
HE. 6.1.04

Spectrum of energy depositions in the Auger Water Cherenkoov
Detector

Fernandez A.1, Garipov G.K. 2, Khrenov B.A. 2, Martinez O.1, Salazar H.1, Villaseñor L. 3 and
Zepeda A.4

1 Universidad de Puebla, Apdo. Postal 1364, Puebla,Mexico
2 Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, 119899, Russia
3 IFM, Universidad de Michoacan, Apdo. Postal 2-82, 58040, Morelia, Michoacan, Mexico

4 Dpto. Fisica, Cinvestav-IPN, 07000 Mexico, D.F. Mexico

Abstract

The measured spectrum of energy depositions in a Water Cherenkov Detector (WCD) prototype for the Pierre
Auger Observatory is presented. A WCD (area 10m2 )is located in the Puebla University campus at a depth
of 800 g/cm2 (2200 m above sea level). Differential and integral spectra in a wide energy deposition range
(0.5 - 150 of vertical equivalent muons) are presented. The problem of the WCD ”self calibration” procedure
(by rate of the muon events) is discussed. The characteristic change of the slopes of the differential spectrum
at the transition from single muon signals to EAS signals is also discussed. The measured energy deposition
spectrum at extreme signals is used to estimate the linearity of the response of the WCD PMTs.
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1 Introduction:
In the Pierre Auger Observatory array for the study of the Extreme Energy Cosmic Rays, the water

Cherenkov detector (WCD) is the basic extensive air shower (EAS) particle detector. The basic component of
the WCD is a circular tank of diameter 3.6 m, filled with water to the height of 1.2 m. Three photomultiplier
tubes (PMT’s) each of diameter 20 cm observe the Cherenkov light generated in water by the fast EAS charged
particles. The detailed description of WCD and the expected EAS signals in the WCD can be found in [1] (see
Figure 1).

Given the large number of WCD’s that will be deployed at the observatory site and the expected long
time operation, the monitoring of all the WCD’s
is a serious problem. In previous large EAS ar-
rays (Haverah Park, Yakutsk, AGASA) the mon-
itoring of the particle detectors was performed in
the analysis of the detector signal in its response
to the commands from the registration center and
in the analysis of the events selected by the de-
tector “local” trigger (the EAS selecting system
works in two stages: in the first stage every de-
tector selects the signal not associated with EAS
and in the second stage by comparison of signals
from several detectors and the true EAS events are
selected). The local trigger rate was used as an
estimator of the detector operation in the Haverah
Park and Yakutsk arrays. Modern technology of
the detector controllers allows us to access more

Figure 1: Schematical view of the WCD Prototype at
Puebla operating to obtain VM.

detailed information on the detector response to the local trigger. One may, for example, analyze the spec-
trum of energy depositions in the WCD and the distribution of widths of the signal. In principle, having



this information for every PMT of the detector make it possible the full calibration of the detector signals in
standard units for all array detectors. This “self-calibration” method demands that the full information on the
performance of WCD in the events selected by the local trigger should be collected and analyzed.

With this aim, the Puebla University full size prototype WCD is being tested since several months ago.
The results of measurements of the WCD energy deposition spectrum are presented here. The experimental
results are discussed having in mind the expected spectrum caused by cosmic rays at the Puebla observation
elevation of 2.2 km (the average atmospheric depth 800 g/cm2 ). Notice that the Puebla elevation is close to
the Northern Auger site elevation (870 g/cm2 ). For an extrapolation aplicable to the Southern Auger site (950
g/cm2 ), the Puebla average data should be corrected for the difference in elevation and the temporal variation
of the atmospheric pressure.

2 Experimental results
The WCD is a radiator system which measures the energy deposition by the fast charge particles by the

Cherenkov light generated in water.
The Cherenkov light signal is measured by the PMT either in number n of photoelectrons (p.e.) generated

at the tube cathode or in charge C collected at the tube anode C = e n K ( K is the PMT gain, e is the
electron charge). Although the anode peak amplitude A (in volts) is a useful parameter related with the energy
deposition by the particles, it is also sensitive to the temporal signal shape and in not the best measure of the
energy deposition .

The single relativistic cosmic ray particles produce signals of duration of about 60 ns (FWHM� 25ns )
determined by the time of photons collection in the tank and the cable extension (1 p.e. signal duration of the
Hamamatsu tube R-5912 is 8 ns FWHM ).

Spread in time of EAS signals varies with the core distance R and could be as long as 5�s at R> 2 km. In
the Auger array, the footprint is about 10-20�s ,and the time bin is 20 ns, therefore the time dynamic range is
wide. The amplitude of the signal could change in a dynamic range of 17 bits [1].

In this WCD prototype, the signals are recorded by the Tektronix digital oscilloscope connected to the
computer. The recording of the oscilloscope traces by the computer is a relatively slow proccess (two per
second).

At signal threshold corresponding to the rate of less than 2.0 kHz the signals were selected by the peak
amplitudes in the oscilloscope. The signal traces were integrated in the computer (the noise level was taken
from the part of the oscilloscope trace before the signal) and the integrated charge of the signal was recorded
in order to build the energy deposition distribution. The Figure 2 shows the differential and integral spectra
of the WCD energy depositions started from 0.5 Vertical Equivalent Muon (VEM). We compare both spectra
with the produced by the heigth signal spectrum, ( Figure 3 ) In the spectrum, several characteristic regions
could be clearly identified [5] ,[6].

1. The first one is the region of the single cosmic ray particle rate. It is dominated by passages of relativistic
muons. As geometry of the muon passages varies, the muon signals are spread in a wide range of
charges. The smallest signals are from “clipping” muons crossing only part of the available water.
Muons with the longest “diagonal” passages produce the largest signals. The standard path of a “vertical
muon” is selected by the scintillation detector telescope ( two scintillation pads above and under the
water tank). The signal in units of VEM’s, indicated in the Fig. 2 and 3 by an arrow, is the reference
signal. It will be used as the unit of the energy deposition in every WCD of the Auger array (it shows
that WCD produced around 100 pe) .

2. The second one is the region of the rate associated for some authors with secondary showers produced
in water by cosmic ray muons and hadrons. As a large amount of matter in the water tank ( to compare
with the thin matter layers in the scintillation detectors of the Yakutsk and AGASA arrays ) it makes the



2nd region in WCD more pronounced than in the scintillation detectors. Secondary shower region takes
the intermediate position between pure muon signals and the EAS signals region.

3. The 3th region of the spectrum correspond to the rate of EAS energy depositions. The EAS energy
deposition is a sum of energy depositions from all EAS components: electromagnetic component (in
water photons are converted to electrons), hadrons (producing secondary showers in water) and muons.
The expected spectrum of EAS energy deposition and the probability to find the EAS core at distances ¿
R to a given deposition, could be calculated using the experimentally known lateral distribution function
(LDF) of the EAS energy depositions (in VEM per m2 , Haverah Park data, [2]). For all particle
primary spectrum [3] the expected yield of EAS events with core distancesR >( normalized to unity)
is presented in Fig 4. In those calculations the approximation formula [2] for the LDF was extrapolated
from R>50 m down to small distances R=3 m. It should be noted that LDF’s of energy depositions in
scintillation detectors (Yakutsk, AGASA) and in WCD are similar at distances R> 100 m. They differ
in absolute values (due to the different amount of matter in the detectors). At distances R< 100 m the
WCD LDF is steeper due to larger depositions from the hadron component. Due to this difference the
effective core distances for a given WCD energy deposition are smaller (R=3- 30 m) to compare with
distances R=10-100 m for the given scintillation detector energy deposition.

The expected percentage of events with large core distances R>1km- to be selected by the Auger final
trigger (coincidence of signals in the several WCD separated by distance L=1.5 km)- in events with a
given energy deposition is extremely small. In EAS events it is of about 0.001 (Fig 4) and even less for
all WCD events. In the 1st stage of the WCD triggering a high rate of useless signals should be recorded
to select the useful Auger array events (> 1-3 VEM per 10m2 ). For 1 VEM threshold, this rate is
1.37 kHz, for 3 VEM threshold, it is 100 Hz and for 5.3 VEM threshold, it is 20Hz. In analysis of the
signal duration (see our second paper [4]) a strong cut off of the useless signals could be achieved [6].

The dependence of signal rate on the array altitude (average depth in atmosphere) and on the atmospheric
pressure is different in various energy deposition spectrum regions. In the region of signals from single muons
and hadrons the rate changes with atmospheric pressure by 2% per cmHg. In the EAS signal region it changes
by 10% per cmHg. Using the appropriate dependence on the atmospheric pressure the corrections of the WCD
rate at various array elevations and for various atmospheric pressure were calculated. It was found that the
energy deposition spectrum in the range of C=1-5 VEM at elevations of 800-1000 g/cm2 does not varies much.

The shape of energy deposition spectrum in the range of C>10 VEM is determined by the expected EAS
“energy deposition density spectrum” that could be approximated by the power law with the exponent� close
to the exponent of the primary energy spectrum (� = =b) where b� 0:9 is the exponent in the dependence
C/ Eb of the effective energy deposition C on the primary energy E). The exponent of the “density spectrum”
slowly increases with the WCD energy deposition ( much slower than the primary energy spectrum exponent
changes in the “knee” region). In the WCD range of C = 10 - 150 VEM the exponent� is expected to be equal
to 2.0. The fit of the energy deposition spectrum to the power law at the largest possible energy depositions is
a good “self-experimental” test of the linearity of the PMT response to the largest WCD light signals. In the
longest run of the Puebla WCD (200 hours) with the threshold 20 VEM the differential spectrum agrees with
the power law of the exponent� + 1 = 3:0 at signals as large as 150 VEM.
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Figure 2: Differential Charge spectrum (rigth), Integrated charge spectrum (left)

Figure 3: Differential (left) and integral (rigth) pulse amplitude spectrum

Figure 4: Probability to find the EAS at core distances larger than r


