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Abstract

The features of an air shower generator which simulates longitudinal profiles are described. The generator
captures basic interaction features and contains a single adjustable parameter. It has been used to create sets
of proton and oxygen induced showers atE0 = 3 � 1020eV . These showers are investigated using a neural
network in an effort to understand to what degree intrinsic fluctuations affect the correlation between primary
type and the longitudinal profile.

1 Introduction:
Future experiments, OWL (Streitmatter et al., 1998) and Airwatch (Marzo et al., 1998) will use the air

fluorescence technique to obtain a high statistics observation of the highest energy cosmic rays by monitoring
the atmosphere from orbitting detectors. If such an observation is achieved, it may be possible to infer not
only an energy spectrum but also information about composition. Simulation of longitudinal profiles will play
a central role in the interpretation of detected showers.

The traditional approach to the simulation of longitudinal profiles (Gaisser et al., 1993) describes a shower
as a sum of subshowers all with energies less than a prescribed simulation threshold. These subshowers
are described by parameterizations which have been built up in a bootstrap approach starting at low energy.
Section 2 describes an air shower generator which utilizes this approach to construct parameterizations for
a set of models which can be interpolated between through the adjustment of a single parameter. Section 3
compares proton and oxygen showers generated atE0 = 3 � 1020eV where the models have been tuned to
give the same average depth at maximum for both primary types.

2 The Air Shower Generator:
The free parameter which fixes the interaction model specifies a choice of extrapolation for the inelastic p-p

cross section. So that the user of the generator can think in terms of an effective model, this parameter has been
recast as the average depth at maximum for protons atE0 = 3�1020eV . What follows is a brief sketch of main
features. Many rough approximations are made, but care is taken so that fluctuations are not underestimated.
Though simulation of showers at the highest energies requires extrapolation well beyond energies achieved at
accelerators, the longitudinal profile is only sensitive to grosse features of hadronic interactions. Assuming
that the physics evolves smoothly as the energy is raised, it is unlikely that a different event generator would
imply sets of showers which differ appreciably from an effective model which produces the same average
depth at maximum for showers initiated by protons at the energy scale of interest. For example, compare the
analyses of the mass composition for Fly’s Eye data in (Gaisser, 1993) and (Ding, 1997).

2.1 Particle Types: Since the aim is to capture general features, the only particle types treated are
nucleons, pions, electrons and photons (the energy loss due to muons and neutrinos is also tracked). So that all
subshowers have energies near the simulation threshold, a few pseudo-particles which represent collections of
pions are also utilized. In the context of the Hillas splitting algorithm (Hillas, 1981), these represent fragments
which have yet to go through presplittings and fragments that are in some stage of hadronization (hereafter
referred to aspresplitsandfragmentsrespectively).

2.2 Cross Sections: The choice of extrapolation of the inelastic p-p cross section is the model’s ad-
justable parameter, though all choices have the same low energy limit. The cross section for pions is taken
to be two thirds of the p-p cross section. The parameterization due to Kopeliovich (1989) is used to relate
cross sections on nucleon targets to cross sections on air. Nucleus-air cross sections are given by a standard
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and the value of� is energy dependent to roughly account for the growth in the underlying nucleon-nucleon
cross sections.

2.3 Hadron-Nucleon Interactions: Hadron-nucleon collisions are generated in a manner similar to
the original statement of Hillas’ splitting algorithm though the number of presplittings is chosen from a poisson
distribution. The leading particle is sampled from a flat distribution, but prior to sampling a fraction of the
energy representing a valence quark fragment which is not part of the leading hadron is removed by sampling
the fractional energy distributionp(x) / (1 � x)2ns�1=

p
x wherens is one less than the number of valence

quarks in the projectile. The implementation is rough, but it gives a natural distinction between nucleons and
pions since these hadrons differ in the number of valence quarks. This method is similar to that employed in
Sibyll (Fletcher et al., 1994).

2.4 Nuclear Target Effects: The wounded nucleon picture is adopted. Given the cross sections on
nucleon and air targets, the number of participating taget nucleons is sampled in a manner which produces
the correct average,NW = A�inelpp =�inelp�air, and also emphasizes peripheral collisions. This is accompished
by sampling an intermediate average from the distributionp(x)dx / (1 � x)� where alpha is tuned to give
the overall average. This intermediate average is used in sampling a binomial distribution with a maximum of
13 (taking a nitrogen target and always assuming at least 1 participant). For each participating target nucleon
a presplit is generated. The last target nucleon is treated as in hadron-nucleon interactons. The distribution
from which the presplit energies are sampled is a function of the number of participating target nucleons, and
guarrantees that on average the leading hadron has an energy of the order of the presplit energies. This insures
that the secondaries derived from the presplits have characteristic energies much less than the leading particle
energy. This reflects the expectation that lead particles reflect valence constituents while secondaries reflect
the sea.

2.5 Nuclear projectiles: The semi-superposition model is adopted. Using the same methodology as for
target nucleons, the sampling of participants from the projectile implies the correct average while emphasiz-
ing peripheral collisions. Each participating nucleon from the projectile generates an independent nucleon-air
interaction. All spectating nucleons from the projectile are lumped together as a single nucleus. This gives
slightly larger fluctuations in shower development, but is fairly close to the more realistic picture where spec-
tators group into fragments and individual nucleons (Engel et al., 1992).

2.6 Electromagnetic Cascading: Standard Bethe-Heitler formulas are used to propagate photons and
generate electron-positron pairs, see (Gaisser, 1992). However in order to avoid the intricacies in handling the
infrared divergence associated with bremsstrahlung, a simple splitting model is used to handle the cascading
of electrons (the term also implies positrons). The electron is treated as an effective electromagnetic particle
which propagates and splits (using a flat distribution) into two. To imply the correct elongation rate, the mean
free path is taken to be half a radiation length. The LPM effect is very roughly implemented by simply taking
the radiation length to be proportional to

p
E aboveELPM = 117PeV (A0=A), whereA is the column depth

andA0 is sea level,1030g=cm2, (Klein, 1998). A characteristic depth taken to be the creation depth of the
lepton is used. This captures the main feature of introducing a long length scale at the highest energies.

2.7 Parameterizing Subshowers: Subthreshold particles are propagated to a point of interaction be-
fore its subshower is parameterized. All hadrons (including presplits and fragments) are parameterized using
the Gaisser-Hillas profile function (Gaisser, Hillas, 1977) whereX0 is taken to be the depth of the initiating
particle. This leaves three parameters(Xmax �X0,Nmax, and�) which characterize the average profile of the
subshower. These parameters vary as a function of model, particle type and energy. Neutral pions, photons and
electrons are parameterized by a modified Greisen formula (Greisen, 1956). The modifications can consist of
shifts inX0 andXmax. The shifts are fitted to be consistent with the standard Greisen formula which describes
photon initiated showers relative to the point of the photon’s creation. Monte Carlo simulation is always con-



ducted down to at leastE = 117PeV , so that the LPM effect need not be considered when parameterizing
electromagnetic cascades.

2.8 Fitting of Showers: To a good approximation, the area underneath the longitudinal profile is pro-
portional to the energy deposited into the electromagnetic cascade (Sokolsky, 1989). This relation is assumed
to hold exactly and is implemented by constructing subthreshold parameterizations which respect this. The
deposited energy of the total shower is tracked along with the shower size at a number of discrete depths.
When fitting the total shower, the deposited energy can be used to fix the area underneath the fitted profile.

3 Comparison of Proton and Oxygen Initiated Showers:
A total of 2000 proton showers and 2000 oxygen showers have been generated atE0 = 3 �

1020eV . The oxygen showers were
generated using a fairly penetrating
model (average depth at maximum of
960g=cm2 for protons). The aver-
age depth at maximum for the oxy-
gen showers (829g=cm2), was used
to fix the model for the set of pro-
ton showers. The models conserva-
tively bracket current models in use:
the model for the oxygen primaries im-
plies showers which are probably too
penetrating while the model for pro-
tons implies showers which are prob-
ably not penetrating enough. The up-
per graph of Figure 1 shows result-
ing Xmax distribution for the two sets
of showers. The distribution indicates
thatXmax can be used to identify pri-
mary type with about60% efficiency.
To see if information about the shape
of the profile can be used to increase
the correct classification rate, a three-
layered feed-forward neural network
has been used to analyze the showers
(Bishop, 1997). Input to the network
consists of the three fitted parameters
to the Gaisser-Hillas profile function
(Xmax,X0 andNmax) and an error es-
timate which represents the degree to
which the simulated profile and the fit-
ted profile do not overlap. The fitted
value ofX0 is only weakly correlated
with the actual value ofX0, and in fact
the fitted value ofX0 is often a num-
ber less than zero. This is a reflection
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Figure 1: Upper graph: TheXmax distribution for the 2000 proton
showers and 2000 oxygen showers, all atE0 = 3 � 1020eV . Lower
graph: The percentage of showers correctly identified as proton or
oxygen for the two trained networks. An epoch corresponds to the
presentation of 2000 randomly chosen profiles from the training set.

of the limitations of the fitting function which was developed based on simulations of proton initiated showers
using a scaling hadronic interaction model. So that the network does not pick up on the slight systematic



differences in the deposited energy between protons and oxygen,Nmax is the size at maximum after the pro-
file has been scaled to unit area. The shower sets were split equally into a training set and a test set, and the
network was trained using a stochastic gradient descent. For means of comparision a separate network was
also trained using onlyXmax as an input.
The lower graph of Figure 1 shows the correct classification rate as the networks are trained. This rate is that
obtained by presenting the entire test set to the network. A single epoch corresponds to the presentation of
2000 randomly picked profiles from the training set. As expected, the network trained with justXmax cor-
rectly classifies about60% while the rate for the four-input network is about80%. While reconstruction errors
for actual events are quite large, this simple investigation suggests that it may be useful to classify individual
events in a manner which also accounts for the shape of the profile when trying to infer information about the
mass composition. Extensive investigations need to be done with detector Monte Carlos to understand exactly
how much information can be meaningfully extracted from a detected shower and how to best analyze sets of
events. The present shower generator can be a useful tool in exploring this question.
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