of the cosmic ray energy equation (4) (see e.g. Webb et al. 1997), we

find:
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for the cosmic ray pressure gradient perturbation term in (14). In (16),@(�pc)=@x � @(p
(2)
c )=@x1, where

�pc = �2p
(2)
c , �u = �u(1), �� = ��(1); x1 = x=� is the short scale space variable and� = �=L is the ratio

of the short scale�, characteristic of the wave to the scale lengthL of the background flow. Note that the
perturbations depend on both the slow variables�x = x=L and�t = t=T , characteristic of the background flow
and also on the fast variablesx1 = �x=� andt1 = �t=� characteristic of the waves.

Using (10), (11), (15) and (16) in the linearized momentum equation (14) yields the wave equation:
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are effective source terms due to the Lagrangian entropy perturbations (Q�S), and the cosmic ray squeezing
instability (Qcr). The perturbed entropy conservation equation (3), yields the advection equation:
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for the Lagrangian entropy perturbation��S. By using (4), we obtain the more suggestive form:
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for the cosmic ray squeezing instability termQcr. The first term on the righthand side of (21) suggests that
it is the non-adiabatic squeezing of the fluid element by the cosmic rays (d=dt(pc�


c ) 6= 0) that is primarily

responsible for the squeezing instability (note� = 0 if � = const:).

4.1 Arbitrary Wavelength Waves. In the more general case of arbitrary wavelength waves,�(x; t)
again satisfies the the wave equation (17), except that the cosmic ray source termQcr has the form:
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where�pc satisfies the perturbed cosmic ray energy equation (4):
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and�S satisfies the entropy advection equation (20). Equations (17), (18), (20), (22) and (23) can be com-
bined to yield a single fourth order wave equation for�(x; t), which results from simplifying the equation:
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whered=dt = @=@t+ u@=@x is the Lagrangian time derivative.

5 Concluding Remarks
The Eulerian density perturbations (7) can be expressed in terms of� and�S. One can show that the

Eulerian wave mixing equations (5) are satisfied if� and��S satisfy the Lagrangian equations (17)-(20). It
is also possible to derive more complicated wave interaction equations for� and��S for arbitrary wavelength
waves (see (22)-(24)).
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