# Leading nucleon and the proton-nucleus Inelasticity 

J. Bellandi ${ }^{1}$, J.R. Fleitas ${ }^{1}$, and J. Dias de Deus ${ }^{2}$<br>${ }^{1}$ Instituto de Física, Universidade Estadual de Campinas, Campinas, SP 13083-970, Brazil<br>${ }^{2}$ Instituto Superior Técnico - CENTRA, Av. Rovisco Paes, 1, 1096 Lisboa Codex, Portugal


#### Abstract

We present in this paper, a calculation of average proton-nucleus inelasticity. Using an iteractive leading particle model and the Glauber model, we relate the leading particle distribution in nucleon-nucleus iteractions with the respective one in nucleon-proton collisions. To describe the leading particle distribution in nucleonproton, we use the Regge-Mueller formalism.


We calculate the average proton-nucleus inelasticity. Using an Iterative Leading Particle Model (Frichter et al., 1997) and the Glauber model (Glauber, 1959; Glauber et al., 1970), we relate the leading particle distribution in nucleon-nucleus interactions with the respective one in nucleon-proton collisions. In this model the leading particle spectrum in $p+A \rightarrow N$ (nucleon) $+X$ collisions is built from sucessive interacions with $\nu$ interacting proton of the nucleus $A$ and the behaviour is controlled by a straightforward convolution equation. It should be mentioned that, strictlly speaking, the convolution should be 3-dimensional. Here we only considered the 1-dimension approximation. In a recent paper (Bellandi et al., 1999) we have used this model to describe the hadronic flux in the atmosphere, showing that the average nucleon-nucleus elasticity, $<x>_{N-A}$, is correlated whit the respective average nucleon-proton elasticity, $<x^{\gamma}>_{N-p}$, by means of the following relation

$$
\begin{equation*}
\left(1-<x>_{N-A}\right)=\frac{1}{\sigma_{i n}^{N-a r}} \int d^{2} b\left[1-\exp \left[-\left(1-<x>_{N-p}\right) \sigma_{t o t}^{p p} T(b)\right]\right] \tag{1}
\end{equation*}
$$

where $T(b)$ is the nuclear thickness and given by means of the Woods-Saxon model (Woods, \& Saxon, 1954; Barrett, \& Jackson, 1977). Introducting the inelasticity given by $<k>=1-<x>$, this expression can be transformed in

$$
\begin{equation*}
<k>_{N-A}=\frac{1}{\sigma_{i n}^{N-A}} \int d^{2} b\left[1-\exp \left[-<k>_{N-p} \sigma_{t o t}^{p p} T(b)\right]\right] \tag{2}
\end{equation*}
$$

It is clear from this relationship that only in small $\sigma_{\text {tot }}^{p p}$ limit is $<K>_{N-A} \simeq<K>_{N}$. In general, $<K>_{N-A} \geq<K>_{N}$ and the effect increasing with the increase of $\sigma_{\text {tot }}^{p p}$. If $<K>_{N} \rightarrow 0$, one also has $<K>_{N-A} \rightarrow 0$. On the other hand, if $<K>_{N}=1$, then $<K>_{N-A}=1$, and Eq. (2) reproduces the Glauber model relationship between $\sigma_{i n}^{N-A}$ and $\sigma_{\text {tot }}^{p p}$. In order to calculate $<K>_{N-A}$ we use for $<K>_{N}$ the values calculated by means of the Regge-Mueller formalism (Batista et al., 1998) and as input for $\sigma_{\text {tot }}^{p p}$ we have used the UA4/2 parametrizations for the energy dependence (Burnett et al., 1992). In the Fig. (1) we show the results of this calculations for the following nuclei: $\mathrm{C}, \mathrm{Al}, \mathrm{Cu}, \mathrm{Ag}, \mathrm{Pb}$ and air $(A=14.5)$. In this figure we also show recent experimental data for $\mathrm{p}-\mathrm{Pb},<K>=0.84 \pm 016$ (Barroso et al., 1997) and for p-C, $<K>=0.65 \pm 0.08$ (Wilk \& Wlodarczyk, 1999).

In the Fig. (2), we compare the calculated $<K>_{p-a i r}$ with results from some models used in Monte Carlo simulation (Gaisser et al., 1993); the Kopeliovich et al. (Kopeliovich et al., 1989) (KNP) QCD multiple Pomeron exchanges model; the Dual Parton model with sea-quark interaction of Capella et al. (Capella et al., 1981); the statistical model of Fowler et al. (Fowler et al., 1987) and with calculated values derived from cosmic ray data by Bellandi et al. (Bellandi et al., 1998). We note that the calculated $<K>_{p-a i r}$ (Bellandi et al., 1998) was done assuming for the $T(b)$ nuclear thickness the Durand and Pi model (Durand \& Pi, 1988), which gives small values for the average inelasticity. In the Fig. (2) we also show the average inelasticity values as calculated by means of this model.


Figure 1: Proton-nucleus inelasticities calculated. The up triangle is Pb data (Barroso et al., 1997) and down triangle is C data (Wilk \& Wlodarczyk, 1999) .


Figure 2: The $<K>^{p-a i r}$ as a function of $\sqrt{s}$ in $G e V$. The experimental data from (Bellandi et al., 1998). Dash line from (Fowler et al., 1985). Solid line from (Capella et al., 1981). Dot-dash line from (Kopeliovich et al., 1989). Dot line from Eq. (2) with Woods-Saxon model (Woods \& Saxon, 1954; Barrett, \& Jackson, 1977). Long-dash line from Durand-Pi model (Durand \& Pi, 1988).

We would like to thank the Brazilian governmental agencies C NPq and CAPES for financial support

## References

Barrett, R.C. \& Jackson, D.F. 1977, Nuclear Sizes and Structure, (Clarendon Press, Oxford).
Barroso, S.L.C. et al. (Chacaltaya Collab.) 1997, Proc. $25^{\text {th }}$ ICRC, (Durban, 1997)
Batista, M. \& Covolan, R.J.M. 1998, hep-ph:9811425.
Bellandi, J., Fleitas, J.R. \& Dias de Deus, J. 1998, Il Nuovo Cimento, 111A, 149.
Bellandi, J. et al. 1999, Proc. $26^{\text {th }}$ ICRC, (Salt Lake City, 1999).
Burnett, T.H. et al., (UA4/2 Collab.) 1992, ApJ 349 L25.
Capella, A. et al. 1981, Z. Phys. C 10, 249.
Durand, L. \& and Pi, H. 1988, Phys. Rev. D 38, 78.
Fowler, G. et al. 1987, Phys. Rev. D 35, 870.
Frichter, G.M. et al. 1997, Phys. Rev. D 56, 3135.
Gaisser, T.K. et al. 1993, Phys. Rev. D 47, 1919.
Glauber, R.J. 1959, Lect. Theor. Phys. Vol.1, edited by W.Britten and L.G.Dunhan (Interscience, NY), 135.
Glauber, R.J. et al. 1970, Nucl. Phys.B 12, 135.
Kopeliovich, B.Z. et al. 1989, Phys. Rev. D 39, 769.
Wilk, G. \& Wlodarczyk, Z. 1999, Phys. Rev. D 57, 180.
Woods, R.D. \& Saxon, D.S. 1954, Phys. Rev. 95, 577.

