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Abstract

Nonlinear damping of parallel propagating Alfvén waves in high-� plasma is considered. Trapping of thermal
ions and Coulomb collisions are taken into account. Saturated damping rate is calculated. Applications are
made for cosmic ray propagation in the Galaxy.

1 Introduction.
It is well known that the cosmic ray streaming instability can play an important role in processes of dif-

fusive shock acceleration and galactic propagation of cosmic ray particles since it can supply Alfvén waves
that scatter the particles on pitch angle (Lerche,1967, Kulsrud & Pearce,1969, Wentzel,1969). In order to bal-
ance wave generation some damping mechanism is usually considered. As Alfvén waves are weakly linearly
damped, various nonlinear effects are currently used. Cosmic ray streaming generates waves in one hemisphere
of wave vectors. It is well known that such waves are not subject to any damping in incompressible magneto-
hydrodynamics. Using compressibility results in a pondermotive force that gives a second order plasma veloc-
ity and electric field perturbations along the mean magnetic field. This perturbations can yield wave steepening
as well as nonlinear damping, if kinetic effects of thermal particles are included. Those effects were taken into
account in order to obtain nonlinear damping rates of parallel propagating Alfvén waves (Lee & Völk, 1973,
Kulsrud, 1978, Achterberg, 1981, Fedorenko, 1992). The importance of trapping of thermal particles for non-
linear dissipation of sufficiently strong waves that results in saturation of wave damping was also understood
many years ago (Kulsrud, 1978, Völk & Cesarsky 1982, Fedorenko, 1992). Corresponding saturated damping
rates that take into account dispersive effects were calculated.
Nevertheless dispersive effects can be rather small for Alfvén waves that are in resonance with galactic cosmic
ray nuclei. Hence the effect of Coulomb collisions can be important. In this paper we will derive the nonlinear
Alfvén wave damping rate in presence of thermal collisions.

2 Basic equations.
We will consider Alfvén waves propagating in one direction along the ambient magnetic field. It is con-

venient to write the equations in the frame moving with the waves. In such a frame there are only quasistatic
magnetic and electric fields slowly varying in time due to wave dispersion and nonlinear effects. The case of
a high-� Maxwellian plasma will be considered below. Electric fields are negligible for nonlinear damping in
such a plasma. We will investigate waves with wavelengths much greater thermal particles gyroradii and will
use drift equations for distribution function of those particles (Chandrasekhar,1960).
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Here F is the velocity distribution of thermal particles that is averaged on gyroperiod, v is particle velocity,
b=B/B is the unit vector along the magnetic field B, � =pB/B is the cosine of the pitch angle of the particle.



The right hand side of equation (1) describes collisions of particles. For Maxwell equations it is necessary to
know the flux of particles. It is given by drift theory (Chandrasekhar,1960):
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Here 
 is particle gyrofrequency in local field. The last term on the left hand side of Eq.(1) describes mirror-
ing of particles. As in this frame the field is static, the particle energy is constant, and in a time asymptotic
state wave dissipation is absent without collisions. In the presence of wave excitation we shall only deal with
the time asymptotic state in the following. We shall use for the collision operator a simplified form St F =
�v�v2 (F � FM ), where FM is the Maxwellian distribution function shifted by the Alfvén velocity va, �v is
the Laplace operator in velocity space and � is the collision frequency. This operator tends to make the particle
distribution function Maxwellian. Introducing the coordinate s along the magnetic field, and the distribution
function f = F � FM one obtains the following equation for f :
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For sufficiently small magnetic field perturbations (conditions for that case will be derived later) one can neglect
the mirroring term on the left hand side of Eq.(3). Without collisions this leads to the well known nonlinear
damping mentioned above. We shall take into account the mirroring term here. We will use standard quasilinear
theory (Galeev & Sagdeev,1979). The function f can be written in the form f = fo + �f , where fo = hfi is
ensemble averaged distribution function f . We are interested in the case of a small magnetic field amplitude
A << 1, where A = (B � Bo)=Bo. Taking also into account that mirroring is sufficient for small � << 1
particles we leave in the collision operator the second derivative on � only and come to the equation:
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Taking into account that average distribution function is s independent one can obtain equation for Fourier
transform �fk =

R
ds�f(s) exp(�isk):

ikv��fk � �
@2�fk
@�2

=
1

4
ikvA2

k

@

@�
(FM + fo) (5)

The functions fo and �fk are peaked near � = 0. It is convenient to introduce Fourier transform on � ~fo(�) =R
d�fo(�) exp(�i��) and � ~fk(�) =

R
d��fk(�) exp(�i��). Then Eq. (5) will cast
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This equation has a solution
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After ensemble averaging of Eq.(4) and using expression (7) one obtains an equation for ~fo(�):
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Here I(k) is spectrum of Alfvén waves normalized to magnetic energy of the mean field:
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Wavenumbers with +(�) sign correspond to right(left) hand circular polarized wave. Equation obtained de-
scribes influence of waves on the mean distribution function of thermal particles, in particular, well known in
plasma theory quasilinear “plateau” formation breaking by thermal collisions (Galeev & Sagdeev,1979). The
solution of this equation should be substituted into expression (7). This expression, together with the expres-
sion for the flux (2) determines the nonlinear electric current density (the input of thermal protons is taken into
account only)
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Substituting this current into Maxwell equations and ensemble averaging one can derive an equation for the
Alfvén wave spectrum dI(k)=dt = �2�NLI(k) with the nonlinear Alfvén wave damping rate:
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where M is the ion mass and
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Here n is the plasma density and vT is the thermal velocity.
It is useful to transform Eq.(8) to a form more convenient for applications. It is possible to invert the integral
operator and obtain the following equation:
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One should solve Eq.(12) in order to use expression (10) except in the case when the collision frequency is
large enough and a “plateau” is absent. In this case one can neglect ~fo in expression (10) and obtain the well
known unsaturated nonlinear damping rate (Lee & Völk, 1973, Kulsrud, 1978, Achterberg, 1981, Fedorenko,
1992):
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In the opposite case of small � one should use Eq. (12) and put � = 0:
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Here
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dkI(k). Substituting the solution of this equation into expression (10) and expanding the

exponent one can obtain the saturated damping rate:
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3 Discussion.
Trapping of thermal particles is essential for damping of Alfvén waves if the frequency of collisions is small

enough. For trapped particles j�j < ��, where �� � �B=B for Alfvén waves. Hence the escape time is
tesc � �2�=�. It should be compared with the period of particle oscillations inside the trap T � (kvT��)

�1.
This gives us the condition for saturation of nonlinear damping:
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The saturated damping rate can be estimated as the unsaturated damping rate multiplied by the ratio T=tesc.
It is easy to see that such an estimate is in accordance with expression (15). In our self consistent model of
galactic wind flow (Zirakashvili et al., 1996, Ptuskin et al., 1997) where unsaturated damping rate was used,
�B=B � 10�2 and is determined by the power of cosmic ray sources in the Galactic disk. For this case the
critical value for the collision frequency is 10�12s�1 for a wavenumber k � 10�13cm�1 that is in resonance
with 1 GeV cosmic ray protons. This value is close to the value of the collision frequency of a hot rarefied
plasma with number density 10�3cm�3 and temperature 106K . Therefore, in the absence of other scattering
process, trapping effects might be relevant for Alfvén wave damping in our Galaxy.
Another important feature of saturated damping is the possibility of not only damping but also energy transfer to
smaller wavenumbers. This property is absent for unsaturated damping of unpolarized (I(k) = I(�k)) waves.
Such energy transfer can be important for diffusive shock acceleration because it permits small energy particles
to generate Alfvén waves that are in resonance with particles of greater energies and, hence determines the rate
of acceleration.
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