Neutrino oscillation analysis of IMB upward-going muon data with improved interaction model

David Casper, D.² , Clark, R.⁵ , Gajewski, W.² , Haines, T.J.⁴ , Kielczewska, D.⁷ , Learned, J.G.³ ,

 $\textbf{Matsuno,S.}^3 \textbf{, McGrew,C.}^6 \textbf{, Sobel,H.W.}^2 \textbf{, Stone,J.L.}^1 \textbf{, Sulak,L.R.}^1 \textbf{, Svoboda,R.}^5$

¹Department of Physics, Boston University, Boston, MA 02115, USA

²Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA

³Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822, USA

⁴Physics Division, P23, Los Alamos National Laboratory, Los Alamos, NM 87544, USA

⁵Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA

⁶Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800, USA

⁷Institute of Experimental Physics, Warsaw University, 00-681 Warsaw, Poland

Abstract

An earlier analysis of the ratio of stopping to through-going neutrino-induced upward muons in IMB excluded neutrino oscillations in the region now favored by the Super-Kamiokande experiment. It has been suggested that the simple deep-inelastic cross-section model used in this analysis underestimates the predicted rate of upward stopping muons, and hence may mask any possible deficit caused by neutrino oscillation. The original IMB data are compared with the predictions of a more realistic cross-section model (taking into account exclusive quasi-elastic and resonant reaction channels) to determine whether they are, in fact, inconsistent with the Super-Kamiokande results.