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Abstract
The differences of space distributions and time profiles between the gamma ray and proton induced showers in
YBJ-ARGO experiment are studied using Monte Carlo simulation data. An artificial neural network algorithm
is used to identify the primary gamma ray and hadron induced showers. It is shown that the separation of
gamma rays and protons can be achieved with a good efficiency in the energy range of 0.1~10TeV.

1  Introduction:
The search for gamma ray point sources is a popular and important topic in the study of cosmic rays.

Many gamma ray sources of HE/VHE have been found by the EGRET experiment on board the Compton
Gamma-Ray Observatory covering the 30 MeV to 30 GeV energy region (Gogiel,1996), and by the
atmospheric Cherenkov telescopes (ACTs) in ~TeV energy range (Chaman, 1997). But to date, no definite
evidence about the existence of the gamma ray point sources above 10 TeV has been observed. One possible
reason is that the ground based EAS array can not discriminate the gamma ray showers from the hadronic
background. Therefore, if we want to get some meaningful results in the search for gamma ray point sources
with the traditional EAS array, we must reduce the threshold energy and increase the detector sensitivity. With
much higher detector density (e.g. in the “carpets”) the threshold energy of the EAS array could be lowered to
an energy region not far from the present experimental limits in the satellite technology. Efficiently separating
the gamma showers from the hadronic showers, which allows to achieve a significant rejection of background
events and increase the sensitivity in detecting a gamma signal above the background, is a good approach to
increasing the detector sensitivity. This needs both a detector system providing  detailed measurements of the
air cascades and a good algorithm to discriminate the gamma showers and hadronic showers. The YBJ-ARGO
experiment (The ARGO Collabortion, 1997), which will be installed at
Yangbajing of China, could give a detailed space-time picture of the
shower front and could meet the needs for the above goal.

This article makes a study on the differences of space-time profiles
between the gamma showers and the proton showers at the YBJ
observation level by means of Monte Carlo simulation. An artificial
neural network algorithm is presented to separate the gamma showers
from the hadronic ones detected in YBJ-ARGO experiment. The Monte
Carlo simulation shows that we could get a good rejection of cosmic ray
background in the energy range between 100GeV and 10TeV.

2  MC Simulation:
The YBJ-ARGO experiment consists of a single layer of RPCs

(Resistive Plate Counters) covering an area 5000 m2 for the first phase of
the experiment. Each RPC (125×280cm2) is equipped with a read-out system made of strips, 6.7cm wide and
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Figure1: The layout of RPC



62cm long, just as shown in Figure 1. Signals from the strips are OR-ed to get the time of the first particle and
the number of particles hitting each 56×62cm2 PAD. A lead converter of 0.5 cm thick covers uniformly the
RPC plane to increase the number of charged particle and to reduce the time spread of the shower front
through the shower photon conversion.

Monte Carlo simulations have been performed using the COSMOS code (Kasahara,1995) for the air
shower generation and the GEANT code (Brun et al,1991) for the shower particles detection. Primary particles
are injected at 0° to 30° zenith angle from the top of the atmosphere, and each secondary particle is followed
up to 3MeV or reaching the observation level (a vertical atmospheric depth of 606 g/cm2 ). The primary
energies are sampled between 100GeV and 10TeV with a power index of -2.7. About 5×105 events are
generated and used to simulate the detector response with cores uniformly distributed over the YBJ-ARGO
RPC carpet. The events selected are following the two conditions:

(1)The number of fired pads:N p ≥ 50.

(2)The core position( )x yc c, : x mc ≤ 25 y mc ≤ 25 .
About 1×104 simulated γ showers and hadron showers are selected as the sample events.

3  γ/Proton Separation:
Since the YBJ-ARGO experiment can only measure the space-time profile of EAS at limited stages in the

shower development, we have to discriminate the gamma showers and proton showers from their lateral
distributions. Figure 2 shows the difference between gamma showers and proton showers in their lateral
distributions.
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Figure 2: The lateral distribution of a 500 GeV γ and proton
induced shower in YBJ-ARGO experiment

In contrast to hadron shower, the core of gamma shower is more concentrated and the particle distribution
is much smoother and with less non-uniformity. We can select the following feature parameters to separate
gamma showers from proton showers:

(1) total number of fired strips in ARGO:Nh

(2) mean fired strips of all RPCs:AC N Nc r= , where Nc  is the number of total fired strips  and Nr  is

the number of fired RPCs.

(3) mean fluctuations of fired strips over all RPCs:FC
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(4) mean lateral spread of all fired strips: ( ) ( )R x x y y Ni c i c
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of ith fired strip and ( )x yc c, is the core position.

(5) mean lateral spread of the fired strips over all RPCs: ( ) ( )CR C x x y y Ni i c i c
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, where

( )′ ′x yi , is the position of the ith fired RPC.

(6) non-uniformity in the lateral distribution.

(7) distance between the core and maximum density position:( ) ( )d x x y yc c= − + −2 2 , where ( )x y, is the

position of the maximum density.
(8) the fraction of fired strips near the core: F N N

h5 5= , F N N
h10 10= ,where N

5
 is the  number of fired

strips within 5m from the core and N
10

 is the number of fired strips within 10m from the core.

By abstracting the 9 feature parameters from the simulation data, we obtain a training sample (3000
showers) and a testing sample (7000 showers). In this work, we use a three layer feed-forward neural network
as a classifier. The network contains 9 feature parameters as input neurons, 12 hidden nodes and one output
unit. The 9-12-1 network is trained using “Rprop” algorithm (Riedmiler et al, 1993) to give the desired output
value 0 for γ and 1 for proton induced showers. The weights in the network are initiated uniformly at random
in the range [-0.1,0.1]. The learning rate η and the temperature parameter T  are initiated with 0.01 and 1.0
respectively. Figure 3 shows the γ acceptance and proton rejection for the test sample vary with the number of
learning epochs and reach a stable state after about 100 training epochs. Figure 4 shows the distribution of the
network output for the γ and proton showers of the test sample.
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 Figure 3: The γ acceptance and proton rejection vs
learning cycles for the test samples
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Figure 4: The distribution of the network output
for the test samples

4  Results and Discussions:
7000 MC events are tested after training the network. It is found that the network is able to correctly select

86.3% of testing samples (the γ acceptance is 88.9% and the proton rejection is 83.7%) and the identification
power increases with the number of fired pads. The detailed results are summarized in Table 1.

Table 1: γ/proton identification dependence on hit pads number
Number of fired pads 50-80 80-150 150-300 >300
γ acceptance 85.9% 89.8% 90.6% 91.9%
Proton rejection 79.5% 83.1% 87.2% 90.2%
Right identification 82.7% 86.4% 88.9% 91.1%



The main aim of γ and proton separation is to increase the signal-to-noise ratio. This ratio can be described
by:
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where A is the detector area, T is exposure time,∆ϕ  is angular resolution, Q is the γ/proton separation

quality factor, defined as:Q had= −ε εγ / 1 , here ε γ is the γ acceptance,ε
had

 is the hadron rejection.

Proton rejection and gamma acceptance depend on
the cut value ξ in the network output. To find the
optimal value of ξ, it is necessary to maximize the
quality factor with respect to ξ. Figure 5 shows the
quality factor as a function of the cut value in the
network output. When the net cut value ξ is 0.15, a
maximum Q value of 2.59 (92.8% rejection of
protons and 69.5% acceptance of γ-rays) is attained.
Therefore, all events producing a value ≥ 0.15 are
classified as γ-rays while those with value < 0.15 are
considered to be proton background.

The core position play a very important role in the
discrimination of γ/proton. We assume the
reconstructed cores obey a Gaussian distribution, and use the same sample of events of the previous analysis,
only the real position of the core is replaced by the reconstructed core. The identification power is affected by
the uncertainties in the core determination, just as it is shown in the following Table 2.

Table 2: The identification power for γ and proton, when the uncertainties
in the core determination are taken into account

σ x , σ y 0m 1m 2m 3m 4m 5m 6m

γ acceptance 88.9% 88.9% 87.6% 85.7% 85.3% 85.4% 83.1%
Proton rejection 83.7% 83.0% 80.8% 80.2% 78.5% 75.8% 74.1%
Right identification 86.3% 85.9% 84.2% 83.0% 81.9% 80.6% 78.6%
Quality factor 2.20 2.16 2.00 1.93 1.84 1.74 1.63
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Figure 5: The quality factor Q as a function of
the cut ξ in the network output


