SPECTRUM HIGH ENERGY GAMMA-QUANTA FROM GALACTIC SOURCES CRAB NEBULA AND CYGNUS X-3.

V.G. Sinitsyna, T.P. Arsov, A.Y. Alaverdyan, I.A. Ivanov, S.I. Nikolsky, R.M. Mirzafatihov, G.F. Platonov, V.Y. Sinitsyna, S.P. Vorobyev, Sh.B.Matiazov

P.N. Lebedev Physical Institute, Russian Academy of Science, Leninsky pr. 53, Moscow 117924, Russia.

ABSTRACT.

Four years of TeV observations by means of telescope SHALON on SHALON-ALATOO mountain observatory are received data on the fluxes of gamma-quanta with energy 10^{12} - 10^{13} Galactic objects (Crab Nebula, Supernova Remnant Tycho and binary source in our Galactic Cygnus X-3). Observed fluxes from already known sources at about equal: 10^{-12} cm⁻²s⁻¹.

More than twelve years ago one was proposed the plan of the mirror Cherenkov telescope SHALON (Sinitsyna, 1987) and the first observations were begun in 1992 on the ALATOO mountain observatory (Sinitsyna, 1992-1998). The distinctive feature of telescope is large full angle, that is achieved by for relatively large size of photomultypliers matrix (fig. 1). This allows the registration of extensive air showers that are coming at distance up to 120 m from the optical axis of telescope, that increase the obtaining of the statistics data from the sources of gamma-quanta of very high energies. In addition to these large angular dimensions of the imaging matrix will enable to research for isotropic background extensive air showers from charged particles of cosmic rays simultaneously with the observation of the local sources of gamma-quanta, that is at the same optical characteristics of atmosphere. It is particularly important because of in our research of gamma-sources the extensive air showers in small angle, but also as long as the differences of the evaluation in the depth atmospheres of the electron-photon cascades generated by protons and by nuclei of the cosmic rays.

Cherenkov imaging telescope SHALON equipped with a very high definition camera (144 pixels, full angle 8°) takes data from of 1993 at the mountain altitude 3338 m. We discuss some results of the observations of the indicated gamma-ray sources and the discrimination methods between gamma-rays and protons. Selection of showers produced by gamma-quanta from a background of showers produced by protons (fig.2):

- 1. α<20°
- 2. length/width>1.6 for γ
- 3. Cherenkov light intensity in pixels with max light to the light in the eight pixels near around is for $\gamma > 0.6$
- 4. Cherenkov light intensity in pixels with max light to all light in imaging except nine in center is for $\gamma > 0.8$
- 5. distance for $\gamma < 3.5$ pixels.

The intensity of the different sources E>0.8 TeV is following (fig. 3,4): $I_{Crab}=(1.1\pm0.30)\bullet10^{-12}cm^{-2}s^{-1}$, $I_{Mrk421}=(1.09\pm0.41)\bullet10^{-12}cm^{-2}s^{-1}$, $I_{Mrk501}=(1.32\pm0.30)\bullet10^{-12}cm^{-2}s^{-1}$, $I_{NGC1275}=(1.10\pm0.40)\bullet10^{-12}cm^{-2}s^{-1}$, $I_{Cyg} X-3 = (4.2\pm0.80)\bullet10^{-13}cm^{-2}s^{-1} I_{Geminga}=(5,7\pm4.0)\bullet10^{-13}cm^{-2}s^{-1}$ and $I_{Tycho} < 2\bullet10^{-13}cm^{-2}s^{-1}$ upper limit. Observations Crab Nebula and Geminga (fig. 4), Markarian 421 and Markarian 501 (fig. 2 OG 2.1.12) compare with dates of other experiments including the data form observations on satellites in an

Pixel distribution the focal plan of the 10m reflector: top left: 109 pixels (1993-1996); top right: 151 pixels (Dec., 1996); 331 pixels (Oct., 1997); 541 pixels (planned).

Fig. 1. Evolution of photomultyplier arrays to record images seen in Cherenkov light.

TOTATO .	\TEX1	C\s140	299.0	001 E	EVENT N	C	14				
TIME:	3: (- 2	0072		2 6000	(nivol	a)		
SOURCE.	~	- 3.	0	y-	3.0900	(x,	y 111	pixer	.5)	0	0
0	5	e	7	0	0	0	0	0	0	0	0
,	5	0	<i>,</i>	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	10	21	10	0	0	0	0	0	0	0
0	0	10	21	10	0	0	0	0	0	0	0
0	0	10	/6	0	0	0	0	0	0	0	0
0	11 0	15	19	0	0	0	0	0	0	0	0
0	8	10	/	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
Lengtl	n =	1.611	.6 Wid	lth =	= 0.83	97 L	ength.	Width	1 =	1.9193	
Azwidth	n =	0.881	.5 Alg	pha =	= 11.24	48					
Distance	e =	1.838	35 M:	iss =	0.35	85					
X_MEAN :	= 1.	8248	Y_ME	4N =	-0.224	2	0/1 =	0.80)37	0/2 =	
0.8958											
Total co	ode =	= 23	16								
D:\NGC99	9\TEX	(T\s13	0299	.012	EVENT 1	No	34				
TIME: 2	21:43	3:13.5	57								
SOURCE:	х	= 10.	0000	Y=	3.0000	(x,	y in	pixel	.s)		
0	0	0	0	0	0	0	0	5	0	0	0
~			-	~	-				~		~
6	6	0	6	0	5	0	0	0	0	0	0
0	6 0	0 0	6 5	0	5	0 0	0	0 6	0	0 5	0
6 0 0	6 0 0	0 0 0	6 5 10	0	5 7 6	0 0 5	0 0 5	0 6 10	0 0 8	0 5 0	0 0
0 0 0	6 0 9	0 0 0	6 5 10 0	0 0 10	5 7 6 0	0 0 5 11	0 0 5 18	0 6 10 0	0 0 8 0	0 5 0 0	0 0 0
0 0 0 6	6 0 9 0	0 0 0 10	6 5 10 0 19	0 0 10 15	5 7 6 0 12	0 5 11 12	0 0 5 18 14	0 6 10 0 14	0 0 8 0 14	0 5 0 0 13	0 0 0 8
6 0 6 6	6 0 9 0 9	0 0 0 10 11	6 5 10 0 19 22	0 0 10 15 20	5 7 6 0 12 0	0 5 11 12 48	0 5 18 14 113	0 6 10 0 14 130	0 8 0 14 83	0 5 0 13 73	0 0 0 8 15
6 0 0 6 6 12	6 0 9 0 9 17	0 0 0 10 11 39	6 5 10 0 19 22 38	0 0 10 15 20 89	5 7 6 12 0 235	0 5 11 12 48 823	0 5 18 14 113 369	0 6 10 0 14 130 163	0 8 0 14 83 29	0 5 0 13 73 5	0 0 0 8 15 0
6 0 0 6 12 28	6 0 9 0 9 17 0	0 0 10 11 39 233	6 5 10 0 19 22 38 393	0 0 10 15 20 89 775	5 7 6 12 0 235 871	0 5 11 12 48 823 224	0 5 18 14 113 369 80	0 6 10 0 14 130 163 40	0 8 0 14 83 29 0	0 5 0 13 73 5 6	0 0 0 8 15 0 0
6 0 6 12 28 221	6 0 9 0 9 17 0 352	0 0 10 11 39 233 692	6 5 10 19 22 38 393 154	0 0 10 15 20 89 775 181	5 7 6 0 12 0 235 871 54	0 0 5 11 12 48 823 224 97	0 0 5 18 14 113 369 80 28	0 6 10 0 14 130 163 40 29	0 8 0 14 83 29 0 30	0 5 0 13 73 5 6 0	0 0 0 8 15 0 0 0
6 0 0 6 12 28 221 :	6 0 9 0 9 17 0 352 81	0 0 10 11 39 233 692 106	6 5 10 0 19 22 38 393 154 34	0 0 10 15 20 89 775 181 17	5 7 6 0 12 0 235 871 54 26	0 5 11 12 48 823 224 97 10	0 5 18 14 113 369 80 28 6	0 6 10 0 14 130 163 40 29 0	0 0 8 0 14 83 29 0 30 0	0 5 0 13 73 5 6 0 0	0 0 0 8 15 0 0 0 0
6 0 6 6 12 28 221 : 0	6 0 9 0 9 17 0 352 81 0	0 0 10 11 39 233 692 106 0	6 5 10 0 19 22 38 393 154 34 0	0 0 10 15 20 89 775 181 17 0	5 7 6 0 12 0 235 871 54 26 0	0 5 11 12 48 823 224 97 10 0	0 5 18 14 113 369 80 28 6 0	0 6 10 0 14 130 163 40 29 0 7	0 8 0 14 83 29 0 30 0 0 0	0 5 0 13 73 5 6 0 0 6	0 0 0 8 15 0 0 0 0 0
6 0 0 6 12 28 221 : 0 0 Total co	6 0 9 17 0 352 81 0 code =	0 0 10 11 39 233 692 106 0 = 741	6 5 10 0 19 22 38 393 154 34 0	0 0 10 15 20 89 775 181 17 0	5 7 6 12 0 235 871 54 26 0	0 5 11 12 48 823 224 97 10 0	0 5 18 14 113 369 80 28 6 0	0 6 10 0 14 130 163 40 29 0 7	0 8 0 14 83 29 0 30 0 0 0	0 5 0 13 73 5 6 0 0 6	0 0 8 15 0 0 0 0
6 0 0 6 12 28 221 3 0 0 Total cc Azwidth	6 0 9 0 17 0 352 81 0 0 0de =	0 0 10 11 39 233 692 106 0 = 741	6 5 10 22 38 393 154 34 0 0 5 Alpl	0 0 10 15 20 89 775 181 17 0	5 7 6 0 235 871 54 26 0 6.070	0 5 11 12 48 823 224 97 10 0	0 0 5 18 14 113 369 80 28 6 0	0 6 10 0 14 130 163 40 29 0 7	0 8 0 14 83 29 0 30 0 0	0 5 0 13 73 5 6 0 0 6	0 0 8 15 0 0 0 0
6 0 0 6 6 12 28 221 : 0 0 0 Total cc Azwidth Length :	6 0 9 0 9 17 0 352 81 0 0 0 de = 1 = 1 2	0 0 10 11 39 233 692 106 0 = 741 1.0466 .4352	6 5 10 22 38 393 154 34 0 5 Alpl Widtl	0 0 10 15 20 89 775 181 17 0 na =	5 7 6 0 12 0 235 871 54 26 0 6.0700 1.0201	0 0 5 11 12 48 823 224 97 10 0 Len	0 0 5 18 14 113 369 80 28 6 0 9 th/W:	0 6 10 0 14 130 163 40 29 0 7	0 8 0 14 83 29 0 30 0 0	0 5 0 13 73 5 6 0 0 6 3872	0 0 8 15 0 0 0 0
6 0 0 6 6 12 28 221 28 221 0 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7	6 0 9 0 9 17 0 352 81 0 0 0 0 0 = 1 = 2. = -1.	0 0 10 11 39 233 692 106 0 = 741 .0466 .4352 .2165	6 5 10 19 22 38 393 154 34 0 5 Alpl Widtl Y ME2	0 0 10 15 20 89 775 181 17 0 na = 1 =	5 7 6 0 12 0 235 54 26 0 6.0700 1.0201 2.461	0 0 5 11 12 48 823 224 97 10 0 Len 4	0 0 5 18 14 113 369 80 28 6 0 9 th/W: 0/1 =	0 6 10 0 14 130 163 40 29 0 7 7	0 8 0 14 83 29 0 30 0 0 0	0 5 0 13 73 5 6 0 0 6 3872 0/2 =	0 0 0 8 15 0 0 0 0
6 0 0 6 12 28 221 7 0 0 Total co Azwidth Length = X_MEAN = 0.8441	6 0 9 0 9 17 0 352 81 0 0 5 0 4 = 1 = 2 = -1.	0 0 0 10 233 692 106 0 = 741 .0466 .4352 .2165	6 5 10 0 19 22 38 393 154 34 0 5 Alpl Widtl Y_ME	0 0 10 15 20 89 775 181 17 0 181 17 0 181 17 0	5 7 6 0 12 0 235 54 26 0 6.0700 1.0201 2.461	0 0 5 11 12 48 823 224 97 10 0 Len 4	0 0 5 18 14 113 369 80 28 6 0 9 gth/W: 0/1 =	0 6 10 0 14 130 163 40 29 0 7 7	0 8 0 14 83 29 0 30 0 0 0 = 2.	0 5 0 13 73 5 6 0 0 6 3872 0/2 =	0 0 0 8 15 0 0 0 0
6 0 0 6 6 12 28 221 : 0 0 Total cc Azwidth Length : X_MEAN : 0.8441 Distancc	6 0 9 0 17 0 352 81 0 5de = 1 = 2. = -1.	0 0 0 10 11 39 233 692 106 0 4352 .2165 2.745	6 5 10 9 22 38 393 154 34 0 5 Alph Width Y_MEX	0 0 10 15 20 89 775 181 17 0 181 17 0 181 17 0	5 7 6 0 12 0 235 871 54 26 0 6.0700 1.0201 2.461 2.461	0 0 5 11 12 48 823 224 97 10 0 Len 4 03	0 0 5 18 14 113 369 80 28 6 0 9 th/W: 0/1 =	0 6 10 0 14 130 163 40 29 0 7 idth = 0.79	0 8 0 14 83 29 0 30 0 0 0 = 2.	0 5 0 13 73 5 6 0 0 6 3872 0/2 =	0 0 8 15 0 0 0 0
0 0 6 12 28 221 : 0 0 Total cc Azwidth Length : X_MEAN : 0.8441 Distance	6 0 9 0 17 0 352 81 0 0 de = 2 = 2. = -1. e =	0 0 10 11 39 233 692 106 0 741 0.0466 .4352 .2165 2.745	6 5 10 19 22 38 393 154 34 0 5 Alph Width Y_MEX 56 M:	0 0 10 15 20 775 181 17 0 1a = 1 = 1 = 1 = 1 =	5 7 6 0 12 235 871 54 26 0 6.0700 1.0201 2.461	0 0 5 11 12 48 823 224 97 10 0 Lent 4 03	0 0 5 18 14 113 369 80 28 6 0 9 th/W: 0/1 =	0 6 10 14 130 163 40 29 0 7 idth = 0.79	0 8 0 14 83 29 0 30 0 0 0 0 5 86	0 5 0 13 73 5 6 0 0 6 3872 0/2 =	0 0 8 15 0 0 0 0

Fig. 3. Example of gamma - quanta events in telescope SHALON.

Fig. 2. Monte Carlo distribution of image parameters for proton and gamma showers of 1TeV.

Fig. 4. Galactic high energy gamma-ray spectrum from CYGNUS X-3, GIMINGA, CRAB NEBULAR and TYCHO BRAHE.

energy range of $10^8 \cdot 10^9$ eV. Experimental data may be represented by energy spectrum F(>E)~E^{- γ} in energy interval $10^8 \cdot 10^{13}$ eV, but with different indexes: γ ~1.5 for Crab Nebula and γ ~1.1-1.3 for Markarian 421. May be Crab Nebula is typical source of Galactic cosmic rays and Markarian 421 is a typical source of Extragalactic cosmic rays.

CONCLUSION.

The flux of gamma-quanta from sources in a high degree is parallel. The direction of Cherenkov radiation results to effective observation of sources up to distance £100 ? from an axis of a shower. It means, that one telescope can observe showers on area 10^5 ?². However, if with the objective selection of an observable shower with a shower from gamma-quanta from a source to increase angular resolution is lost width of a corner of the review, that provides the large square of registration of showers. If the angular resolution become rough is necessary to use the analysis of development of the cascade in atmosphere for distinguish of showers generated by gamma-quanta

Among different methods of search of local sources of gamma-quanta most important is observations of Cherenkov radiation of electron - photon cascades generated in atmosphere in very high energy gamma - quanta. Thus the trend of Cherenkov radiation determines a direction on a source, that is coordinate of an observable source. The approximately equality observable of intensity of sources is connected to limitation of time observation of a assumed point source. Distance from Earth to Galactic and Extragalactic Sources differs for about 10^4 times of means, that detected in Extragalactic sources have large in 10^8 times a radiation possibilities.

This work was support by the Russian Foundation for Fundamental Research, project ? 98-02-16536.

REFERENCE.

Nikolsky S.I., Sinitsyna V.G., 1987, VANT, Ser.TFE (1331), 30.

- Nikolsky S.I., Sinitsyna V.G., 1989, Proc. Workshop VHE Gamma-ray Astr., 11-21.
- Weekes T.C., 1994, Preprint Series, N 3870, (Proceedings of the NATO School "The Gamma Ray Sky with Compton GRO and SIGMA" 1994), 1-33.
- Lamb R.C., 1994, Proc.Workshop, Major Atm. Detector-III, ed. T.Kifune, 11-24.

Aglietta M., 1996, Alessandro B., Antonioli P., Preprint INFN/AE-96/21.

- Hillas A.M., 1989, Proc. Workshop VHE Gamma Ray Astronomy, Crimea, 130-137.
- Fegan D.J., 1992, Proc. Workshop, Towards a Major Atmospheric Cherenkov Detector I, ed. P.Fleury, (Ecole Polytechnique Palaiseau, Paris), 3-42.

Weekes T.C., 1997, 25th ICRC, Dublin, v. 5, 257-260.

Hillas A.M., 1996, Nuovo Cimento, vol. 19C, ? 5, 701-712.

Weekes T.C. at al., 1996, Preprint Series less then galactic ? 4450 Harvard-Smithsonian Center for Astrophysics, "TeV Gamma Ray from Active Galactic Nuclei".

Iacoucci, L. and Nuss, E. (for the CAT collaboration), 1998, Proc. of the 16th European Cosmic Ray Symposium, 363-366.

Thompson, D.J. et al., 1995, Ap.J.S. 101, 209.

CELESTE experimental proposal, 1996, 1-78.

Sinitsyna V.G., Alaverdian A.Y., Arsov T.P., Mirzafatihov R.M., Nikolsky S.I., Striguin V.B., Vasilev V.D., Vorobiov S.P., 1997, 25th ICRC, Durban, v.3, 273-276.

Sinitsyna V.G., Alaverdian A.Y., Dashtojan A.A., Ivanov I.A., Mirzafatihov R.M., Nikolsky S.I., Platonov G.F., Sinitsyna V.Y., Striguin V.B., 1997, 25th ICRC, Durban, v. 5, 97-100.

Sinitsyna V.G., 1996, Nuovo Cimento, v. 19C, N6, 965-971.

Sinitsyna V.G., Alaverdian A.Y., Arsov T.P., Ivanov I.A., Nikolsky S.I, Mirzafatihov R.M., Platonov G.F., Sinitsyna V.Y., Vorobyev S.P., Strigin V.B., 16th European Cosmic Ray Symposium, ed. J.Medina, 1998, Spain, 367.

Sinitsyna V.G., 16th European Cosmic Ray Symposium, ed. J.Medina, 1998, Spain, 383.

Sinitsyna V.G., 1992, Proc. Workshop, Towards a Major Atmospheric Cherenkov Detector-I, ed. P.Fleury, (Paris), 299-304; 1993, Detector -II, ed. R.Lamb, (Calgary), 91-101; 1995, Detector-IV, ed. M.Cresti, 133-140; 1997, Detector-V, ed. O.De Jager, Kruger Park, 136-141, 190-195.